Ensembles of pre-processing techniques for noise detection in gene expression data (2009)
- Authors:
- USP affiliated author: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC
- School: ICMC
- Subject: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: Springer
- Place of publication: Heidelberg
- Date published: 2009
- Source:
- Título do periódico: Lecture Notes in Computer Science
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 5506, p. 486-493, 2009
- Conference title: International Conference - ICONIP 2008
-
ABNT
LIBRALON, Giampaolo Luiz e CARVALHO, André Carlos Ponce de Leon Ferreira e LORENA, Ana Carolina. Ensembles of pre-processing techniques for noise detection in gene expression data. Lecture Notes in Computer Science. Heidelberg: Springer. Disponível em: http://www.springerlink.com/content/71w8h74384657330. Acesso em: 03 jul. 2022. , 2009 -
APA
Libralon, G. L., Carvalho, A. C. P. de L. F., & Lorena, A. C. (2009). Ensembles of pre-processing techniques for noise detection in gene expression data. Lecture Notes in Computer Science. Heidelberg: Springer. Recuperado de http://www.springerlink.com/content/71w8h74384657330 -
NLM
Libralon GL, Carvalho ACP de LF, Lorena AC. Ensembles of pre-processing techniques for noise detection in gene expression data [Internet]. Lecture Notes in Computer Science. 2009 ; 5506 486-493.[citado 2022 jul. 03 ] Available from: http://www.springerlink.com/content/71w8h74384657330 -
Vancouver
Libralon GL, Carvalho ACP de LF, Lorena AC. Ensembles of pre-processing techniques for noise detection in gene expression data [Internet]. Lecture Notes in Computer Science. 2009 ; 5506 486-493.[citado 2022 jul. 03 ] Available from: http://www.springerlink.com/content/71w8h74384657330 - Hybrid classification algorithms based on boosting and support vector machines
- A comparison of hierarchical biclustering ensemble methods
- Unsupervised domain adaptation for human activity recognition
- Recommending collaborative filtering algorithms using subsampling landmarkers
- Fast adaptive stacking of ensembles
- Automatic design of decision-tree induction algorithms
- To tune or not to tune: recommending when to adjust SVM hyper-parameters via meta-learning
- Evolutionary radial basis functions for credit assessment
- Neural networks for hierarchical classification of G-Protein Coupled Receptors
- Multi-label feature selection techniques for hierarchical multi-label protein function prediction
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas