Achieving optimality for gate matrix layout and pla folding: a graph theoretical approach (1992)
- Authors:
- USP affiliated authors: SONG, SIANG WUN - IME ; FERREIRA, AFONSO GALVAO - IME
- Unidade: IME
- DOI: 10.1007/BFb0023825
- Subjects: TEORIA DA COMPUTAÇÃO; SISTEMAS INTEGRADOS EM LARGA ESCALA
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings
- Conference titles: Latin American Symposium on Theoretical Informatics - LATIN '92
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
FERREIRA, Afonso Galvão e SONG, Siang Wun. Achieving optimality for gate matrix layout and pla folding: a graph theoretical approach. 1992, Anais.. Berlin: Springer, 1992. Disponível em: https://doi.org/10.1007/BFb0023825. Acesso em: 27 dez. 2025. -
APA
Ferreira, A. G., & Song, S. W. (1992). Achieving optimality for gate matrix layout and pla folding: a graph theoretical approach. In Proceedings. Berlin: Springer. doi:10.1007/BFb0023825 -
NLM
Ferreira AG, Song SW. Achieving optimality for gate matrix layout and pla folding: a graph theoretical approach [Internet]. Proceedings. 1992 ;[citado 2025 dez. 27 ] Available from: https://doi.org/10.1007/BFb0023825 -
Vancouver
Ferreira AG, Song SW. Achieving optimality for gate matrix layout and pla folding: a graph theoretical approach [Internet]. Proceedings. 1992 ;[citado 2025 dez. 27 ] Available from: https://doi.org/10.1007/BFb0023825 - Achieving optimality for gate matrix layout and pla folding: a graph theoretic approach
- Graph theoretic approach for pla area optimization
- Graph theoretic approach for pla area optimization
- Comunicacao em hipergrades e hipertoros usando barramentos
- Achieving optimality for gate matrix layout and pla folding: a graph theoretic approach
- Efficient parallel graph algoritms for coarse-grained multicomputers and BSP
- Broadcasting in bus interconnection networks
- Bus based parallel computers: a viable way for massive parallelism
- Generating permutations on a VLSI suitable linear network
- 2-list algorithm for the knapsack problem on a fpst20
Informações sobre o DOI: 10.1007/BFb0023825 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas