Self-adjoint extension of the Dirac operator in the superposition of a uniform magnetic field and the Aharonov-Bohm potential (2002)
- Authors:
- USP affiliated author: GUITMAN, DMITRI MAXIMOVITCH - IF
- School: IF
- Subject: PARTÍCULAS (FÍSICA NUCLEAR)
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Programa e Resumos
- Conference title: Encontro Nacional de Física de Partículas e Campos
-
ABNT
GAVRILOV, S P; GITMAN, Dmitri Maximovitch; SMIRNOV, A A. Self-adjoint extension of the Dirac operator in the superposition of a uniform magnetic field and the Aharonov-Bohm potential. Anais.. São Paulo: SBF, 2002. -
APA
Gavrilov, S. P., Gitman, D. M., & Smirnov, A. A. (2002). Self-adjoint extension of the Dirac operator in the superposition of a uniform magnetic field and the Aharonov-Bohm potential. In Programa e Resumos. São Paulo: SBF. -
NLM
Gavrilov SP, Gitman DM, Smirnov AA. Self-adjoint extension of the Dirac operator in the superposition of a uniform magnetic field and the Aharonov-Bohm potential. Programa e Resumos. 2002 ; -
Vancouver
Gavrilov SP, Gitman DM, Smirnov AA. Self-adjoint extension of the Dirac operator in the superposition of a uniform magnetic field and the Aharonov-Bohm potential. Programa e Resumos. 2002 ; - Quantization of(2+1)-spinning particles and bifermionic constraint problem
- Superfiled extended BRST quantization in general coordinates
- Transformação de Darboux para sistemas de dois níveis
- Density operators for particles created by strong backgrounds
- Comments on spin operators and spin-polarization states of 2 + 1 fermions
- Pseudoclassical description of scalar particle in non-Abelian bachground and path-integral representations
- Action principle for so-called non-Langragian systems
- On the action principle for a system of differential equations
- Coherent states of a particle in a magnetic field and the Stieltjes moment problem
- Casimir interaction between a perfect conductor and graphene described by the Dirac model
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas