Inequalities for the occurrence times of rare events in mixing processes: the state of the art (2001)
- Authors:
- Autor USP: GALVES, JEFFERSON ANTONIO - IME
- Unidade: IME
- Subjects: PROCESSOS ESTOCÁSTICOS; PROCESSOS ESTACIONÁRIOS
- Keywords: mixing processes; occurence time of a rare event; exponential approximation
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Markov Processes and Related Fields
- ISSN: 1024-2953
- Volume/Número/Paginação/Ano: v. 7, n. 1, p. 97-112, 2001
-
ABNT
ABADI, Martín.; GALVES, Antonio. Inequalities for the occurrence times of rare events in mixing processes: the state of the art. Markov Processes and Related Fields, Moscow, Polymat, v. 7, n. 1, p. 97-112, 2001. -
APA
Abadi, M., & Galves, A. (2001). Inequalities for the occurrence times of rare events in mixing processes: the state of the art. Markov Processes and Related Fields, 7( 1), 97-112. -
NLM
Abadi M, Galves A. Inequalities for the occurrence times of rare events in mixing processes: the state of the art. Markov Processes and Related Fields. 2001 ; 7( 1): 97-112. -
Vancouver
Abadi M, Galves A. Inequalities for the occurrence times of rare events in mixing processes: the state of the art. Markov Processes and Related Fields. 2001 ; 7( 1): 97-112. - Percolação e o processo de contato
- A statistical-physics approach to language acquisition and language change
- Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets
- Estatísticas, redes sociais e manipulação de eleitores
- Metastability for a class of dynamical systems subject to small random perturbations
- Um modelo de aquisição e mudança linguística
- Modeling networks of spiking neurons as interacting processes with memory of variable length
- Hydrodynamic limit for interacting neurons
- Sistemas Markovianos de partÍculas, associação e emparelhamento
- Fluctuations in Derrida's random energy and generalized random energy models
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas