A survey of evolutionary algorithms for clustering (2009)
- Authors:
- USP affiliated authors: HRUSCHKA, EDUARDO RAUL - ICMC ; CAMPELLO, RICARDO JOSÉ GABRIELLI BARRETO - ICMC ; CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC
- Unidade: ICMC
- Subjects: INTELIGÊNCIA ARTIFICIAL; BANCO DE DADOS
- Language: Inglês
- Imprenta:
- Source:
- Título: IEEE Transactions on Systems, Man, and Cybernetics: part c: applications and reviews
- ISSN: 1094-6977
- Volume/Número/Paginação/Ano: v. 39, n. 2, p. 133-155, 2009
-
ABNT
HRUSCHKA, Eduardo Raul et al. A survey of evolutionary algorithms for clustering. IEEE Transactions on Systems, Man, and Cybernetics: part c: applications and reviews, v. 39, n. 2, p. 133-155, 2009Tradução . . Disponível em: http://ieeexplore.ieee.org/stamp/stamp.do?tp=&arnumber=4783080&isnumber=4787649. Acesso em: 22 jan. 2026. -
APA
Hruschka, E. R., Campello, R. J. G. B., Freitas, A. A., & Carvalho, A. C. P. de L. F. de. (2009). A survey of evolutionary algorithms for clustering. IEEE Transactions on Systems, Man, and Cybernetics: part c: applications and reviews, 39( 2), 133-155. Recuperado de http://ieeexplore.ieee.org/stamp/stamp.do?tp=&arnumber=4783080&isnumber=4787649 -
NLM
Hruschka ER, Campello RJGB, Freitas AA, Carvalho ACP de LF de. A survey of evolutionary algorithms for clustering [Internet]. IEEE Transactions on Systems, Man, and Cybernetics: part c: applications and reviews. 2009 ; 39( 2): 133-155.[citado 2026 jan. 22 ] Available from: http://ieeexplore.ieee.org/stamp/stamp.do?tp=&arnumber=4783080&isnumber=4787649 -
Vancouver
Hruschka ER, Campello RJGB, Freitas AA, Carvalho ACP de LF de. A survey of evolutionary algorithms for clustering [Internet]. IEEE Transactions on Systems, Man, and Cybernetics: part c: applications and reviews. 2009 ; 39( 2): 133-155.[citado 2026 jan. 22 ] Available from: http://ieeexplore.ieee.org/stamp/stamp.do?tp=&arnumber=4783080&isnumber=4787649 - Efficiency issues of evolutionary k-means
- Evolutionary fuzzy clustering: an overview and efficiency issues
- On comparing two sequences of numbers and its applications to clustering analysis
- On the efficiency of evolutionary fuzzy clustering
- A robust methodology for comparing performances of clustering validity criteria
- Relative clustering validity criteria: a comparative overview
- On the comparisson of relative clustering validity criteria
- Collaborative fuzzy clustering algorithms: some refinements and design guidelines
- A comparative study on the use of correlation coefficients for redundant feature elimination
- Fuzzy clustering-based filter
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
