Some results on stability of retarded functional differential equations using dichotomic map techiniques (1998)
- Authors:
- USP affiliated authors: BENA, MARIA APARECIDA - FFCLRP ; REIS, JOSE GERALDO DOS - FMRP
- Unidades: FFCLRP; FMRP
- Assunto: ESTABILIDADE DE SISTEMAS
- Language: Inglês
- Source:
- Título: Positivity
- Volume/Número/Paginação/Ano: v. 2, p. 229-238, 1998
-
ABNT
BENÁ, Maria Aparecida e REIS, Jose Geraldo dos. Some results on stability of retarded functional differential equations using dichotomic map techiniques. Positivity, v. 2, p. 229-238, 1998Tradução . . Acesso em: 29 dez. 2025. -
APA
Bená, M. A., & Reis, J. G. dos. (1998). Some results on stability of retarded functional differential equations using dichotomic map techiniques. Positivity, 2, 229-238. -
NLM
Bená MA, Reis JG dos. Some results on stability of retarded functional differential equations using dichotomic map techiniques. Positivity. 1998 ; 2 229-238.[citado 2025 dez. 29 ] -
Vancouver
Bená MA, Reis JG dos. Some results on stability of retarded functional differential equations using dichotomic map techiniques. Positivity. 1998 ; 2 229-238.[citado 2025 dez. 29 ] - Stability theorem for equations of the type x (t) = b (t) f (x (t-r))
- Teorema de estabilidade segundo duas medidas
- A stability theorem in terms of two measures
- Models of populations interactions using differential delay equations
- Periodic solutions of two retarded functional differential equations on s1
- Extension of the bendison negative criterion and existence of an unbounded contignum of periodic solutions for planar delay differential equations
- Stability theorem for equations of type x (t) = b (t) f (x(t-r))
- Pertubacao de orbitas hemoclinicas simetricas em equacoes de segunda ordem
- Estudo da estabilidade da equacao x' (t) = -b(t)x (t-r) usando funcoes dicotomicas
- On the existence of periodic solutions for autonomous retarded functional differential equations on r2
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas