An unknotting theorem for 'S POT.P' x 'S POT.Q' embedded in 'S POT.P+Q+2' (1995)
- Authors:
- Autor USP: MANZOLI NETO, OZIRIDE - ICMC
- Unidade: ICMC
- Subjects: GEOMETRIA; SINGULARIDADES
- Language: Inglês
- Imprenta:
- Publisher: Icmsc-Usp
- Publisher place: Sao Carlos
- Date published: 1995
-
ABNT
LUCAS, L A e MANZOLI NETO, Oziride e SAEKI, O. An unknotting theorem for 'S POT.P' x 'S POT.Q' embedded in 'S POT.P+Q+2'. . Sao Carlos: Icmsc-Usp. . Acesso em: 20 jan. 2026. , 1995 -
APA
Lucas, L. A., Manzoli Neto, O., & Saeki, O. (1995). An unknotting theorem for 'S POT.P' x 'S POT.Q' embedded in 'S POT.P+Q+2'. Sao Carlos: Icmsc-Usp. -
NLM
Lucas LA, Manzoli Neto O, Saeki O. An unknotting theorem for 'S POT.P' x 'S POT.Q' embedded in 'S POT.P+Q+2'. 1995 ;[citado 2026 jan. 20 ] -
Vancouver
Lucas LA, Manzoli Neto O, Saeki O. An unknotting theorem for 'S POT.P' x 'S POT.Q' embedded in 'S POT.P+Q+2'. 1995 ;[citado 2026 jan. 20 ] - On handle theory for Morse-Bott critical manifolds
- Smale flows on 'S POT.2' x 'S POT.1'
- Special maps from surfaces to 'S POT.2' 'OU' 'S POT.1'
- Fundamental domain and cellular decomposition of tetrahedral spherical space forms
- Minimal Nielsen root classes and roots of liftings
- Isolating blocks for periodic orbits
- Alexander modules of satellite manifolds
- Cancellations for circle-valued Morse functions via spectral sequences
- Representing homotopy classes by maps with certain minimality root properties II
- Invariantes para mergulhos de superficies orientaveis em S^4
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
