A note on Park and Chin's algorithm (2002)
- Authors:
- USP affiliated authors: HASHIMOTO, RONALDO FUMIO - IME ; BARRERA, JUNIOR - IME
- Unidade: IME
- DOI: 10.1109/34.982891
- Assunto: COMPUTAÇÃO GRÁFICA
- Keywords: Simply connected set; structuring element; decomposition; Minkowski addition
- Language: Inglês
- Imprenta:
- Source:
- Título: IEEE Transactions on Pattern Analysis and Machine Intelligence
- ISSN: 0162-8828
- Volume/Número/Paginação/Ano: v. 24, n. 1, p. 139-144, 2002
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
HASHIMOTO, Ronaldo Fumio e BARRERA, Júnior. A note on Park and Chin's algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 24, n. 1, p. 139-144, 2002Tradução . . Disponível em: https://doi.org/10.1109/34.982891. Acesso em: 27 dez. 2025. -
APA
Hashimoto, R. F., & Barrera, J. (2002). A note on Park and Chin's algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24( 1), 139-144. doi:10.1109/34.982891 -
NLM
Hashimoto RF, Barrera J. A note on Park and Chin's algorithm [Internet]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002 ; 24( 1): 139-144.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1109/34.982891 -
Vancouver
Hashimoto RF, Barrera J. A note on Park and Chin's algorithm [Internet]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002 ; 24( 1): 139-144.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1109/34.982891 - Compact representation of w-operators
- From the sup-decomposition to a sequential decomposition
- Finding solutions for the dilation factorization equation
- A simple algorithm for decomposing convex structuring elements
- From the sup-decomposition to sequential decompositions
- Microarray gridding by mathematical morphology
- Analytical solutions for the Minkowski addition equation
- A greedy algorithm for decomposing convex structuring elements
- Compact representation of w-operators
- Sup-compact and inf-compact representations of W-operators
Informações sobre o DOI: 10.1109/34.982891 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
