On the injectivity of C¹ maps of the real plane (2002)
- Authors:
- Autor USP: VIDALON, CARLOS TEOBALDO GUTIERREZ - ICMC
- Unidade: ICMC
- Assunto: SINGULARIDADES
- Language: Inglês
- Imprenta:
- Publisher: ICMC-USP
- Publisher place: São Carlos
- Date published: 2002
- Source:
- ISSN: 0103-2577
-
ABNT
COBO, Milton e GUTIERREZ, Carlos e LLIBRE, Jaume. On the injectivity of C¹ maps of the real plane. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/2970533c-4dc2-45bb-a8f9-2d921f88f778/1253922.pdf. Acesso em: 02 jan. 2025. , 2002 -
APA
Cobo, M., Gutierrez, C., & Llibre, J. (2002). On the injectivity of C¹ maps of the real plane. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/2970533c-4dc2-45bb-a8f9-2d921f88f778/1253922.pdf -
NLM
Cobo M, Gutierrez C, Llibre J. On the injectivity of C¹ maps of the real plane [Internet]. 2002 ;[citado 2025 jan. 02 ] Available from: https://repositorio.usp.br/directbitstream/2970533c-4dc2-45bb-a8f9-2d921f88f778/1253922.pdf -
Vancouver
Cobo M, Gutierrez C, Llibre J. On the injectivity of C¹ maps of the real plane [Internet]. 2002 ;[citado 2025 jan. 02 ] Available from: https://repositorio.usp.br/directbitstream/2970533c-4dc2-45bb-a8f9-2d921f88f778/1253922.pdf - Properness and the Jacobian conjecture in 'R POT. 2'
- Ovaloids of R³ and their umbilics: a differential equation approach
- Hopf bifurcation at infinity for planar vector fields
- Simple umbilic points on surfaces immersed in IR⁴
- On Peixoto's conjecture for flows on non-orientable 2-manifolds
- Iterated images and the plane jacobian conjecture
- A note on properness and the Jacobian conjecture in R²
- Planar embeddings with a globally attracting fixed point
- Global asymptotic stability for differentiable vector fields of R2
- A remark on an eigenvalue condition for the global injectivity of differentiable maps of 'R POT. 2'
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
1253922.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas