Invariant manifolds and limiting equations for a hyperbolic problem (2000)
- Authors:
- Autor USP: PEREIRA, ANTONIO LUIZ - IME
- Unidade: IME
- Subjects: EQUAÇÕES DIFERENCIAIS; SISTEMAS DINÂMICOS
- Language: Inglês
- Imprenta:
- Source:
- Título: Dynamics of Continuous Discrete and Impulsive Systems, Ser. A, Mathematical Analysis
- ISSN: 1201-3390
- Volume/Número/Paginação/Ano: v. 7, n. 4, p. 503-524, 2000
-
ABNT
PEREIRA, Antônio Luiz e OLIVEIRA, Luiz Antonio Fernandes de. Invariant manifolds and limiting equations for a hyperbolic problem. Dynamics of Continuous Discrete and Impulsive Systems, Ser. A, Mathematical Analysis, v. 7, n. 4, p. 503-524, 2000Tradução . . Acesso em: 27 dez. 2025. -
APA
Pereira, A. L., & Oliveira, L. A. F. de. (2000). Invariant manifolds and limiting equations for a hyperbolic problem. Dynamics of Continuous Discrete and Impulsive Systems, Ser. A, Mathematical Analysis, 7( 4), 503-524. -
NLM
Pereira AL, Oliveira LAF de. Invariant manifolds and limiting equations for a hyperbolic problem. Dynamics of Continuous Discrete and Impulsive Systems, Ser. A, Mathematical Analysis. 2000 ; 7( 4): 503-524.[citado 2025 dez. 27 ] -
Vancouver
Pereira AL, Oliveira LAF de. Invariant manifolds and limiting equations for a hyperbolic problem. Dynamics of Continuous Discrete and Impulsive Systems, Ser. A, Mathematical Analysis. 2000 ; 7( 4): 503-524.[citado 2025 dez. 27 ] - The tangential variation of a localized flux-type eigenvalue problem
- Perturbation of the boundary in boundary-value problems of partial differential equations
- Asymptotic behavior for a nonlocal model of neural fields
- Autovalores de laplaciano em regioes simetricas
- Generic hyperbolicity for scalar parabolic equations
- Eigenvalues of the Neumann Laplacian in symmetric regions
- Existence and continuity of global attractors and nonhomogeneous equilibria for a class of evolution equations with non local terms
- Existence of global attractors and gradient property for a class of non local evolution equations
- Eigenvalues of the Laplacian on symmetric regions
- Equivariant bifurcations in a non-local model of ferromagnetic materials
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
