Converging perturbative solutions of the Schrödinger equation for a two-level system with a Hamiltonian depending periodically on time (1999)
- Autor:
- Autor USP: BARATA, JOAO CARLOS ALVES - IF
- Unidade: IF
- Assunto: FÍSICA MATEMÁTICA
- Language: Inglês
- Imprenta:
-
ABNT
BARATA, João Carlos Alves. Converging perturbative solutions of the Schrödinger equation for a two-level system with a Hamiltonian depending periodically on time. . São Paulo: Instituto de Física, Universidade de São Paulo. Disponível em: http://publica-sbi.if.usp.br/PDFs/pd1433.pdf. Acesso em: 28 dez. 2025. , 1999 -
APA
Barata, J. C. A. (1999). Converging perturbative solutions of the Schrödinger equation for a two-level system with a Hamiltonian depending periodically on time. São Paulo: Instituto de Física, Universidade de São Paulo. Recuperado de http://publica-sbi.if.usp.br/PDFs/pd1433.pdf -
NLM
Barata JCA. Converging perturbative solutions of the Schrödinger equation for a two-level system with a Hamiltonian depending periodically on time [Internet]. 1999 ;[citado 2025 dez. 28 ] Available from: http://publica-sbi.if.usp.br/PDFs/pd1433.pdf -
Vancouver
Barata JCA. Converging perturbative solutions of the Schrödinger equation for a two-level system with a Hamiltonian depending periodically on time [Internet]. 1999 ;[citado 2025 dez. 28 ] Available from: http://publica-sbi.if.usp.br/PDFs/pd1433.pdf - Wavepackets on de sitter spacetime
- Scattering states of charged particles in the 'Z IND.2' gauge theories
- Reduction formulae for euclidean lattice theories
- Stability for quasi-periodically perturbed Hills equations
- Dualidade de Rehren
- Scattering and bound states in Euclidean lattice quantum field theories
- Pure and mixed states
- On the phase structure of the compact abelian lattice higgs model
- Scattering states of charged particles in the 'Z IND.2' gauge theories
- Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
