Transition layer equations for positive-feedback delayed equations (1996)
- Authors:
- USP affiliated authors: MALTA, CORACI PEREIRA - IF ; RAGAZZO, CLODOALDO GROTTA - IME
- Unidades: IF; IME
- Assunto: FÍSICA MATEMÁTICA
- Language: Inglês
- Imprenta:
-
ABNT
RAGAZZO, Clodoaldo Grotta et al. Transition layer equations for positive-feedback delayed equations. . São Paulo: IfUSP. Disponível em: http://publica-sbi.if.usp.br/PDFs/pd1233.pdf. Acesso em: 21 jan. 2026. , 1996 -
APA
Ragazzo, C. G., Malta, C. P., Pakdaman, K., Arino, O., & Vibert, J. F. (1996). Transition layer equations for positive-feedback delayed equations. São Paulo: IfUSP. Recuperado de http://publica-sbi.if.usp.br/PDFs/pd1233.pdf -
NLM
Ragazzo CG, Malta CP, Pakdaman K, Arino O, Vibert JF. Transition layer equations for positive-feedback delayed equations [Internet]. 1996 ;[citado 2026 jan. 21 ] Available from: http://publica-sbi.if.usp.br/PDFs/pd1233.pdf -
Vancouver
Ragazzo CG, Malta CP, Pakdaman K, Arino O, Vibert JF. Transition layer equations for positive-feedback delayed equations [Internet]. 1996 ;[citado 2026 jan. 21 ] Available from: http://publica-sbi.if.usp.br/PDFs/pd1233.pdf - Metastable periodic patterns in singularly perturbed state-dependent delayed equations
- Singularity structure of the Hopf bifurcation surface of a differential equation with two delays
- Bifurcation structure of scalar differential delayed equations
- Effect of delay on the boundary of the basin of attraction in a system of two neurons
- Bifurcation structure of scalar differential delayed equations
- Singularity structure of the hopf bifurcation surface of a differential equation with two delays
- Bifurcation structure of scalar differential delayed equations
- Effect of delay on the boundary of the basin of attraction in a self-excited single graded-response neuron
- "Asymptotic behavior of irreducible excitatory networks of analog graded-response neurons
- Metastable periodic patterns in singularly perturbed delayed equations
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
