Logarithmic corrections to the uncertainty principle and infinitude of the number of bound states of n-particle systems (1986)
- Authors:
- USP affiliated authors: PEREZ, JOSE FERNANDO - IF ; MALTA, CORACI PEREIRA - IF ; COUTINHO, FRANCISCO ANTONIO BEZERRA - IF
- School: IF
- DOI: 10.1063/1.527115
- Subject: LOGARITMOS
- Language: Português
- Source:
- Título do periódico: Journal of Mathematical Physics
- Volume/Número/Paginação/Ano: v.27, n.6 , p.1537-40, 1986
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
PEREZ, J F; COUTINHO, Francisco Antônio Bezerra; MALTA, Coraci Pereira. Logarithmic corrections to the uncertainty principle and infinitude of the number of bound states of n-particle systems. Journal of Mathematical Physics[S.l.], v. 27, n. 6 , p. 1537-40, 1986. DOI: 10.1063/1.527115. -
APA
Perez, J. F., Coutinho, F. A. B., & Malta, C. P. (1986). Logarithmic corrections to the uncertainty principle and infinitude of the number of bound states of n-particle systems. Journal of Mathematical Physics, 27( 6 ), 1537-40. doi:10.1063/1.527115 -
NLM
Perez JF, Coutinho FAB, Malta CP. Logarithmic corrections to the uncertainty principle and infinitude of the number of bound states of n-particle systems. Journal of Mathematical Physics. 1986 ;27( 6 ): 1537-40. -
Vancouver
Perez JF, Coutinho FAB, Malta CP. Logarithmic corrections to the uncertainty principle and infinitude of the number of bound states of n-particle systems. Journal of Mathematical Physics. 1986 ;27( 6 ): 1537-40. - Qualitative analysis of oscillations in isolated populations of flies
- On some generalproperties of the point spectrum of three particles moving in one-dimension
- Sufficient conditions for the existence of a bound state in the n-body problem
- Logarithmic corrections to the uncertainity principle and infinitude of the number of bound states of n-particles systems
- Using the variational principle to prove the existence of bound states: a remark
- Bound states of n particles: a variational approach
- Lower bound for the ground state energy of many particles moving in one dimension
- Logarithmic corrections to the uncertainity principle and infinitude of the number of bound state of n-particle systems
- Self-adjoint extensions of the hamiltonian for a charged particle in the presence of a thread of magnetic flux
- Time-reversal aspect of the point interactions in one-dimensional quantum mechanics
Informações sobre o DOI: 10.1063/1.527115 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas