Train algebras of rank n which are bernstein or power-associative algebras (1997)
- Authors:
- Autor USP: GUZZO JUNIOR, HENRIQUE - IME
- Unidade: IME
- Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS
- Language: Inglês
- Source:
- Título do periódico: Nova Journal of Mathematics, Game Theory, and Algebra
- Volume/Número/Paginação/Ano: v. 2, n. 3, p. 103-112, 1997
-
ABNT
GUZZO JÚNIOR, Henrique; VICENTE, P. Train algebras of rank n which are bernstein or power-associative algebras. Nova Journal of Mathematics, Game Theory, and Algebra[S.l.], v. 2, n. 3, p. 103-112, 1997. -
APA
Guzzo Júnior, H., & Vicente, P. (1997). Train algebras of rank n which are bernstein or power-associative algebras. Nova Journal of Mathematics, Game Theory, and Algebra, 2( 3), 103-112. -
NLM
Guzzo Júnior H, Vicente P. Train algebras of rank n which are bernstein or power-associative algebras. Nova Journal of Mathematics, Game Theory, and Algebra. 1997 ; 2( 3): 103-112. -
Vancouver
Guzzo Júnior H, Vicente P. Train algebras of rank n which are bernstein or power-associative algebras. Nova Journal of Mathematics, Game Theory, and Algebra. 1997 ; 2( 3): 103-112. - Characterization of Lie multiplicative derivation on alternative rings
- Derivates in n th-order Bernstein algebras II
- Alguns tópicos na teoria das álgebras báricas e train algebras
- The bar-radical of baric algebras
- A note on linearization of some identities
- Lie n-multiplicative mappings on triangular n-matrix rings
- Indecomposable baric algebras , ii
- Some properties of commutative train algebras of rank 3
- The bar-radical of baric algebras
- Special classes of n th-order Bernstein algebras
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas