Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain (2004)
- Authors:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.jde.2003.09.004
- Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; EQUAÇÕES DIFERENCIAIS FUNCIONAIS; EQUAÇÕES DIFERENCIAIS PARCIAIS
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Differential Equations
- ISSN: 0022-0396
- Volume/Número/Paginação/Ano: v. 199, n. 1, p. 143-178, 2004
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
- Licença: publisher-specific-oa
-
ABNT
ARRIETA, José M. e CARVALHO, Alexandre Nolasco de. Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain. Journal of Differential Equations, v. 199, n. 1, p. 143-178, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2003.09.004. Acesso em: 02 dez. 2025. -
APA
Arrieta, J. M., & Carvalho, A. N. de. (2004). Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain. Journal of Differential Equations, 199( 1), 143-178. doi:10.1016/j.jde.2003.09.004 -
NLM
Arrieta JM, Carvalho AN de. Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain [Internet]. Journal of Differential Equations. 2004 ; 199( 1): 143-178.[citado 2025 dez. 02 ] Available from: https://doi.org/10.1016/j.jde.2003.09.004 -
Vancouver
Arrieta JM, Carvalho AN de. Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain [Internet]. Journal of Differential Equations. 2004 ; 199( 1): 143-178.[citado 2025 dez. 02 ] Available from: https://doi.org/10.1016/j.jde.2003.09.004 - Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics
- Structure of attractors for skew product semiflows
- Continuity of attractors for a semilinear wave equation with variable coefficients
- Patterns in parabolic problems with nonlinear boundary conditions
- Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds
- Continuity of the dynamics in a localized large diffusion problem with nonlinear boundary conditions
- Exponential global attractors for semigroups in metric spaces with applications to differential equations
- Continuity of dynamical structures for non-autonomous evolution equations under singular perturbations
- A gradient-like non-autonomous evolution process
- Equi-exponential attraction and rate of convergence of attractors with application to a perturbed damped wave equation
Informações sobre o DOI: 10.1016/j.jde.2003.09.004 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
