Localization in the ground state of a disordered array of quantum rotators (1992)
- Authors:
- Autor USP: PEREZ, JOSE FERNANDO - IF
- Unidade: IF
- DOI: 10.1007/bf02096586
- Assunto: FÍSICA MATEMÁTICA
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Communications in Mathemathical Physics
- Volume/Número/Paginação/Ano: v.147, p.241-52, 1992
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
KLEIN, A; PEREZ, J F. Localization in the ground state of a disordered array of quantum rotators. Communications in Mathemathical Physics, Berlin, v. 147, p. 241-52, 1992. DOI: 10.1007/bf02096586. -
APA
Klein, A., & Perez, J. F. (1992). Localization in the ground state of a disordered array of quantum rotators. Communications in Mathemathical Physics, 147, 241-52. doi:10.1007/bf02096586 -
NLM
Klein A, Perez JF. Localization in the ground state of a disordered array of quantum rotators. Communications in Mathemathical Physics. 1992 ;147 241-52. -
Vancouver
Klein A, Perez JF. Localization in the ground state of a disordered array of quantum rotators. Communications in Mathemathical Physics. 1992 ;147 241-52. - Fluctuations on the curie-weiss version of the ising model with randon field
- Study on the ground state of heisenberg antiferromagnetic chains
- The role of Gaussian domination and sum rulesin phase transitions: an unpedagogical introduction
- Long range order in the ground state of two-dimensional antiferromagnets
- Fluctuations in dilute antiferromagnets: curie-weiss models
- Localization in the ground state of the ising model with a randon transverse field
- Localization in the ground state of the ising model with a randon transverse field
- On the density of states for random potentials in the presence of a uniform magnetic field
- Controlling griffiths' singularities
- Fluctuations in the curie-weiss version of randon field ising model
Informações sobre o DOI: 10.1007/bf02096586 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas