On periodic solutions for a class of linear scaled differential equations. II (1999)
- Authors:
- USP affiliated authors: CARVALHO, LUIZ ANTONIO VIEIRA DE - ICMC ; LADEIRA, LUIZ AUGUSTO DA COSTA - ICMC
- Unidade: ICMC
- Assunto: FUNÇÕES ESPECIAIS
- Language: Inglês
- Source:
- Título: Communications in Applied Analysis
- Volume/Número/Paginação/Ano: v. 3, n. 3, p. 415-431, 1999
-
ABNT
CARVALHO, Luiz Antonio Vieira de e COOKE, Kenneth L e LADEIRA, Luiz Augusto da Costa. On periodic solutions for a class of linear scaled differential equations. II. Communications in Applied Analysis, v. 3, n. 3, p. 415-431, 1999Tradução . . Acesso em: 22 jan. 2026. -
APA
Carvalho, L. A. V. de, Cooke, K. L., & Ladeira, L. A. da C. (1999). On periodic solutions for a class of linear scaled differential equations. II. Communications in Applied Analysis, 3( 3), 415-431. -
NLM
Carvalho LAV de, Cooke KL, Ladeira LA da C. On periodic solutions for a class of linear scaled differential equations. II. Communications in Applied Analysis. 1999 ; 3( 3): 415-431.[citado 2026 jan. 22 ] -
Vancouver
Carvalho LAV de, Cooke KL, Ladeira LA da C. On periodic solutions for a class of linear scaled differential equations. II. Communications in Applied Analysis. 1999 ; 3( 3): 415-431.[citado 2026 jan. 22 ] - On periodic orbits of autonomous differential-difference equations
- On periodic solutions for a class of linear scaled differential equations. I
- Difference equations: detecting oscillations via higher order characteristic equations
- Forbidden periodics in delay differential equations
- Extended characteristic equations, oscillations and stability
- Continuity of fixed points
- Differentiability with respect to delays for a neutral differential-difference equations
- Hopf bifurcation for a class of partial differential equation with delay
- Differentiability with respect to delays for a retarded reaction-diffusion equation
- Linearização de sistemas de primeira ordem com duas variáveis
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas