Train algebras of rank n which are bernstein or power-associative algebras (1997)
- Authors:
- USP affiliated author: GUZZO JUNIOR, HENRIQUE - IME
- School: IME
- Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Nova Journal of Mathematics, Game Theory, and Algebra
- ISSN: 1060-9881
- Volume/Número/Paginação/Ano: v. 2, n. 3, p. 103-112, 1997
-
ABNT
GUZZO JÚNIOR, Henrique e VICENTE, P. Train algebras of rank n which are bernstein or power-associative algebras. Nova Journal of Mathematics, Game Theory, and Algebra, v. 2, n. 3, p. 103-112, 1997Tradução . . Acesso em: 01 jul. 2022. -
APA
Guzzo Júnior, H., & Vicente, P. (1997). Train algebras of rank n which are bernstein or power-associative algebras. Nova Journal of Mathematics, Game Theory, and Algebra, 2( 3), 103-112. -
NLM
Guzzo Júnior H, Vicente P. Train algebras of rank n which are bernstein or power-associative algebras. Nova Journal of Mathematics, Game Theory, and Algebra. 1997 ; 2( 3): 103-112.[citado 2022 jul. 01 ] -
Vancouver
Guzzo Júnior H, Vicente P. Train algebras of rank n which are bernstein or power-associative algebras. Nova Journal of Mathematics, Game Theory, and Algebra. 1997 ; 2( 3): 103-112.[citado 2022 jul. 01 ] - Alguns tópicos na teoria das álgebras báricas e train algebras
- The bar-radical of baric algebras
- Derivates in n th-order Bernstein algebras II
- Characterization of Lie multiplicative derivation on alternative rings
- Jordan maps on alternative algebras
- The Wedderburn b-decomposition for a class of almost alternative baric algebras
- When is a multiplicative derivation additive in alternative rings?
- Contribuicoes a teoria das algebras nao associativas
- Peirce decomposition for some commutative train algebras
- Bar-radical of baric algebras
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas