On the behavior of some cellular automata related to bootstrap percolation (1992)
- Autor:
- Autor USP: SCHONMANN, ROBERTO HENRIQUE - IME
- Unidade: IME
- Assunto: PROBABILIDADE
- Language: Inglês
- Imprenta:
- Source:
- Título: Annals of Probability
- Volume/Número/Paginação/Ano: v.20, n.1 , p.174-93, 1992
-
ABNT
SCHONMANN, Roberto Henrique. On the behavior of some cellular automata related to bootstrap percolation. Annals of Probability, v. 20, n. 1 , p. 174-93, 1992Tradução . . Disponível em: https://projecteuclid.org/euclid.aop/1176989923. Acesso em: 10 jan. 2026. -
APA
Schonmann, R. H. (1992). On the behavior of some cellular automata related to bootstrap percolation. Annals of Probability, 20( 1 ), 174-93. Recuperado de https://projecteuclid.org/euclid.aop/1176989923 -
NLM
Schonmann RH. On the behavior of some cellular automata related to bootstrap percolation [Internet]. Annals of Probability. 1992 ;20( 1 ): 174-93.[citado 2026 jan. 10 ] Available from: https://projecteuclid.org/euclid.aop/1176989923 -
Vancouver
Schonmann RH. On the behavior of some cellular automata related to bootstrap percolation [Internet]. Annals of Probability. 1992 ;20( 1 ): 174-93.[citado 2026 jan. 10 ] Available from: https://projecteuclid.org/euclid.aop/1176989923 - The correlation length for the high-density phase of Bernoulli percolation
- On the asymptotics of occurrence times of rare events for stochastic spin systems
- Second order large deviation estimates for ferromagnetic systems in the phase coexistence region
- An approach to characterize metastabilityand critical droplets in stochastic Ising models
- Exponential convergence under mixing
- On the critical behavior of the contact process in deterministic inhomogeneous environments
- Metastability for the contact process
- Exponential decay of connectivities in the two dimensional Ising model
- Pseudo-free energies and large deviations for non-Gibbsian FKG measures
- A new look at contact processes in several dimensions
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas