The Borsuk-Ulam theorem for surfaces (2006)
- Autor:
- Autor USP: GONCALVES, DACIBERG LIMA - IME
- Unidade: IME
- DOI: 10.2989/16073600609486153
- Assunto: TOPOLOGIA ALGÉBRICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Grahamstown
- Date published: 2006
- Source:
- Título: Quaestiones Mathematicae
- ISSN: 1727-933X
- Volume/Número/Paginação/Ano: v. 29, p. 117-123, 2006
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GONÇALVES, Daciberg Lima. The Borsuk-Ulam theorem for surfaces. Quaestiones Mathematicae, v. 29, p. 117-123, 2006Tradução . . Disponível em: https://doi.org/10.2989/16073600609486153. Acesso em: 20 fev. 2026. -
APA
Gonçalves, D. L. (2006). The Borsuk-Ulam theorem for surfaces. Quaestiones Mathematicae, 29, 117-123. doi:10.2989/16073600609486153 -
NLM
Gonçalves DL. The Borsuk-Ulam theorem for surfaces [Internet]. Quaestiones Mathematicae. 2006 ; 29 117-123.[citado 2026 fev. 20 ] Available from: https://doi.org/10.2989/16073600609486153 -
Vancouver
Gonçalves DL. The Borsuk-Ulam theorem for surfaces [Internet]. Quaestiones Mathematicae. 2006 ; 29 117-123.[citado 2026 fev. 20 ] Available from: https://doi.org/10.2989/16073600609486153 - Reidemeister spectrum for metabelian groups of the form Qn⋊Z and Z[1/p]n⋊Z, p prime
- Wecken homotopies
- Sigma theory and twisted conjugacy, II: Houghton groups and pure symmetric automorphism groups
- Nielsen numbers of selfmaps of flat 3-manifolds
- Minimizing roots of maps between spheres and projective spaces in codimension one
- On automorphisms of split metacyclic groups
- The lower central and derived series of the braid groups of the finitely-punctured sphere
- The lower central and derived series of the braid groups of the sphere
- The collection of papers in this issue were gathered in the aftermath of the “International conference on Nielsen fixed point theory and related topics” [Preface]
- Coincidence Wecken homotopies versus Wecken homotopies relative to a fixed homotopy in one of the maps II
Informações sobre o DOI: 10.2989/16073600609486153 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
