Review and some extensions on distribution free bayesian aproaches for estimation and prediction (1990)
- Authors:
- USP affiliated authors: RODRIGUES, JOSEMAR - ICMC ; BOLFARINE, HELENO - IME
- Unidades: ICMC; IME
- Assunto: PROBABILIDADE E ESTATISTICA
- Language: Inglês
- Imprenta:
- Publisher place: Montevideo
- Date published: 1990
- Source:
- Título: Contribuiciones en Probabilidad Y Estadistica Matematica
- Volume/Número/Paginação/Ano: v.2 , p.27-39, 1990
-
ABNT
BOLFARINE, Heleno e RODRIGUES, Josemar. Review and some extensions on distribution free bayesian aproaches for estimation and prediction. Contribuiciones en Probabilidad Y Estadistica Matematica, v. 2 , p. 27-39, 1990Tradução . . Acesso em: 24 jan. 2026. -
APA
Bolfarine, H., & Rodrigues, J. (1990). Review and some extensions on distribution free bayesian aproaches for estimation and prediction. Contribuiciones en Probabilidad Y Estadistica Matematica, 2 , 27-39. -
NLM
Bolfarine H, Rodrigues J. Review and some extensions on distribution free bayesian aproaches for estimation and prediction. Contribuiciones en Probabilidad Y Estadistica Matematica. 1990 ;2 27-39.[citado 2026 jan. 24 ] -
Vancouver
Bolfarine H, Rodrigues J. Review and some extensions on distribution free bayesian aproaches for estimation and prediction. Contribuiciones en Probabilidad Y Estadistica Matematica. 1990 ;2 27-39.[citado 2026 jan. 24 ] - Kalman filter model for single and two-stage repeated surveys
- Comparing several accelerated life models
- Some asymptotic results on generalized regression predictors in survey sampling
- Note on Bayesian least-squares estimators of time-varying regression coefficients
- On the simple projection predictor in finite population
- Nonlinear bayesian least-squares theory and the inverse linear regression
- A note on Bayesian least squares estimators of time-varying regression coefficients
- Finite population prediction under a linear function superpopulation model: a bayesian perspective
- On the simple projection predictor in finite populations
- Nonlinear quasi-bayesian theory and inverse linear regression
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
