Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks (2008)
- Authors:
- Autor USP: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC
- Unidade: ICMC
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- ISBN: 1595937537
- Source:
- Título: Proceedings
- Conference titles: Annual ACM Symposium on Applied Computing
-
ABNT
SPINOSA, Eduardo Jaques e CARVALHO, André Carlos Ponce de Leon Ferreira de e GAMA, João. Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks. 2008, Anais.. New York: ACM, 2008. . Acesso em: 03 fev. 2026. -
APA
Spinosa, E. J., Carvalho, A. C. P. de L. F. de, & Gama, J. (2008). Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks. In Proceedings. New York: ACM. -
NLM
Spinosa EJ, Carvalho ACP de LF de, Gama J. Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks. Proceedings. 2008 ;[citado 2026 fev. 03 ] -
Vancouver
Spinosa EJ, Carvalho ACP de LF de, Gama J. Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks. Proceedings. 2008 ;[citado 2026 fev. 03 ] - Gabinete pequeno é destaque de pc itautec
- New data strucutre and spanning forest operators for evolutionay algorithms
- Metalearning for context-aware filtering: selection of tensor factorization algorithms
- Evolutionary tuning of SVM parameter values in multiclass problems
- Dimensionality reduction for the algorithm recommendation problem
- Making data stream classification tree-based ensembles lighter
- A study of biclustering coherence measures for gene expression data
- Anomaly detection through temporal abstractions on intensive care data: position paper
- CF4CF: recommending collaborative filtering algorithms using collaborative filtering
- A machine learning-based approach for prediction of plant protection product deposition
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
