Szemerédi's regularity lemma and quasi-randominess (2003)
- Authors:
- Autor USP: KOHAYAKAWA, YOSHIHARU - IME
- Unidade: IME
- DOI: 10.1007/0-387-22444-0_9
- Assunto: TEORIA DOS GRAFOS
- Keywords: bipartite graph; random graph; algorithmic version; graph property; sparse graph
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
KOHAYAKAWA, Yoshiharu e RÖDLT, VojtĚch. Szemerédi's regularity lemma and quasi-randominess. Recent advances in algorithms and combinatorics. Tradução . New York: Springer, 2003. . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/0-387-22444-0_9. Acesso em: 08 jan. 2026. -
APA
Kohayakawa, Y., & RÖdlt, V. Ě. (2003). Szemerédi's regularity lemma and quasi-randominess. In Recent advances in algorithms and combinatorics. New York: Springer. doi:10.1007/0-387-22444-0_9 -
NLM
Kohayakawa Y, RÖdlt VĚ. Szemerédi's regularity lemma and quasi-randominess [Internet]. In: Recent advances in algorithms and combinatorics. New York: Springer; 2003. [citado 2026 jan. 08 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/0-387-22444-0_9 -
Vancouver
Kohayakawa Y, RÖdlt VĚ. Szemerédi's regularity lemma and quasi-randominess [Internet]. In: Recent advances in algorithms and combinatorics. New York: Springer; 2003. [citado 2026 jan. 08 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/0-387-22444-0_9 - A note on induced cycles in kneser graphs
- On K4-free subgraphs of random graphs
- Ramsey games against a one-armed bandit
- Efficient testing of hypergraphs
- Bounds for optimal coverings
- Almost spanning subgraphs of random graphs after adversarial edge removal
- The chromatic thresholds of graphs
- Percolation in high dimensions
- Small subsets inherit sparse ε-regularity
- An improved upper bound on the density of universal random graphs
Informações sobre o DOI: 10.1007/0-387-22444-0_9 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
