Gorenstein matrices (2005)
- Authors:
- Autor USP: DOKUCHAEV, MIKHAJOLO - IME
- Unidade: IME
- Assunto: TEORIA DA REPRESENTAÇÃO
- Keywords: exponent matrix; Gorenstein tiled order; Gorenstein matrix; admissible quiver; doubly stochastic matrix
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Algebra and Discrete Mathematics
- ISSN: 1726-3255
- Volume/Número/Paginação/Ano: n. 1, p. 8-29, 2005
-
ABNT
DOKUCHAEV, Michael et al. Gorenstein matrices. Algebra and Discrete Mathematics, n. 1, p. 8-29, 2005Tradução . . Disponível em: http://www.mathnet.ru/links/f92c625ee77af629f48c119afae85069/adm286.pdf. Acesso em: 10 out. 2025. -
APA
Dokuchaev, M., Kirichenko, V. V., Zelensky, A. V., & Zhuralev, V. N. (2005). Gorenstein matrices. Algebra and Discrete Mathematics, ( 1), 8-29. Recuperado de http://www.mathnet.ru/links/f92c625ee77af629f48c119afae85069/adm286.pdf -
NLM
Dokuchaev M, Kirichenko VV, Zelensky AV, Zhuralev VN. Gorenstein matrices [Internet]. Algebra and Discrete Mathematics. 2005 ;( 1): 8-29.[citado 2025 out. 10 ] Available from: http://www.mathnet.ru/links/f92c625ee77af629f48c119afae85069/adm286.pdf -
Vancouver
Dokuchaev M, Kirichenko VV, Zelensky AV, Zhuralev VN. Gorenstein matrices [Internet]. Algebra and Discrete Mathematics. 2005 ;( 1): 8-29.[citado 2025 out. 10 ] Available from: http://www.mathnet.ru/links/f92c625ee77af629f48c119afae85069/adm286.pdf - Partial projective representations and partial actions
- Associativity of crossed products by partial actions, enveloping actions and partial representations
- Globalizations of partial actions on nonunital rings
- Partial projective representations and partial actions
- Representations of primitive posets
- Crossed products by twisted partial actions and graded algebras
- On colimits over arbitrary posets
- On exponent matrices of tiled orders
- A seven terms exact sequence related to a partial Galois extension of commutative rings
- Homology and cohomology via the partial group algebra
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas