Exportar registro bibliográfico

Sobre ações parciais, fibrados de Fell, e grupóides (1999)

  • Authors:
  • Autor USP: VICENS, FERNANDO RAUL ABADIE - IME
  • Unidade: IME
  • Sigla do Departamento: MAT
  • Assunto: ANÁLISE FUNCIONAL
  • Agências de fomento:
  • Language: Português
  • Abstract: fechado em alguns casos e em outros não. Na categoria de 'C POT.AST.'-álgebras com os bimódulos de equivalência Morita como morfismos, a ação envolvente existe e é única. Neste contexto, o problema da ação envolvente está intimamente ligado com a dualidade de Takai. De fato, através do nosso estudo da ação envolvente mostramos qual é a forma que a dualidade de Takai toma para produtos cruzados por ações parciais. Como aplicações, mencionamos duas a seguir. Provamos que toda ação parcial de um grupo conexo sobre uma 'C POT.AST.'-álgebra com unidade deve ser uma ação global, o que generaliza o conhecido fato de que as soluções de uma equação diferencial sobre uma variedade compacta estão definidas em toda a reta real. Também provamos que o produto cruzado da 'C POT.AST.'-álgebra reduzida de um fibrado de Fell pela coação dual é liminal, postliminal ou nuclear, se e somente se a fibra sobre a identidade é respectivamente liminal, postliminal, ou nuclear. Na terceira parte mostramos que toda ação parcial sobre uma 'C POT.AST.'-álgebra comutativa tem naturalmente associado um grupóide com sistema de Haar, e que o produto cruzado pela ação parcial é isomorfo à 'C POT.AST.'-álgebra do grupóideEsta tese tem tres partes. Na primeira, estudamos os produtos tensoriais de fibrados de Fell e suas aplicações. O resultado principal desta parte relaciona os produtos tensoriais máximo e mínimo das 'C POT.AST.'-álgebras seccionais plena e reduzida de dois fibrados de Fell, com as 'C POT.AST.'- álgebras plena e reduzida dos correspondentes produtos tensoriais máximo e mínimo dos fibrados. Como aplicação vemos, por exemplo, que se um fibrado de Fell satisfaz a propriedade de aproximação e tem fibra exata, então sua 'C POT.AST.'- álgebra seccional é exata. Em particular, o produto cruzado de uma 'C POT.AST.'- álgebra exata por uma ação parcial de um grupo amenable também é exato. Na segunda parte estudamos e resolvemos em três categorias o seguinte problema: toda ação parcial é a restrição de uma ação global? Uma tal ação global é chamada ação envolvente, e o espaço onde age é o espaço envolvente. Na categoria de conjuntos e funções a ação envolvente existe e é única, e ela está caracterizada por uma propriedade universal. Na categoria de espaços topológicos e funções contínuas também. Porém, neste caso a ação envolvente de uma ação parcial sobre um espaço de Hausdorff pode estar agindo sobre um espaço que não é de Hausdorff. Vemos então que o espaço envolvente é de Hausdorff se e somente se o espaço inicial é de Hausdorff e o gráfico da ação parcial é fechado. Mostramos que o fluxo de um campo vetorial sobre uma variedade é uma ação parcial, cujo gráfico é
  • Imprenta:
  • Data da defesa: 01.09.1999
  • Acesso à fonte
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      VICENS, Fernando Abadie; EXEL FILHO, Ruy. Sobre ações parciais, fibrados de Fell, e grupóides. 1999.Universidade de São Paulo, São Paulo, 1999. Disponível em: < https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-023157/ >.
    • APA

      Vicens, F. A., & Exel Filho, R. (1999). Sobre ações parciais, fibrados de Fell, e grupóides. Universidade de São Paulo, São Paulo. Recuperado de https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-023157/
    • NLM

      Vicens FA, Exel Filho R. Sobre ações parciais, fibrados de Fell, e grupóides [Internet]. 1999 ;Available from: https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-023157/
    • Vancouver

      Vicens FA, Exel Filho R. Sobre ações parciais, fibrados de Fell, e grupóides [Internet]. 1999 ;Available from: https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-023157/

    Últimas obras dos mesmos autores vinculados com a USP cadastradas na BDPI:

    Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021