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We study some mathematical properties of a new generator of continuous distributions with two extra parameters called the
exponentiated half-logistic family. We present some special models. We investigate the shapes of the density and hazard rate
function. We derive explicit expressions for the ordinary and incomplete moments, quantile and generating functions, probability
weighted moments, Bonferroni and Lorenz curves, Shannon and Rényi entropies, and order statistics, which hold for any baseline
model. We introduce two bivariate extensions of this family. We discuss the estimation of the model parameters by maximum
likelihood and demonstrate the potentiality of the new family by means of two real data sets.

1. Introduction

The use of new generators of continuous distributions from
classic distributions has become very common in recent
years. One example is the beta-generated family of distri-
butions proposed by Eugene et al. [4]. Another example
is the gamma-generated family of distributions defined by
Zografos and Balakrishnan [5]. Based on a baseline continu-
ous distribution𝐺(𝑥)with survival function𝐺(𝑥) and density
𝑔(𝑥), their families are defined by the cumulative distribution
function (cdf) and probability density function (pdf) (for
𝑥 ∈ R):

𝐹 (𝑥) =
1

Γ (𝛿)
∫

− log[𝐺(𝑥;𝜉)]

0

𝑡
𝛿−1

𝑒
−𝑡

𝑑𝑡,

𝑓 (𝑥) =
1

Γ (𝛿)
{− log [𝐺 (𝑥; 𝜉)]}

𝛿−1

𝑔 (𝑥; 𝜉) ,

(1)

respectively, where Γ(𝑝) = ∫
∞

0

𝑥
𝑝−1

𝑒
−𝑥

𝑑𝑥 is the gamma
function.

Based on Zografos and Balakrishnan’s [5] paper, we
replace the gamma distribution by the exponentiated half-
logistic (“EHL” for short) distribution to define a new family
of continuous distributions by the cdf:

𝐹 (𝑥) = ∫

− log[1−𝐺(𝑥;𝜉)]

0

2𝛼𝜆𝑒
−𝜆𝑡

[1 − 𝑒
−𝜆𝑡

]
𝛼−1

[1 + 𝑒−𝜆𝑡]
𝛼+1

𝑑𝑡

= {
1 − [1 − 𝐺 (𝑥; 𝜉)]

𝜆

1 + [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}

𝛼

,

(2)

where 𝐺(𝑥; 𝜉) is the baseline cdf depending on a parameter
vector 𝜉 and 𝛼 > 0 and 𝜆 > 0 are two additional shape
parameters. For any continuous 𝐺 distribution, the EHL-𝐺
distribution is defined by the cdf (2). Equation (2) is a wider
family of continuous distributions and includes some special
models as those listed in Table 1.
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Table 1: Some special models.

𝛼 𝜆 𝐺(𝑥) Reduced distribution
1 — 𝐺(𝑥) HL-G family of distributions [1]
1 — 1 − 𝑒

−𝑥 half-logistic distribution [2]
— — 1 − 𝑒

−𝑥 exponentiated half-logistic distribution [3]
1 — 1 − 𝑒

−𝑥

𝛽

half-logistic Weibull distribution (new)
1 — 1 − 𝑒

(−1/𝛾)(𝑒

𝛾𝑥
−1) half-logistic Gompertz distribution (new)

— — 1 − 𝑒
(−1/𝛾)(𝑒

𝛾𝑥
−1) exponentiated half-logistic Gompertz distribution (new)

1 — Beta distribution half-logistic beta distribution (new)
1 — Gamma distribution half-logistic gamma distribution (new)
1 — Frechét distribution half-logistic Frechét distribution (new)
1 — log-logistic distribution half-logistic log-logistic distribution (new)
1 — Generalized half half-logistic generalized

Normal distribution half normal distribution (new)
1 — Normal distribution half-logistic normal distribution (new)

The density function corresponding to (2) is given by

𝑓 (𝑥, 𝛼, 𝜆, 𝜉) = 2𝛼𝜆𝑔 (𝑥; 𝜉) [1 − 𝐺 (𝑥; 𝜉)]
𝜆−1

×

{1 − [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}
𝛼−1

{1 + [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}
𝛼+1

,

(3)

where 𝑔(𝑥; 𝜉) is the baseline pdf. Equation (3) will be most
tractable when 𝐺(𝑥; 𝜉) and 𝑔(𝑥; 𝜉) have simple analytic
expressions. Hereafter, a random variable 𝑋 with density
function (3) is denoted by 𝑋 ∼ EHL-𝐺(𝛼, 𝜆, 𝜉). Further, we
can omit sometimes the dependence on the vector 𝜉 of the
parameters and simply write 𝐺(𝑥) = 𝐺(𝑥; 𝜉).

A physical interpretation of the EHL-𝐺 distribution
can be given as follows. Consider a system formed by 𝛼

independent components having the half-logistic-𝐺 (“HL-𝐺”)
cdf given by

𝐻(𝑥) =
1 − [1 − 𝐺 (𝑥; 𝜉)]

𝜆

1 + [1 − 𝐺 (𝑥; 𝜉)]
𝜆

. (4)

Suppose that the system fails if all of the 𝛼 components fail
and let 𝑋 denote the lifetime of the entire system. Then, the
pdf of𝑋 is given by (3).

The hazard rate function (hrf) of𝑋 becomes

ℎ (𝑥; 𝛼, 𝜆, 𝑝, 𝜉)

= 2𝛼𝜆𝑔 (𝑥; 𝜉) [1 − 𝐺 (𝑥; 𝜉)]
𝜆−1

× {1 − [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}
𝛼−1

× ({{1 + [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}
𝛼

− {1 − [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}
𝛼

}

× {1 + [1 − 𝐺 (𝑥; 𝜉)]
𝜆

} )
−1

.

(5)

The EHL family of distributions is easily simulated by invert-
ing (2) as follows: if 𝑢 has a uniform 𝑈(0, 1) distribution, the
solution of the nonlinear equation

𝑥 = 𝐺
−1

(1 − [
1 − 𝑢

1/𝛼

1 + 𝑢1/𝛼

]

1/𝜆

) (6)

has the density function (3).
This paper is organized as follows. In Section 2, some

special cases of the EHL family of distributions are defined. In
Section 3, the shapes of the density and hazard rate functions
are described analytically. A useful expansion for the new
density family is obtained and we derive a power series
for the EHL quantile function in Section 4. General explicit
expressions for some special EHL moments are obtained in
Section 5.

In Section 6, we derive the generating function, the
incomplete moments are investigated, we obtain the mean
deviations and the reliability and provide expressions for the
Rényi and Shannon entropies, and the order statistics and
their moments are determined. We introduce two bivariate
extensions of the new family in Section 7. Estimation of the
model parameters by maximum likelihood is performed in
Section 8. Applications to two real data sets illustrate the
performance of the new family in Section 9. The paper is
concluded in Section 10.

2. Special EHL-𝐺 Models

Here, we introduce only three of the many distributions
which can arise as EHL special models, where 𝛼 and 𝜆 are
positive shape parameters of the new generator. We consider
three baseline distributions, namely, Fréchet, log-logistic,
and generalized half-normal distributions, although we can
generate as many new distributions as desirable.

2.1. Exponentiated Half-Logistic-Fréchet (EHLF) Model. The
Fréchet (or type II extreme value) distribution has been useful
for modeling of market-returns which are often heavy-tailed
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in applications to finance [6]. Now, we introduce a new four-
parameter distribution called the EHLF distribution. Taking
𝐺(𝑥; 𝜉) = 𝑒

−(𝑏/𝑥)

𝑎

to be the Fréchet distribution with scale
parameter 𝑏 > 0 and shape parameter 𝑎 > 0, where 𝜉 =

(𝑎, 𝑏)
𝑇, the EHLF density function (for 𝑥 > 0) is given by

𝑓EHLF (𝑥) = 2𝛼𝜆𝑎𝑏
𝑎

𝑥
−(𝑎+1)

× exp [−( 𝑏

𝑥
)

𝑎

]{1 − exp [−( 𝑏

𝑥
)

𝑎

]}

𝜆−1

× {1 − {1 − exp [−( 𝑏

𝑥
)

𝑎

]}

𝜆

}

𝛼−1

× {1 + {1 − exp [−( 𝑏

𝑥
)

𝑎

]}

𝜆

}

−(𝛼+1)

.

(7)

The cdf and hrf corresponding to (7) are given by

𝐹EHLF (𝑥) = {
1 − {1 − exp[−(𝑏/𝑥)𝑎]}𝜆

1 + {1 − exp[−(𝑏/𝑥)𝑎]}𝜆
}

𝛼

,

ℎEHLF (𝑥) = 2𝛼𝜆𝑎𝑏
𝑎

𝑥
−(𝑎+1) exp [−( 𝑏

𝑥
)

𝑎

]

× {1 − exp [−( 𝑏

𝑥
)

𝑎

]}

𝜆−1

× {1 − {1 − exp [−( 𝑏

𝑥
)

𝑎

]}

𝜆

}

𝛼−1

× ({1 + {1 − exp [−( 𝑏

𝑥
)

𝑎

]}

𝜆

}

(𝛼+1)

× [1 − 𝐹EHLF (𝑥)])

−1

,

(8)

respectively. A characteristic of the EHLF distribution is that
its hrf can be monotonically increasing or decreasing and
upside-down bathtub depending basically on the parameter
values. Plots of its density function and hrf for some param-
eter values are displayed in Figures 1 and 2, respectively.

2.2. ExponentiatedHalf-Logistic-Log-Logistic (EHLLL)Model.
The log-logistic (LL) distribution is widely used in practice
and it is an alternative to the log-normal distribution since
it presents a failure rate function that increases, reaches a
peak after some finite period, and then declines gradually.
The properties of the LL distribution make it an attractive
alternative to the log-normal and Weibull distributions in
the analysis of survival data [7]. This distribution can exhibit
a monotonically decreasing failure rate function for some
parameter values. For 𝑥 > 0, let 𝐺(𝑥; 𝜉) = 1 − [1 + (𝑥/𝑎)

𝑏

]
−1

be the LL cdf, where 𝑏 > 0 is the shape parameter and 𝑎 > 0

is the scale parameter, where 𝜉 = (𝑎, 𝑏)
𝑇. The EHLLL density

function becomes

𝑓EHLLL (𝑥) = 2𝛼𝜆𝑏𝑎
−𝑏

𝑥
𝑏−1

[1 + (
𝑥

𝑎
)

𝑏

]

−(𝜆+1)

× {1 − [1 + (
𝑥

𝑎
)

𝑏

]

−𝜆

}

𝛼−1

× {1 + [1 + (
𝑥

𝑎
)

𝑏

]

−𝜆

}

−(𝛼+1)

.

(9)

In Figure 3, we display some possible shapes of the
EHLLL density function. The corresponding cdf and hrf are
given by

𝐹EHLLL (𝑥) =
{

{

{

1 − [1 + (𝑥/𝑎)
𝑏

]
−𝜆

1 + [1 + (𝑥/𝑎)
𝑏

]
−𝜆

}

}

}

𝛼

,

ℎEHLLL (𝑥)

= 2𝛼𝜆𝑏𝑎
−𝑏

𝑥
𝑏−1

[1 + (
𝑥

𝑎
)

𝑏

]

−(𝜆+1)

×{1 − [1 + (
𝑥

𝑎
)

𝑏

]

−𝜆

}

𝛼−1

× ({1 + [1 + (
𝑥

𝑎
)

𝑏

]

−𝜆

}

(𝛼+1)

[1 − 𝐹EHLLL (𝑥)])

−1

,

(10)

respectively. Plots of the EHLLL hrf for some parameter
values are displayed in Figure 4.

2.3. Exponentiated Half-Logistic Generalized Half-Normal
(EHLGHN) Model. The most popular models used to
describe the lifetime process under fatigue are the half-
normal (HN) and Birnbaum-Saunders (BS) distributions.
When modeling monotone hazard rates, the HN and BS dis-
tributions may be an initial choice because of their negatively
and positively skewed density shapes. Consider 𝐺(𝑥; 𝜉) to
be the generalized half-normal (GHN) distribution [8] with
scale parameter 𝑏 > 0 and shape parameter 𝑎 > 0, where 𝜉 =
(𝑎, 𝑏)

𝑇, given by 𝐺(𝑥; 𝜉) = 2Φ[(𝑥/𝑏)
𝑎

] − 1 = erf[(𝑥/𝑏)𝑎/√2],
where erf(⋅) is the error function. Note that

Φ (𝑥) = 0.5 [1 + erf ( 𝑥

√2
)] , erf (𝑥) = 2

√𝜋
∫

𝑥

0

𝑒
−𝑡

2

𝑑𝑡.

(11)
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Figure 1: The EHLF density function: (a) for 𝜆 = 2.0, 𝑎 = 0.1, and 𝑏 = 3.1; (b) for 𝛼 = 1.5, 𝑎 = 2.0, and 𝑏 = 3.1; (c) for 𝑎 = 2.0 and 𝑏 = 3.1.

x

𝛼 = 10.1; 𝜆 = 7.5

𝛼 = 10.2; 𝜆 = 7.0

𝛼 = 10.3; 𝜆 = 6.5

𝛼 = 10.4; 𝜆 = 6.0

𝛼 = 10.5; 𝜆 = 5.5

0.000

0.005

0.010

0.015

0.020

0.025

h
(x
)

0 50 100 150 200 250

(a)

x

𝛼 = 0.1; 𝜆 = 0.5

𝛼 = 0.2; 𝜆 = 0.1

𝛼 = 0.3; 𝜆 = 0.2

𝛼 = 10.4; 𝜆 = 5.3

𝛼 = 10.0; 𝜆 = 5.0

0.015

0.000

0.005

0.010

0.020

h
(x
)

0 20 40 60 80 100

(b)

Figure 2: Plots of the EHLF hrf for some parameter values. (a) The distribution has a unimodal hrf for different values of 𝛼, 𝜆 with 𝑎 = 0.5

and 𝑏 = 61.5. (b) The distribution has an increasing and decreasing hrf for different values of 𝛼, 𝜆 with 𝑎 = 0.5 and 𝑏 = 0.5.

Then, the four-parameter EHLGHN density (for 𝑥 > 0) can
be expressed as

𝑓EHLGHN (𝑥) = 2
𝜆

𝛼𝜆√
2

𝜋
(
𝑎

𝑥
) (

𝑥

𝑏
)

𝑎

× exp [−0.5(𝑥
𝑏
)

2𝑎

] {1 − Φ[(
𝑥

𝑏
)

𝑎

]}

𝜆−1

× {1 − 2
𝜆

{1 − Φ[(
𝑥

𝑏
)

𝑎

]}

𝜆

}

𝛼−1

× {1 + 2
𝜆

{1 − Φ[(
𝑥

𝑏
)

𝑎

]}

𝜆

}

−(𝛼+1)

.

(12)
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Figure 3: The EHLLL density function: (a) for 𝜆 = 2.0, 𝑎 = 1.5, and 𝑏 = 4.5; (b) for 𝛼 = 1.5, 𝑎 = 1.5, and 𝑏 = 4.5; (c) for 𝑎 = 1.5 and 𝑏 = 4.5.
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Figure 4: Plots of the EHLLL hrf for some parameter values. (a) The distribution has a unimodal hrf for different values of 𝛼, 𝜆 with 𝑎 = 1.5

and 𝑏 = 4.2 (b) The distribution has a bathtub and unimodal hrf for different values of 𝛼, 𝜆 with 𝑎 = 5.0 and 𝑏 = 3.1.
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Figure 5: The EHLGHN density function: (a) for 𝜆 = 2.0, 𝑎 = 2.0, and 𝑏 = 3.1; (b) for 𝛼 = 1.5, 𝑎 = 2.0, and 𝑏 = 3.1; (c) for 𝑎 = 1.5,
and 𝑏 = 2.1.
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Figure 6: Plots of the EHLGHN hrf for some parameter values. (a)The distribution has a bathtub hrf for different values of 𝛼, 𝜆 with 𝑎 = 1.5

and 𝑏 = 61.5. (b) The distribution has a unimodal hrf for different values of 𝛼, 𝜆 with 𝑎 = 0.5 and 𝑎 = 61.5.
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If 𝑎 = 1, the EHLGHN distribution model reduces
to the exponentiated half-logistic half-normal (EHLHN)
distribution. The cdf and hrf corresponding to (12) are

𝐹EHLGHN (𝑥) = {
1 − 2

𝜆

{1 − Φ [(𝑥/𝑏)
𝑎

]}
𝜆

1 + 2𝜆{1 − Φ [(𝑥/𝑏)
𝑎

]}
𝜆

}

𝛼

,

ℎEHLGHN (𝑥) = 2
𝜆

𝛼𝜆√
2

𝜋
(
𝑎

𝑥
)(

𝑥

𝑏
)

𝑎

× exp [−0.5(𝑥
𝑏
)

2𝑎

]

× {1 − Φ[(
𝑥

𝑏
)

𝑎

]}

𝜆−1

× ({1 − 2
𝜆

{1 − Φ[(
𝑥

𝑏
)

𝑎

]}

𝜆

}

−(𝛼−1)

× {1 + 2
𝜆

{1 − Φ[(
𝑥

𝑏
)

𝑎

]}

𝜆

}

(𝛼+1)

× [1 − 𝐹EHLGHN (𝑥)])

−1

,

(13)

respectively. A characteristic of the EHLGHN distribution is
that its hrf can be bathtub shaped, monotonically increasing
or decreasing, and upside-down bathtub depending basically
on the parameter values. Plots of the EHLGHN density
function and hrf for some parameter values are displayed in
Figures 5 and 6, respectively.

3. Shapes

The shapes of the density and hazard rate functions can
be described analytically. The critical points of the EHL-𝐺
density function are the roots of the equation:

𝑔
󸀠

(𝑥)

𝑔 (𝑥)
+ (1 − 𝜆)

𝑔 (𝑥)

1 − 𝐺 (𝑥)

= 𝜆𝑔 (𝑥) [1 − 𝐺 (𝑥)]
𝜆−1

× {
1 − 𝛼

1 − [1 − 𝐺 (𝑥)]
𝜆

−
𝛼 + 1

1 + [1 − 𝐺 (𝑥)]
𝜆

} .

(14)

There may be more than one root to (14). Let 𝜆(𝑥) =

𝑑
2 log[𝑓(𝑥)]/𝑑𝑥2. We have

𝜆 (𝑥) =
𝑔
󸀠󸀠

(𝑥) 𝑔 (𝑥) − 𝑔
󸀠

(𝑥)
2

𝑔2 (𝑥)

+ (1 − 𝜆)
𝑔
󸀠

(𝑥) [1 − 𝐺 (𝑥)] + 𝑔
2

(𝑥)

[1 − 𝐺 (𝑥)]
2

+ 𝜆 (𝛼 − 1)
{

{

{

𝑔
󸀠

(𝑥)
[1 − 𝐺 (𝑥)]

𝜆−1

1 − [1 − 𝐺 (𝑥)]
𝜆

− (𝜆 − 1)

× 𝑔
2

(𝑥)
[1 − 𝐺 (𝑥)]

𝜆−2

1 − [1 − 𝐺 (𝑥)]
𝜆

−𝜆𝑔
2

(𝑥)
[1 − 𝐺 (𝑥)]

2𝜆−2

{1 − [1 − 𝐺 (𝑥)]
𝜆

}
2

}

}

}

+ 𝜆 (𝛼 + 1)
{

{

{

𝑔
󸀠

(𝑥)
[1 − 𝐺 (𝑥)]

𝜆−1

1 + [1 − 𝐺 (𝑥)]
𝜆

− (𝜆 − 1)

× 𝑔
2

(𝑥)
[1 − 𝐺 (𝑥)]

𝜆−2

1 + [1 − 𝐺 (𝑥)]
𝜆

+𝜆𝑔
2

(𝑥)
[1 − 𝐺 (𝑥)]

2𝜆−2

{1 + [1 − 𝐺 (𝑥)]
𝜆

}
2

}

}

}

.

(15)

If 𝑥 = 𝑥
0

is a root of (14), then it corresponds to a local
maximum if 𝜆(𝑥) > 0 for all 𝑥 < 𝑥

0

and 𝜆(𝑥) < 0 for all
𝑥 > 𝑥

0

. It corresponds to a local minimum if 𝜆(𝑥) < 0 for
all 𝑥 < 𝑥

0

and 𝜆(𝑥) > 0 for all 𝑥 > 𝑥
0

. It refers to a point of
inflexion if either 𝜆(𝑥) > 0 for all 𝑥 ̸= 𝑥

0

or 𝜆(𝑥) < 0 for all
𝑥 ̸= 𝑥

0

.
The critical point of the hrf of 𝑋, say ℎ(𝑥), is obtained

from the following equation:

𝑔
󸀠

(𝑥)

𝑔 (𝑥)
+ (1 − 𝜆)

𝑔 (𝑥)

1 − 𝐺 (𝑥)
+ 𝜆 (𝛼 − 1) ×

𝑔 (𝑥) [1 − 𝐺 (𝑥)]
𝜆−1

1 − [1 − 𝐺 (𝑥)]
𝜆

+ 𝜆
𝑔 (𝑥) [1 − 𝐺 (𝑥)]

𝜆−1

1 + [1 − 𝐺 (𝑥)]
𝜆

− 𝛼𝜆𝑔 (𝑥) [1 − 𝐺 (𝑥)]
𝜆−1

×

{1 + [1 − 𝐺 (𝑥)]
𝜆

}
𝛼−1

− {1 − [1 − 𝐺 (𝑥)]
𝜆

}
𝛼−1

{1 + [1 − 𝐺 (𝑥)]
𝜆

}
𝛼

− {1 − [1 − 𝐺 (𝑥)]
𝜆

}
𝛼

= 0.

(16)

There may be more than one root to (16). Let 𝜏(𝑥) =

𝑑
2 log[ℎ(𝑥)]/𝑑𝑥2. We have

𝜏 (𝑥)=
𝑔
󸀠󸀠

(𝑥) 𝑔 (𝑥) − 𝑔
󸀠

(𝑥)
2

𝑔2 (𝑥)

+ (1 − 𝜆)
𝑔
󸀠

(𝑥) [1 − 𝐺 (𝑥)] + 𝑔
2

(𝑥)

[1 − 𝐺 (𝑥)]
2

+ 𝜆 (𝛼 − 1)
{

{

{

𝑔
󸀠

(𝑥)
[1 − 𝐺 (𝑥)]

𝜆−1

1 − [1 − 𝐺 (𝑥)]
𝜆

− (𝜆 − 1) 𝑔
2

(𝑥)
[1 − 𝐺 (𝑥)]

𝜆−2

1 − [1 − 𝐺 (𝑥)]
𝜆

−𝜆𝑔
2

(𝑥)
[1 − 𝐺 (𝑥)]

2𝜆−2

{1 − [1 − 𝐺 (𝑥)]
𝜆

}
2

}

}

}
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+ 𝜆 (𝛼 + 1)
{

{

{

𝑔
󸀠

(𝑥)
[1 − 𝐺 (𝑥)]

𝜆−1

1 + [1 − 𝐺 (𝑥)]
𝜆

− (𝜆 − 1) 𝑔
2

(𝑥)
[1 − 𝐺 (𝑥)]

𝜆−2

1 + [1 − 𝐺 (𝑥)]
𝜆

+𝜆𝑔
2

(𝑥)
[1 − 𝐺 (𝑥)]

2𝜆−2

{1 + [1 − 𝐺 (𝑥)]
𝜆

}
2

}

}

}

− 𝛼𝜆𝑔
󸀠

(𝑥) [1 − 𝐺 (𝑥)]
𝜆−1

×

{1 + [1 − 𝐺 (𝑥)]
𝜆

}
𝛼−1

− {1 − [1 − 𝐺 (𝑥)]
𝜆

}
𝛼−1

{1 + [1 − 𝐺 (𝑥)]
𝜆

}
𝛼

− {1 − [1 − 𝐺 (𝑥)]
𝜆

}
𝛼

+ 𝛼𝜆 (𝜆 − 1) 𝑔(𝑥)
2

[1 − 𝐺 (𝑥)]
𝜆−2

×

{1 + [1 − 𝐺 (𝑥)]
𝜆

}
𝛼−1

− {1 − [1 − 𝐺 (𝑥)]
𝜆

}
𝛼−1

{1 + [1 − 𝐺 (𝑥)]
𝜆

}
𝛼

− {1 − [1 − 𝐺 (𝑥)]
𝜆

}
𝛼

+ 𝛼 (𝛼 − 1) 𝜆
2

𝑔(𝑥)
2

[1 − 𝐺 (𝑥)]
2𝜆−2

×

{1 + [1 − 𝐺 (𝑥)]
𝜆

}
𝛼−2

− {1 − [1 − 𝐺 (𝑥)]
𝜆

}
𝛼−2

{1 + [1 − 𝐺 (𝑥)]
𝜆

}
𝛼

− {1 − [1 − 𝐺 (𝑥)]
𝜆

}
𝛼

− {𝛼𝜆𝑔 (𝑥) [1 − 𝐺 (𝑥)]
𝜆−1

× ( ({1 + [1 − 𝐺 (𝑥)]
𝜆

}
𝛼−1

− {1 − [1 − 𝐺 (𝑥)]
𝜆

}
𝛼−1

)

× ({1 + [1 − 𝐺 (𝑥)]
𝜆

}
𝛼

− {1 − [1 − 𝐺 (𝑥)]
𝜆

}
𝛼

)
−1

)}

−2

.

(17)

If 𝑥 = 𝑥
0

is a root of (16), then it refers to a local maximum
if 𝜏(𝑥) > 0 for all 𝑥 < 𝑥

0

and 𝜏(𝑥) < 0 for all 𝑥 > 𝑥
0

. It
corresponds to a local minimum if 𝜏(𝑥) < 0 for all 𝑥 < 𝑥

0

and 𝜏(𝑥) > 0 for all 𝑥 > 𝑥
0

. It gives an inflexion point if either
𝜏(𝑥) > 0 for all 𝑥 ̸= 𝑥

0

or 𝜏(𝑥) < 0 for all 𝑥 ̸= 𝑥
0

.

4. A Useful Expansion and Quantile
Power Series

We can demonstrate that the cdf of𝑋 given by (2) admits the
following expansion:

𝐹 (𝑥) =

∞

∑

𝑘=0

𝑏
𝑘

𝐻
𝑘

(𝑥) , (18)

where𝐻
𝑘

(𝑥) = 𝐺(𝑥)
𝑘 denotes the exponentiated-𝐺 (“exp-𝐺”)

cumulative distribution with power parameter 𝑘,

𝑏
𝑘

=

∞

∑

𝑖,𝑗=0

𝑤
𝑖,𝑗,𝑘

,

𝑤
𝑖,𝑗,𝑘

= (−1)
𝑗+𝑘

(
−𝛼

𝑖
)(

𝛼

𝑗
)(

(𝑖 + 𝑗) 𝜆

𝑘
) .

(19)

Some structural properties of the exp-𝐺 distributions are
investigated by Mudholkar et al. [9], Gupta and Kundu [10],
and Nadarajah and Kotz [11], among others.

The density function of 𝑋 can be expressed as an infinite
linear combination of exp-𝐺 density functions:

𝑓 (𝑥; 𝛼, 𝜆, 𝜉) =

∞

∑

𝑘=0

𝑏
𝑘+1

ℎ
𝑘+1

(𝑥; 𝜉) , (20)

where ℎ
𝑘+1

(𝑥; 𝜉) = (𝑘 + 1)𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)
𝑘 denotes the density

function of the exp-𝐺 random variable 𝑌
𝑘+1

∼ exp-𝐺(𝑘 + 1)

with power parameter 𝑘 + 1. Equation (20) reveals that the
EHL-𝐺 density function is a linear combination of exp-𝐺
density functions.Thus, somemathematical properties of the
new family can be obtained directly from those properties of
the exp-𝐺 distribution.

Here, we derive a power series expansion for the quantile
function 𝑥 = 𝑄(𝑢) = 𝐹

−1

(𝑢) of 𝑋 by expanding (6). If the
𝐺 quantile function, say 𝑄

𝐺

(𝑢) = 𝐺
−1

(𝑢), does not have a
closed-form expression, it can usually be expressed in terms
of a power series

𝑄
𝐺

(𝑢) =

∞

∑

𝑖=0

𝑎
𝑖

𝑢
𝑖

, (21)

where the coefficients 𝑎
𝑖

are suitably chosen real numbers
which depend on the parameters of the 𝐺 distribution. For
several important distributions, such as the normal, the
Student 𝑡, and gamma and beta distributions,𝑄

𝐺

(𝑢) does not
have explicit expressions but it can be expanded as in (21). As
a simple example, for the normal𝑁(0, 1) distribution, 𝑎

𝑖

= 0

for 𝑖 = 0, 2, 4, . . . and 𝑎
1

= 1, 𝑎
3

= 1/6, 𝑎
5

= 7/120, and
𝑎
7

= 127/7560, . . ..
We use throughout the paper a result of Gradshteyn and

Ryzhik ([12], Section 0.314) for a power series raised to a
positive integer 𝑛 (for 𝑛 ≥ 1):

𝑄
𝐺

(𝑢)
𝑛

= (

∞

∑

𝑖=0

𝑎
𝑖

𝑢
𝑖

)

𝑛

=

∞

∑

𝑖=0

𝑐
𝑛,𝑖

𝑢
𝑖

, (22)

where the coefficients 𝑐
𝑛,𝑖

(for 𝑖 = 1, 2, . . .) are easily obtained
from the recurrence equation (with 𝑐

𝑛,0

= 𝑎
𝑛

0

):

𝑐
𝑛,𝑖

= (𝑖𝑎
0

)
−1

𝑖

∑

𝑚=1

[𝑚 (𝑛 + 1) − 𝑖] 𝑎
𝑚

𝑐
𝑛,𝑖−𝑚

. (23)

Clearly, 𝑐
𝑛,𝑖

can be determined from 𝑐
𝑛,0

, . . . , 𝑐
𝑛,𝑖−1

and then
from the quantities 𝑎

0

, . . . , 𝑎
𝑖

.
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Next, we derive an expansion for the argument of 𝑄
𝐺

(⋅)

in (6):

𝐴 = 1 −

[1 − 𝑢
1/𝛼

]
1/𝜆

[1 + 𝑢1/𝛼]
1/𝜆

. (24)

Using the generalized binomial expansion four times
since 𝑢 ∈ (0, 1), we can write

𝐴 = 1 −

∞

∑

𝑖,𝑗,𝑘=0

𝑘

∑

𝑟=0

(−1)
𝑗+𝑘+𝑟

(
−𝜆

−1

𝑖
) (

𝜆
−1

𝑗
)

× (
(𝑖 + 𝑗) 𝛼

−1

𝑘
)(

𝑘

𝑟
) 𝑢

𝑟

(25)

and then

𝐴 = 1 −

∞

∑

𝑖,𝑗,𝑟=0

∞

∑

𝑘=𝑟

𝑡
𝑖,𝑗,𝑟,𝑘

𝑢
𝑟

= 1 −

∞

∑

𝑟=0

𝑎
𝑟

𝑢
𝑟

=

∞

∑

𝑟=0

𝑏
𝑟

𝑢
𝑟

, (26)

where 𝑎
𝑟

= ∑
∞

𝑖,𝑗=0

∑
∞

𝑘=𝑟

𝑡
𝑖,𝑗,𝑟,𝑘

and 𝑏
𝑟

= −𝑎
𝑟

for 𝑟 ≥ 1, 𝑏
0

= 1−𝑎
0

,
and

𝑡
𝑖,𝑗,𝑟,𝑘

= (−1)
𝑗+𝑘+𝑟

(
−𝜆

−1

𝑖
) (

𝜆
−1

𝑗
)(

(𝑖 + 𝑗) 𝛼
−1

𝑘
)(

𝑘

𝑟
) . (27)

Then, the quantile function of𝑋 can be expressed from (6) as

𝑄 (𝑢) = 𝑄
𝐺

(

∞

∑

𝑚=0

𝛿
𝑚

𝑢
𝑚

) , (28)

where

𝛿
𝑚

=

∞

∑

𝑟,𝑠=0

∞

∑

𝑡=𝑚

(−1)
𝑠+𝑡+𝑚+1

(
−𝜆

−1

𝑟
)(

𝜆
−1

𝑠
)

× (
(𝑟 + 𝑠) 𝛼

−1

𝑡
) (

𝑡

𝑚
) ,

(29)

for𝑚 ≥ 1 and

𝛿
0

= 1 −

∞

∑

𝑟,𝑠,𝑡=0

(−1)
𝑠+𝑡+1

(
−𝜆

−1

𝑟
)(

𝜆
−1

𝑠
)(

(𝑖 + 𝑗) 𝛼
−1

𝑡
) . (30)

For any baseline𝐺distribution,we can combine (21)with (28)
to obtain

𝑄 (𝑢) = 𝑄
𝐺

(

∞

∑

𝑚=0

𝛿
𝑚

𝑢
𝑚

) =

∞

∑

𝑖=0

𝑎
𝑖

(

∞

∑

𝑚=0

𝛿
𝑚

𝑢
𝑚

)

𝑖

, (31)

and then using (22) and (23), we have

𝑄 (𝑢) =

∞

∑

𝑚=0

𝑒
𝑚

𝑢
𝑚

, (32)

where 𝑒
𝑚

= ∑
∞

𝑖=0

𝑎
𝑖

𝑑
𝑖,𝑚

, 𝑑
𝑖,0

= 𝛿
𝑖

0

, and, for𝑚 > 1,

𝑑
𝑖,𝑚

= (𝑚𝛿
0

)
−1

𝑚

∑

𝑛=1

[𝑛 (𝑖 + 1) − 𝑚] 𝛿
𝑛

𝑑
𝑖,𝑚−𝑛

. (33)

Equation (32) is the main result of this section since it allows
to obtain various mathematical quantities for the EHL family
as shown in the next sections.

The formulae derived throughout the paper can be easily
handled in most symbolic computation software platforms
such as Maple, Mathematica, and MATLAB.These platforms
currently have the ability to deal with analytic expressions of
formidable size and complexity. Established explicit expres-
sions to calculate statistical measures can be more efficient
than computing them directly by numerical integration. The
infinity limit in these sums can be substituted by a large
positive integer such as 20 or 30 for most practical purposes.

5. Moments

Hereafter, we will assume that 𝐺(𝑥) is the cdf of a random
variable 𝑍 and that 𝐹(𝑥) is the cdf of the random variable
𝑋 having density function (3). The moments of 𝑋 can be
obtained from the (𝑟, 𝑘)th probability weighted moments
(PWMs) of 𝑍 given by

𝜏
𝑟,𝑘

= 𝐸 [𝑍
𝑟

𝐺(𝑍)
𝑘

] = ∫

∞

−∞

𝑧
𝑟

𝐺(𝑧)
𝑘

𝑔 (𝑧) 𝑑𝑥

= ∫

1

0

𝑄
𝐺

(𝑢)
𝑟

𝑢
𝑘

𝑑𝑢.

(34)

An alternative expression for 𝜏
𝑟,𝑘

can be determined using
(22) and (23):

𝜏
𝑟,𝑘

=

∞

∑

𝑖=0

𝑐
𝑟,𝑖

𝑖 + 𝑘 + 1
. (35)

The PWMs for several distributions can be calculated from
(34) and (35).

We can write from (20)

𝐸 (𝑋
𝑟

) =

∞

∑

𝑘=0

(𝑘 + 1) 𝑏
𝑘+1

𝜏
𝑟,𝑘

. (36)

Thus, the moments of any EHL-𝐺 distribution can be
expressed as an infinite weighted linear combination of the
baseline PWMs. Equations (34)–(36) are the main results of
this section.

Further, the central moments (𝜇
𝑟

) and cumulants (𝜅
𝑟

) of
𝑋 can be calculated as

𝜇
𝑟

=

𝑟

∑

𝑘=0

(−1)
𝑘

(
𝑟

𝑘
)𝜇

󸀠𝑘

1

𝜇
󸀠

𝑟−𝑘

,

𝜅
𝑟

= 𝜇
󸀠

𝑟

−

𝑟−1

∑

𝑘=1

(
𝑟 − 1

𝑘 − 1
) 𝜅

𝑘

𝜇
󸀠

𝑟−𝑘

,

(37)

respectively, where 𝜅
1

= 𝜇
󸀠

1

. Then, 𝜅
2

= 𝜇
󸀠

2

− 𝜇
󸀠2

1

, 𝜅
3

=

𝜇
󸀠

3

− 3𝜇
󸀠

2

𝜇
󸀠

1

+ 2𝜇
󸀠3

1

, 𝜅
4

= 𝜇
󸀠

4

− 4𝜇
󸀠

3

𝜇
󸀠

1

− 3𝜇
󸀠2

2

+ 12𝜇
󸀠

2

𝜇
󸀠2

1

− 6𝜇
󸀠4

1

,
and so forth. The skewness 𝛾

1

= 𝜅
3

/𝜅
3/2

2

and kurtosis 𝛾
2

=

𝜅
4

/𝜅
2

2

quantities follow from the second, third, and fourth
cumulants.
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Figure 7: Skewness and kurtosis of the EHLLL distribution as a function of 𝜆 for some values of 𝛼.

5.1. EHLFModel. Consider the Fréchet baseline cdf𝐺
𝜎,𝜆

(𝑥) =

𝑒
−(𝜎/𝑥)

𝜆

for 𝑥 > 0 and corresponding pdf 𝑔
𝜎,𝜆

(𝑥) discussed in
Section 2.2. The EHLF density function can be written from
(20) as

𝑓 (𝑥) =

∞

∑

𝑘=0

𝑏
𝑘+1

𝑔
𝜎

∗
,𝜆

(𝑥) = 𝜆𝜎
𝜆

𝑥
−(𝜆+1)

×

∞

∑

𝑘=0

𝑏
𝑘+1

exp{− (𝑘 + 1) (
𝜎

𝑥
)

𝜆

} ,

(38)

where 𝑔
𝜎

∗
,𝜆

(𝑥) = 𝑑𝐺
𝜎

∗
,𝜆

(𝑥)/𝑑𝑥. This equation reveals that
the EHLF density function can be expressed as an infinite
mixture of Fréchet densities.

The (𝑟, 𝑘)th PWM of the Fréchet distribution becomes

𝜏
𝑟,𝑘

= 𝜆𝜎
𝜆

∫

∞

0

𝑥
𝑟−(𝜆+1) exp{− (𝑘 + 1) (

𝜎

𝑥
)

𝜆

}𝑑𝑥. (39)

Setting 𝑢 = (𝑘 + 1)(𝜎/𝑥)
𝜆, 𝜏

𝑟,𝑘

reduces to

𝜏
𝑟,𝑘

=
𝜎
𝑟

(𝑘 + 1)
1−𝑟/𝜆

∫

∞

0

𝑢
−𝑟/𝜆 exp (−𝑢) 𝑑𝑢. (40)

The integral converges absolutely for 𝑟 < 𝜆 and then

𝐸 (𝑋
𝑟

) = 𝜎
𝑟

Γ (1 −
𝑟

𝜆
)

∞

∑

𝑘=0

𝑏
𝑘+1

(𝑘 + 1)
1−𝑟/𝜆

. (41)

Plots of the skewness and kurtosis for some choices of 𝛼
as functions of 𝜆, for 𝑎 = 2.1 and 𝑏 = 3.1, are displayed in
Figure 7.

5.2. Exponentiated Half-Logistic Logistic (EHLLo) Model. For
the EHLLo distribution, the baseline cumulative function is
𝐺(𝑥) = (1 + 𝑒

−𝑥

)
−1. Using a result from Prudnikov et al. ([13],

Section 2.6.13, equation (4)), we can write from (34) (for 𝑡 <
1) the following:

𝜏
𝑟,𝑘

= (
𝜕

𝜕𝑡
)

𝑟

𝐵 (𝑡 + 𝑘 + 1, 1 − 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡=0

, (42)

where 𝐵(𝑎, 𝑏) = ∫
1

0

𝑡
𝑎−1

(1 − 𝑡)
𝑏−1

𝑑𝑡 = Γ(𝑎)Γ(𝑏)/Γ(𝑎 + 𝑏) is
the beta function.The 𝑟thmoment of the EHLLo distribution
comes from (36) as

𝐸(𝑋
𝑟

) =

∞

∑

𝑘=0

𝑏
𝑘+1

(
𝜕

𝜕𝑡
)

𝑟

𝐵 (𝑡 + 𝑘 + 1, 1 − 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡=0

. (43)

5.3. Exponentiated Half-Logistic Gamma (EHLGa) Model.
Using the power series expansion for the gamma cdf

𝐺
𝑎,𝑏

(𝑥) =
(𝑏𝑥)

𝑎

Γ (𝑎)

∞

∑

𝑚=0

(−𝑏𝑥)
𝑚

(𝑎 + 𝑚)𝑚!
, (44)

we obtain from (20) the following series expansion:

𝑓 (𝑥) =
𝑏
𝑎

𝑥
𝑎−1

𝑒
−𝑏𝑥

Γ (𝑎)

∞

∑

𝑘=0

𝑏
𝑘+1

(𝑏𝑥)
𝑎𝑘

Γ(𝑎)
𝑘

×

∞

∑

𝑚1=0

⋅ ⋅ ⋅

∞

∑

𝑚𝑘=0

(−𝑏𝑥)
𝑚1+⋅⋅⋅+𝑚𝑘

(𝑎 + 𝑚
1

) ⋅ ⋅ ⋅ (𝑎 + 𝑚
𝑘

)𝑚
1

! ⋅ ⋅ ⋅ 𝑚
𝑘

!
.

(45)
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TheEHLGamoments follow from (36) and the expression
for 𝜏

𝑟,𝑘

given by

𝜏
𝑟,𝑘

=
Γ (𝑟 + 𝑎 (𝑘 + 1))

𝑎𝑘𝑏𝑟Γ(𝑎)
𝑘+1

𝐹
(𝑘)

𝐴

× (𝑟 + 𝑎 (𝑘 + 1) ; 𝑎, . . . , 𝑎; 𝑎 + 1, . . . , 𝑎 + 1, −1, . . . , −1) .

(46)

5.4. Exponentiated Half-Logistic Normal (EHLN) Model. The
moments of 𝑍 ∼ 𝑁(𝜇, 𝜎) can be obtained from the moments
of 𝑇 ∼ 𝑁(0, 1) using 𝐸(𝑍

𝑟

) = ∑
𝑟

𝑘=0

𝜇
𝑟−𝑡

𝜎
𝑟

𝐸(𝑇
𝑟

), and then
we can work with the standard normal distribution. We can
expand the EHLN cumulative function (18) (with 𝜇 = 0 and
𝜎 = 1) as

𝐹 (𝑥) =

∞

∑

𝑘=0

𝑏
𝑘

2𝑘

𝑘

∑

𝑙=0

(
𝑘

𝑙
) erf ( 𝑥

√2
)

𝑙

. (47)

From the series expansion for the error function erf(⋅)

erf (𝑥) = 2

√𝜋

∞

∑

𝑚=0

(−1)
𝑚

𝑥
2𝑚+1

(2𝑚 + 1)𝑚!
, (48)

we obtain a series expansion from (20) (with 𝜇 = 0 and𝜎 = 1)
given by

𝑓 (𝑥) = 2
1/2

𝜋
1/2

𝑒
−𝑥

2
/2

∞

∑

𝑘=0

𝑏
𝑘+1

2𝑘

𝑘

∑

𝑙=0

(
𝑘

𝑙
) 2

𝑙/2

𝜋
−𝑙/2

×

∞

∑

𝑚1=0

⋅ ⋅ ⋅

∞

∑

𝑚𝑙=0

(((−1)
𝑚1+⋅⋅⋅+𝑚𝑙𝑥

2(𝑚1+⋅⋅⋅𝑚𝑙)+𝑙)

× (2
𝑚1+⋅⋅⋅+𝑚𝑙 (2𝑚

1

+ 1)

⋅ ⋅ ⋅ (2𝑚
𝑙

+ 1)𝑚
1

! ⋅ ⋅ ⋅ 𝑚
𝑙

!)
−1

) .

(49)

The EHLN moments can be obtained from (36) and the
PWMs 𝜏

𝑟,𝑘

given by Cordeiro andNadarajah [14]. Plots of the
skewness and kurtosis for some choices of 𝛼 as functions of 𝜆,
for 𝑎 = 0.51, 𝑎 = 0.1 and 𝑏 = 3.01, 𝑏 = 2.1, are displayed for
the EHLLL and EHLHGN distributions in Figures 8 and 9,
respectively. These plots show that the skewness and kurtosis
are very flexible.

6. Other Measures

In this section, we calculate the following measures: generat-
ing function, incompletemoments, mean deviations, reliabil-
ity, entropies, and order statistics for the EHL-𝐺 family.

6.1. Generating Function. Here, we provide two formulae for
the moment generating function (mgf)𝑀(𝑠) = 𝐸(𝑒

𝑠𝑋

) of 𝑋.
A first formula for𝑀(𝑠) comes from (20) as

𝑀(𝑠) =

∞

∑

𝑘=0

𝑏
𝑘+1

𝑀
𝑘+1

(𝑠) , (50)

where 𝑀
𝑘+1

(𝑠) is the generating function of the exp-𝐺
distribution with power parameter 𝑘 + 1. Hence, 𝑀(𝑠) can
be determined from the exp-𝐺 generating function.

A second formula for𝑀(𝑠) can be derived from (20) as

𝑀(𝑠) =

∞

∑

𝑘=0

(𝑘 + 1) 𝑏
𝑘+1

𝜌
𝑘

(𝑠) , (51)

where

𝜌
𝑘

(𝑠) = ∫

1

0

exp [𝑠𝑄
𝐺

(𝑢)] 𝑢
𝑘

𝑑𝑢. (52)

We can derive the mgf ’s of several EHL distributions
directly from (50)-(51). For example, the mgf ’s of the expo-
nentiated half-logistic exponential (EHLE) (with parameter
𝜆 and 𝑠 < 𝜆

−1) and EHLLo (with 𝑠 < 1) distributions are
given by

𝑀(𝑠) =

∞

∑

𝑘=0

(𝑘 + 1) 𝑏
𝑘+1

𝐵 (𝑘 + 1, 1 − 𝜆𝑠) ,

𝑀 (𝑠) =

∞

∑

𝑘=0

(𝑘 + 1) 𝑏
𝑘+1

𝐵 (𝑠 + 𝑘 + 1, 1 − 𝑠) ,

(53)

respectively.
Clearly, two representations for the characteristic func-

tion (chf) 𝜙(𝑠) = 𝐸(𝑒
i𝑠𝑋

) of 𝑋 can be derived from (50)–(52)
by 𝜙(𝑠) = 𝑀(i𝑠), where i = √−1.

6.2. Incomplete Moments. Incomplete moments of the
income distribution form natural building blocks for
measuring inequality. For example, the Lorenz and
Bonferroni curves depend upon the incomplete moments of
the income distribution. The 𝑟th incomplete moment of 𝑋 is
defined as𝑚

𝑟

(𝑦) = 𝐸(𝑋
𝑟

| 𝑋 < 𝑦) = ∫
𝑦

−∞

𝑥
𝑟

𝑓(𝑥)𝑑𝑥. Here, we
provide two formulae to calculate the incomplete moments
of the EHL family. First, the 𝑟th incomplete moment of 𝑋
can be expressed as

𝑚
𝑟

(𝑦) =

∞

∑

𝑘=0

𝑏
𝑘+1

∫

𝐺(𝑦;𝜉)

0

𝑄
𝐺

(𝑢)
𝑟

𝑢
𝑘

𝑑𝑢. (54)

The integral in (54) can be computed at least numerically
for most baseline distributions.

A second formula follows from (54) using (22) and (23).
We can write

𝑚
𝑟

(𝑦) =

∞

∑

𝑘,𝑖=0

𝑏
𝑘+1

(𝑘 + 1) 𝑐
𝑟,𝑖

𝐺(𝑦; 𝜉)
𝑘+𝑖+1

𝑘 + 𝑖 + 1
, (55)

where 𝑐
𝑟,𝑖

is given by (23).
The first incomplete moment can be used to obtain

Bonferroni and Lorenz curves defined for a given probability
𝜋 by 𝐵(𝜋) = 𝑚

1

(𝑞)/(𝜋𝜇
󸀠

1

) and 𝐿(𝜋) = 𝑚
1

(𝑞)/𝜇
󸀠

1

, respectively,
where 𝑞 = 𝑄

𝐺

(1 − [(1 − 𝜋
1/𝛼

)/(1 + 𝜋
1/𝛼

)]
1/𝜆

) is immediately
calculated from the parent quantile function.
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Figure 8: Skewness and kurtosis of the EHLLL distribution as a function of 𝜆 for some values of 𝛼.

Sk
ew

ne
ss

𝛼 = 2

𝛼 = 4

𝛼 = 7

𝛼 = 12

𝜆

0

50

100

150

200

250

0 2 4 6 8 10

(a)

𝛼 = 2

𝛼 = 4

𝛼 = 7

𝛼 = 12

𝜆

Ku
rt
os
is

0 1 2 3 4 5 6

0

200

400

600

800

1000

(b)

Figure 9: Skewness and kurtosis of the EHLGHN distribution as a function of 𝜆 for some values of 𝛼.

6.3. Mean Deviations. The mean deviations about the mean
(𝛿

1

(𝑋) = 𝐸(|𝑋−𝜇
󸀠

1

|)) and about the median (𝛿
2

(𝑋) = 𝐸(|𝑋−

𝑀|)) of𝑋 can be expressed as
𝛿
1

(𝑌) = 2𝜇
󸀠

1

𝐹 (𝜇
󸀠

1

) − 2𝑚
1

(𝜇
󸀠

1

) ,

𝛿
2

(𝑌) = 𝜇
󸀠

1

− 2𝑚
1

(𝑀) ,

(56)

respectively, where𝑀 = 𝑄
𝐺

(1−[(1 − 0.5
1/𝛼

)/(1 + 0.5
1/𝛼

)]
1/𝜆

)

is the median of 𝑋, 𝐹(𝜇󸀠

1

) and 𝜇
󸀠

1

= 𝐸(𝑋) come from (2)
and (36), respectively, and 𝑚

1

(𝑧) = ∫
𝑧

−∞

𝑥𝑓(𝑥)𝑑𝑥 is the first
incomplete moment.

Now, we provide two alternative ways to compute 𝛿
1

(𝑋)

and 𝛿
2

(𝑋). A general equation for𝑚
1

(𝑧) can be derived from
(20) as

𝑚
1

(𝑧) =

∞

∑

𝑘=0

𝑏
𝑘+1

𝐽
𝑘+1

(𝑧) , (57)

where

𝐽
𝑘+1

(𝑧) = ∫

𝑧

−∞

𝑥ℎ
𝑘+1

(𝑥) 𝑑𝑥. (58)
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Equation (58) is the basic quantity to compute the mean
deviations for the EGL distributions.

A second general formula for 𝑚
1

(𝑧) can be derived by
setting 𝑢 = 𝐺(𝑥) in (57):

𝑚
1

(𝑧) =

∞

∑

𝑘=0

(𝑘 + 1) 𝑏
𝑘+1

𝑇
𝑘

(𝑧) , (59)

where

𝑇
𝑘

(𝑧) = ∫

𝐺(𝑧)

0

𝑄
𝐺

(𝑢) 𝑢
𝑘

𝑑𝑢 =

∞

∑

𝑖=0

𝑎
𝑖

𝐺(𝑧)
𝑖+𝑘+1

𝑖 + 𝑘 + 1
. (60)

Equations (55)–(59) are the main results of this section.

6.4. Reliability. Here,we derive the reliability𝑅=𝑃(𝑋
2

< 𝑋
1

)

when 𝑋
1

∼ EHL-𝐺(𝛼
1

, 𝜆
1

, 𝜉
1

) and 𝑋
2

∼ EHL-𝐺(𝛼
2

, 𝜆
2

, 𝜉
2

)

are independent random variables with a positive support. It
has many applications especially in engineering concepts. Let
𝑓
𝑖

denote the pdf of 𝑋
𝑖

and let 𝐹
𝑖

denote the cdf of 𝑋
𝑖

. By
expanding the binomial terms in 𝑓

1

and 𝐹
2

, we obtain

𝑅 =

∞

∑

𝑘,𝑠=0

𝑏
(1)

𝑘

𝑏
(2)

𝑠+1

𝑅
𝑘,𝑠+1

, (61)

where

𝑅
𝑘,𝑠+1

= ∫

∞

0

𝐻
𝑘

(𝑥; 𝜉
1

) ℎ
𝑠+1

(𝑥; 𝜉
2

) 𝑑𝑥,

𝑏
(1)

𝑘

=

∞

∑

𝑖,𝑗=0

(−1)
𝑗+𝑘

(
−𝛼

1

𝑖
) (

𝛼
1

𝑗
)(

(𝑖 + 𝑗) 𝜆
1

𝑘
) ,

𝑏
(2)

𝑠+1

=

∞

∑

𝑖,𝑗=0

(−1)
𝑗+𝑠+1

(
−𝛼

2

𝑖
) (

𝛼
2

𝑗
)(

(𝑖 + 𝑗) 𝜆
1

𝑠 + 1
) .

(62)

If 𝜉
1

= 𝜉
2

, we obtain

𝑅 =

∞

∑

𝑘,𝑠=0

𝑏
(1)

𝑘

𝑏
(2)

𝑠

𝑠 + 1

𝑠 + 𝑘 + 1
. (63)

Further, if 𝜆
1

= 𝜆
2

and 𝛼
1

= 𝛼
2

, then 𝑅 = 1/2.

6.5. Entropies. An entropy is a measure of variation or
uncertainty of a random variable 𝑋. Two popular entropy
measures are the Rényi and Shannon entropies. The Rényi
entropy of a random variable with pdf 𝑓(𝑥) is defined (for
𝑐 > 0 and 𝑐 ̸= 1) as

𝐼
𝑅

(𝑐) =
1

1 − 𝑐
log(∫

∞

0

𝑓
𝑐

(𝑥) 𝑑𝑥) . (64)

The Shannon entropy of a random variable 𝑋 is given by
𝐸{− log[𝑓(𝑋)]}, which is the special case of the Rényi entropy
when 𝛾 ↑ 1. Direct calculation gives

𝐸 {− log [𝑓 (𝑋)]} = − log (2𝛼𝜆) − 𝐸 {log [𝑔 (𝑋; 𝜉)]}

− (𝜆 − 1) 𝐸 {log [1 − 𝐺 (𝑥; 𝜉)]}

− (𝛼 − 1) 𝐸 {log {1 − [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}}

+ (𝛼 + 1) 𝐸 {log {1 + [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}} .

(65)

After some algebraicmanipulations, we obtain the follow-
ing.

Proposition 1. Let 𝑋 be a random variable with pdf given by
(3). Then,

𝐸 {log [1 − 𝐺 (𝑋)]}

= 2𝛼𝜆

∞

∑

𝑖,𝑗=0

(−1)
𝑗

(
−𝛼 − 1

𝑖
)(

𝛼 − 1

𝑗
)

1

[𝜆 (𝑖 + 𝑗)]
2

,

𝐸 {log {1 − [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}}

= 2𝛼

∞

∑

𝑖,𝑗=0

(−1)
𝑗

(
−𝛼 − 1

𝑖
)

× [
𝜕

𝜕𝑡
(
𝑡 + 𝛼 − 1

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡=0

]
1

𝑖 + 𝑗 + 1
,

𝐸 {log {1 + [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}}

= 2𝛼

∞

∑

𝑖,𝑗=0

(−1)
𝑗

(
𝛼 − 1

𝑗
)

× [
𝜕

𝜕𝑡
(
𝑡 + 𝛼 − 1

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡=0

]
1

𝑖 + 𝑗 + 1
.

(66)

The simplest formula for the entropy of 𝑋 becomes

𝐸 {− log [𝑓 (𝑋)]}

= − log (2𝛼𝜆) − 𝐸 {log [𝑔 (𝑋; 𝜉)]}

− 2𝛼𝜆 (𝜆 − 1)

∞

∑

𝑖,𝑗=0

(−1)
𝑗

(
−𝛼 − 1

𝑖
)

× (
𝛼 − 1

𝑗
)

1

[𝜆 (𝑖 + 𝑗)]
2
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− 2𝛼 (𝛼 − 1)

∞

∑

𝑖,𝑗=0

(−1)
𝑗

(
−𝛼 − 1

𝑖
)

× [
𝜕

𝜕𝑡
(
𝑡 + 𝛼 − 1

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡=0

]
1

𝑖 + 𝑗 + 1

+ 2𝛼 (𝛼 + 1)

∞

∑

𝑖,𝑗=0

(−1)
𝑗

(
𝛼 − 1

𝑗
)

× [
𝜕

𝜕𝑡
(
𝑡 + 𝛼 − 1

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡=0

]
1

𝑖 + 𝑗 + 1
.

(67)

After some algebraic developments, we obtain an alternative
expression for 𝐼

𝑅

(𝑐):

𝐼
𝑅

(𝑐) =
𝑐

1 − 𝑐
log (2𝛼𝜆) +

log (𝜆)
1 − 𝑐

+ (log
{

{

{

∞

∑

𝑖,𝑗=0

(
−𝑐 (𝛼 + 1)

𝑖
) (

𝑐 (𝛼 − 1)

𝑗
)

×
(−1)

𝑗

𝜆 (𝑖 + 𝑗) + 𝑐 (𝜆 − 1) + 1

× 𝐸
𝑌𝑖,𝑗

{𝑔
𝑐−1

[𝐺
−1

(𝑌)]}
}

}

}

)

× (1 − 𝑐)
−1

,

(68)

where 𝑌
𝑖,𝑗

∼ Beta(1, 𝜆(𝑖 + 𝑗) + 𝑐(𝜆 − 1) + 1).

6.6. Order Statistics. Order statistics make their appearance
in many areas of statistical theory and practice. Suppose
that 𝑋

1

, 𝑋
2

, . . . , 𝑋
𝑛

is a random sample from the EHL-𝐺
distribution. Let 𝑋

𝑖:𝑛

denote the 𝑖th order statistic. From (18)
and (20), the pdf of𝑋

𝑖:𝑛

is given by

𝑓
𝑖:𝑛

(𝑥) = 𝐾

𝑛−𝑖

∑

𝑗=0

(−1)
𝑗

(
𝑛 − 𝑖

𝑗
)𝑓 (𝑥) 𝐹

𝑗+𝑖−1

(𝑥)

= 𝐾

𝑛−𝑖

∑

𝑗=0

(−1)
𝑗

(
𝑛 − 𝑖

𝑗
) [

∞

∑

𝑟=0

𝑟𝑏
𝑟

𝐺(𝑥)
𝑟−1

𝑔 (𝑥)]

×[

∞

∑

𝑘=0

𝑏
𝑘

𝐺(𝑥)
𝑘

]

𝑗+𝑖−1

,

(69)

where 𝐾 = 𝑛!/[(𝑖 − 1)!(𝑛 − 𝑖)!]. Using (22) and (23), we can
write

[

∞

∑

𝑘=0

𝑏
𝑘

𝐺(𝑥)
𝑘

]

𝑗+𝑖−1

=

∞

∑

𝑘=0

𝑒
𝑗+𝑖−1,𝑘

𝐺(𝑥)
𝑘

, (70)

where 𝑒
𝑗+𝑖−1,0

= 𝑏
𝑗+𝑖−1

0

and

𝑒
𝑗+𝑖−1,𝑘

= (𝑘𝑏
0

)
−1

𝑘

∑

𝑚=1

[𝑚 (𝑗 + 𝑖) − 𝑘] 𝑏
𝑚

𝑒
𝑗+𝑖−1,𝑘−𝑚

. (71)

Hence,

𝑓
𝑖:𝑛

(𝑥) =

∞

∑

𝑘=0

𝑑
𝑘

ℎ
𝑘+1

(𝑥) , (72)

where 𝑑
𝑘

= 𝐾∑
𝑛−𝑖

𝑗=0

∑
𝑘

𝑚=0

𝑏
𝑚+1

𝑒
𝑗+𝑖−1,𝑘−𝑚

.
Equation (72) is the main result of this section. It

reveals that the pdf of the EHL-𝐺 order statistics is a linear
combination of exp-𝐺 density functions. So, several struc-
tural quantities of the EHL-𝐺 order statistics like ordinary,
incomplete moments, generating function, mean deviations,
and several others can be obtained from the corresponding
quantities of exp-𝐺 distributions.

7. Bivariate Extensions

In this section, we introduce two extensions of the proposed
model. The first extension is based on the idea of [15]. Let
𝑋

1

∼ EHL-𝐺(𝛼
1

, 𝜆, 𝜉), 𝑋
2

∼ EHL-𝐺(𝛼
2

, 𝜆, 𝜉), and 𝑋
3

∼

EHL-𝐺(𝛼
3

, 𝜆, 𝜉) be independent random variables. Further,
we define𝑋 = max{𝑋

1

, 𝑋
3

} and 𝑌 = max{𝑋
2

, 𝑋
3

}. Then, the
pdf of the bivariate random variable (𝑋, 𝑌) is given by

𝐹
𝑋,𝑌

(𝑥, 𝑦) = {
1 − [1 − 𝐺 (𝑥; 𝜉)]

𝜆

1 + [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}

𝛼1

× {
1 − [1 − 𝐺 (𝑦; 𝜉)]

𝜆

1 + [1 − 𝐺 (𝑦; 𝜉)]
𝜆

}

𝛼2

× {
1 − [1 − 𝐺 (𝑧; 𝜉)]

𝜆

1 + [1 − 𝐺 (𝑧; 𝜉)]
𝜆

}

𝛼3

,

(73)

where 𝑧 = min{𝑥, 𝑦}. The marginal cdf ’s are

𝐹
𝑋

(𝑥) = {
1 − [1 − 𝐺 (𝑥; 𝜉)]

𝜆

1 + [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}

𝛼1+𝛼3

,

𝐹
𝑌

(𝑦) = {
1 − [1 − 𝐺 (𝑦; 𝜉)]

𝜆

1 + [1 − 𝐺 (𝑦; 𝜉)]
𝜆

}

𝛼2+𝛼3

.

(74)

Clearly, if we consider 𝑋 ∼ EHL-𝐺(𝛼
1

+ 𝛼
3

, 𝜆, 𝜉) and 𝑌 ∼

EHL-𝐺(𝛼
2

+ 𝛼
3

, 𝜆, 𝜉), the pdf of (𝑋, 𝑌) is given by

𝑓
𝑋,𝑌

(𝑥, 𝑦)

=

{{{{{{{{{{

{{{{{{{{{{

{

𝑓EHL-𝐺 (𝑥; 𝛼1

, 𝜆, 𝜉) 𝑓EHL-𝐺 (𝑦; 𝛼2

+ 𝛼
3

, 𝜆, 𝜉) ,

for 𝑥 < 𝑦;

𝑓EHL-𝐺 (𝑥; 𝛼1

+ 𝛼
3

, 𝜆, 𝜉) 𝑓EHL-𝐺 (𝑦; 𝛼2

, 𝜆, 𝜉) ,

for 𝑥 > 𝑦;

𝛼
3

𝛼
1

+ 𝛼
2

+ 𝛼
3

𝑓EHL-𝐺 (𝑥; 𝛼1

+ 𝛼
2

+ 𝛼
3

, 𝜆, 𝑝, 𝜉) ,

for 𝑥 = 𝑦.

(75)
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The marginal pdf ’s are given by

𝑓
𝑋

(𝑥; 𝛼
1

, 𝛼
3

𝜆, 𝜉) = 2 (𝛼
1

+ 𝛼
3

) 𝜆𝑔 (𝑥; 𝜉) [1 − 𝐺 (𝑥; 𝜉)]
𝜆−1

×

{1 − [1 − 𝐺(𝑥; 𝜉)
𝜆

]}
𝛼1+𝛼3−1

{1 + [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}
𝛼1+𝛼3+1

,

𝑓
𝑌

(𝑦; 𝛼
2

, 𝛼
3

, 𝜆, 𝜉) = (𝛼
2

+ 𝛼
3

) 𝜆𝑔 (𝑥; 𝜉) [1 − 𝐺 (𝑥; 𝜉)]
𝜆−1

×

{1 − [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}
𝛼2+𝛼3−1

{1 + [1 − 𝐺 (𝑥; 𝜉)]
𝜆

}
𝛼2+𝛼3+1

.

(76)

A second extension is given by

𝐹
𝑋,𝑌

(𝑥, 𝑦) = {
1 − [1 − 𝐺 (𝑥, 𝑦; 𝜉)]

𝜆

1 + [1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆

}

𝛼

, (77)

where 𝐺(𝑥, 𝑦; 𝜉) is a bivariate continuous distribution with
marginal cdf ’s 𝐺

1

(𝑥; 𝜉) and 𝐺
2

(𝑦; 𝜉). The marginal cdf ’s are
given by

𝐹
𝑋

(𝑥) = {
1 − [1 − 𝐺

1

(𝑥; 𝜉)]
𝜆

1 + [1 − 𝐺
1

(𝑥; 𝜉)]
𝜆

}

𝛼

,

𝐹
𝑌

(𝑦) = {
1 − [1 − 𝐺

2

(𝑦; 𝜉)]
𝜆

1 + [1 − 𝐺
2

(𝑦; 𝜉)]
𝜆

}

𝛼

.

(78)

The joint pdf of (𝑋, 𝑌) is easily obtained by 𝑓
𝑋,𝑌

(𝑥, 𝑦) =

𝜕
2

𝐹
𝑋,𝑌

(𝑥, 𝑦)/𝜕𝑥𝜕𝑦 and then

𝑓
𝑋,𝑌

(𝑥, 𝑦) = 2𝛼𝜆[1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆−1

×

{1 − [1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆

}
𝛼−1

{1 + [1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆

}
𝛼+1

𝐴 (𝑥, 𝑦; 𝜉) ,

(79)

where
𝐴 (𝑥, 𝑦; 𝜉) = 𝑔 (𝑥, 𝑦; 𝜉)

+
𝜕𝐺 (𝑥, 𝑦; 𝜉)

𝜕𝑥

𝜕𝐺 (𝑥, 𝑦; 𝜉)

𝜕𝑥

×
1 − 𝜆

1 − 𝐺 (𝑥, 𝑦; 𝜉)

+ 𝜆 (𝛼 − 1)
𝜕𝐺 (𝑥, 𝑦; 𝜉)

𝜕𝑥

𝜕𝐺 (𝑥, 𝑦; 𝜉)

𝜕𝑥

×
[1 − 𝐺 (𝑥, 𝑦; 𝜉)]

𝜆−1

1 − [1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆

+ 𝜆 (𝛼 + 1)
𝜕𝐺 (𝑥, 𝑦; 𝜉)

𝜕𝑥

𝜕𝐺 (𝑥, 𝑦; 𝜉)

𝜕𝑥

×
[1 − 𝐺 (𝑥, 𝑦; 𝜉)]

𝜆−1

1 + [1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆

.
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The marginal pdf ’s are

𝑓
𝑋

(𝑥, 𝛼, 𝜆, 𝜉) = 2𝛼𝜆𝑔
1

(𝑥; 𝜉) [1 − 𝐺
1

(𝑥; 𝜉)]
𝜆−1

×

{1 − [1 − 𝐺
1

(𝑥; 𝜉)]
𝜆

}
𝛼−1

{1 + [1 − 𝐺
1

(𝑥; 𝜉)]
𝜆

}
𝛼+1

𝑓
𝑌

(𝑥, 𝛼, 𝜆, 𝜉) = 2𝛼𝜆𝑔
2

(𝑦; 𝜉) [1 − 𝐺
2

(𝑦; 𝜉)]
𝜆−1

×

{1 − [1 − 𝐺
2

(𝑦; 𝜉)]
𝜆

}
𝛼−1

{1 + [1 − 𝐺
2

(𝑦; 𝜉)]
𝜆

}
𝛼+1

.

(81)

The conditional cdf ’s are

𝐹 (𝑥𝑦) = {
1 − [1 − 𝐺 (𝑥, 𝑦; 𝜉)]

𝜆

1 + [1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆

}

𝛼

× {
1 − [1 − 𝐺

2

(𝑦; 𝜉)]
𝜆

1 + [1 − 𝐺
2

(𝑦; 𝜉)]
𝜆

}

−𝛼

,

𝐹 (𝑥 | 𝑦) = {
1 − [1 − 𝐺 (𝑥, 𝑦; 𝜉)]

𝜆

1 + [1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆

}

𝛼

× {
1 − [1 − 𝐺

1

(𝑥; 𝜉)]
𝜆

1 + [1 − 𝐺
1

(𝑥; 𝜉)]
𝜆

}

−𝛼

.

(82)

The conditional density functions reduce to

𝑓 (𝑥 | 𝑦)

=

[1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆−1

{1 − [1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆

}
𝛼−1

𝐴 (𝑥, 𝑦; 𝜉)

[1 − 𝐺
2

(𝑦; 𝜉)]
𝜆−1

{1 − [1 − 𝐺
2

(𝑦; 𝜉)]
𝜆

}
𝛼−1

𝑔
2

(𝑦; 𝜉)

× {
1 + [1 − 𝐺

2

(𝑦; 𝜉)]
𝜆

1 + [1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆

}

𝛼+1

,

𝑓 (𝑦 | 𝑥)

=

[1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆−1

{1 − [1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆

}
𝛼−1

𝐴 (𝑥, 𝑦; 𝜉)

[1 − 𝐺
1

(𝑥; 𝜉)]
𝜆−1

{1 − [1 − 𝐺
1

(𝑥; 𝜉)]
𝜆

}
𝛼−1

𝑔
1

(𝑥; 𝜉)

× {
1 + [1 − 𝐺

1

(𝑥; 𝜉)]
𝜆

1 + [1 − 𝐺 (𝑥, 𝑦; 𝜉)]
𝜆

}

𝛼+1

.

(83)

8. Estimation

We derive the maximum likelihood estimates (MLEs) of
the parameters of the EHL-𝐺 family. Let 𝑥

1

, . . . , 𝑥
𝑛

be
a random sample of size 𝑛 from the random variable
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𝑋 ∼ EHL-𝐺(𝛼, 𝜆, 𝜉), where 𝜉 is a 𝑝 × 1 vector of unknown
parameters of the baseline distribution 𝐺(𝑥; 𝜉). The log-
likelihood function for 𝜃 = (𝛼, 𝜆, 𝜉)

𝑇 can be expressed as

𝑙 (𝜃) = 𝑛 log (2𝛼𝜆) +
𝑛

∑

𝑖=1

log [𝑔 (𝑥
𝑖

; 𝜉)] + (𝜆 − 1)

×

𝑛

∑

𝑖=1

log [1 − 𝐺 (𝑥
𝑖

; 𝜉)]

+ (𝛼 − 1)

𝑛

∑

𝑖=1

log {1 − [1 − 𝐺 (𝑥
𝑖

; 𝜉)]
𝜆

} − (𝛼 + 1)

×

𝑛

∑

𝑖=1

log {1 + [1 − 𝐺 (𝑥
𝑖

; 𝜉)]
𝜆

} .

(84)

Equation (84) can be maximized either directly, for example,
using SAS (Proc NLMixed) or Ox (subroutine MaxBFGS)
(see [16]) or by solving the nonlinear likelihood equations
obtained by differentiating the score function. Initial esti-
mates of the parameters 𝛼 and 𝜆 may be inferred from the
estimates of 𝜏. The components of the score vector 𝑈(𝜃) are
given by

𝑈
𝛼

(𝜃) =
𝑛

𝛼
+

𝑛

∑

𝑖=1

log {1 − [1 − 𝐺 (𝑥
𝑖

; 𝜉)]
𝜆

}

−

𝑛

∑

𝑖=1

log {1 + [1 − 𝐺 (𝑥
𝑖

; 𝜉)]
𝜆

} ,

𝑈
𝜆

(𝜃) =
𝑛

𝜆
+

𝑛

∑

𝑖=1

log [1 − 𝐺 (𝑥
𝑖

; 𝜉)] − (𝛼 − 1)

×

𝑛

∑

𝑖=1

[1 − 𝐺 (𝑥
𝑖

; 𝜉)]
𝜆 log [1 − 𝐺 (𝑥

𝑖

; 𝜉)]

{1 − [1 − 𝐺 (𝑥
𝑖

; 𝜉)]
𝜆

}

− (𝛼 + 1)

×

𝑛

∑

𝑖=1

[1 − 𝐺 (𝑥
𝑖

; 𝜉)]
𝜆 log [1 − 𝐺 (𝑥

𝑖

; 𝜉)]

{1 + [1 − 𝐺 (𝑥
𝑖

; 𝜉)]
𝜆

}

,

(85)

𝑈
𝜉

(𝜃) =

𝑛

∑

𝑖=1

[ ̇𝑔 (𝑥
𝑖

; 𝜉)]
𝜉

𝑔 (𝑥
𝑖

; 𝜉)
− (𝜆 − 1)

×

𝑛

∑

𝑖=1

[𝐺̇ (𝑥
𝑖

; 𝜉)]
𝜉

[1 − 𝐺 (𝑥
𝑖

; 𝜉)]
+ 𝜆 (𝛼 − 1)

×

𝑛

∑

𝑖=1

[1 − 𝐺 (𝑥
𝑖

; 𝜉)]
𝜆−1

[𝐺̇ (𝑥
𝑖

; 𝜉)]
𝜉

{1 − [1 − 𝐺 (𝑥
𝑖

; 𝜉)]
𝜆

}

+ 𝜆 (𝛼 + 1)

×

𝑛

∑

𝑖=1

[1 − 𝐺 (𝑥
𝑖

; 𝜉)]
𝜆−1

[𝐺̇ (𝑥
𝑖

; 𝜉)]
𝜉

{1 + [1 − 𝐺 (𝑥
𝑖

; 𝜉)]
𝜆

}

,

(86)

where

[ ̇𝑔 (𝑥
𝑖

)]
𝜉

=
𝜕𝑔 (𝑥

𝑖

; 𝜉)

𝜕𝜉
, [𝐺̇ (𝑥

𝑖

)]
𝜉

= 𝜕𝐺
(𝑥

𝑖

; 𝜉)

𝜕𝜉
(87)

are 𝑝 × 1 vectors.
For interval estimation and hypothesis tests on the model

parameters, we require the (𝑝 + 2) × (𝑝 + 2) observed
information matrix 𝐽 = 𝐽(𝜃) calculated numerically. Under
conditions that are fulfilled for parameters in the interior of
the parameter space but not on the boundary, √𝑛(𝜃 − 𝜃)

is asymptotically normal 𝑁
𝑝+2

(0, 𝐼(𝜃)
−1

), where 𝐼(𝜃) is the
expected information matrix. We can substitute 𝐼(𝜃) by 𝐽(𝜃),
that is, the observed information matrix evaluated at 𝜃, and
then themultivariate normal𝑁

𝑝+2

(0, 𝐽(𝜃)
−1

) distribution can
be used to construct approximate confidence regions for the
model parameters.

We can compute the maximum values of the unrestricted
and restricted log-likelihoods to construct likelihood ratio
(LR) statistics for testing some special models of the EHL-𝐺
distribution. For example, for comparing, the EHLGHN and
EHLHN distributions are equivalent to test𝐻

0

: 𝑎 = 1 versus
𝐻

1

: 𝑎 ̸= 1 and the LR statistic reduces to

𝑤 = 2 {ℓ (𝛼̂, 𝜆̂, 𝑎, 𝑐) − ℓ (𝛼̃, 𝜆̃, 1, 𝑐)} , (88)

where 𝛼̂, 𝜆̂, 𝑐, and 𝑎 are theMLEs under𝐻 and 𝛼̃, 𝜆̃, and 𝑐 are
the estimates under𝐻

0

.

9. Applications

In this section, the potentiality of the EHL-𝐺 family is
illustrated by means of two applications using well-known
data sets. We demonstrate the flexibility and applicability of
the proposed model. The reason for choosing these data is
that they allowus to showhow in different fields it is necessary
to have positively skewed distributions with nonnegative
support.These data sets present different degrees of skewness
and kurtosis.

9.1. Application 1: Tubercle Data. The first data set corre-
sponds to the survival times of guinea pigs injected with
different doses of tubercle bacilli reported by Bjerkedal [17].
It is well known that guinea pigs have high susceptibility
to human tuberculosis and that is because they were used
in that study. Here, we are primarily concerned with the
animals in the same cage that are under the same regimen;
the data includes 𝑛 = 72 observations. These data were also
analyzed by Kundu et al. [18] using the Birnbaum-Saunders
distribution.

An alternative approach for modeling these data can
be provided by the Weibull and Birnbaum-Saunders (BS)
distribution. There are various extensions of these lifetimes
distributions. For example, Famoye et al. [19] proposed
the beta Weibull (BW) distribution and Cordeiro et al. [1]
study some mathematical properties of the BW distribution,
which is a quite flexible model in analysing positive data.
More recently, Cordeiro and Lemonte [20] proposed the
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Table 2: MLEs of the model parameters for the tubercle data, the corresponding SEs (given in parentheses) and the statistics AIC, CAIC, and
BIC.

Model 𝛼 𝜆 𝑎 𝑏 AIC CAIC BIC

EHLF 3.5736 22.0208 0.2963 1248.81 787.9 788.5 797.0
(2.4999) (3.3821) (0.1909) (847.78)

Fréchet 1.4148 54.1888 795.3 795.5 799.9
(0.1173) (0.7874)

𝛼 𝜆 𝑎 𝑏

EHLLL 0.2879 0.1938 67.7085 8.6238 784.7 785.3 793.8
(0.1173) (0.1085) (7.8493) (3.3236)

LL 75.2758 2.5404 783.9 784.1 788.5
(6.0174) (0.2537)

𝛼 𝜆 𝑎 𝑏

EHLGHN 19.3763 4.3720 0.3165 128.87 788.2 788.8 797.3
(12.7017) (2.0573) (0.0662) (138.49)

GHN 1.0164 129.24 807.5 807.6 812.0
(0.0912) (11.8973)

𝛼 𝛾 𝑎 𝑏

BW 5098.72 0.3662 15.0280 60.7976 790.3 790.9 799.4
(875.79) (0.1882) (5.2590) (8.4854)

𝛼 𝛽 𝑎 𝑏

𝛽-BS 1.1519 316.10 0.6513 4.1942 789.1 789.7 798.2
(0.0743) (101.04) (0.0324) (0.4878)

Table 3: Statistics𝑊∗ and 𝐴∗.

Model 𝑊
∗

𝐴
∗

EHLF 0.126 0.695
Fréchet 0.215 1.283
EHLLL 0.039 0.300
LL 0.116 0.655
EHLGHN 0.145 0.797
GHN 0.579 3.197

𝛽-Birnbaum-Saunders (𝛽-BS) distribution for fatigue life
modeling. They investigated various properties of the 𝛽-BS
model including expansions for the moments, generating
function, mean deviations, density function of the order
statistics, and their moments. The BW and 𝛽-BS distribution
are as follows.

(i) BW Distribution. The BW distribution [19] with four
parameters𝛼 > 0, 𝛾 > 0, 𝑎 > 0, and 𝑏 > 0has density function
given by (for 𝑥 > 0)

𝑓 (𝑥) =
𝛾(1/𝛼)

𝛾

𝐵 (𝑎, 𝑏)
𝑥
𝛾−1 exp {−𝑏(𝑥

𝛼
)

𝛾

}

× [1 − exp {−(𝑥
𝛼
)

𝛾

}]

𝑎−1

,

(89)

where 𝐵(𝑎, 𝑏) = [Γ(𝑎)Γ(𝑏)]/Γ(𝑎 + 𝑏) is the beta function
and Γ(⋅) is the gamma function. Here, 𝑎 and 𝑏 are two
additional shape parameters to the Weibull distribution to
govern skewness and kurtosis. For 𝑎 = 𝑏 = 1, we obtain the
Weibull distribution.

(ii) 𝛽-BS Distribution. The 𝛽-BS density function (with four
parameters 𝛼 > 0, 𝛽 > 0, 𝑎 > 0, and 𝑏 > 0) is

𝑓 (𝑥) =
𝜅 (𝛼, 𝛽)

𝐵 (𝑎, 𝑏)
𝑥
−3/2

(𝑥 + 𝛽)

× exp{
−𝜏 (𝑥/𝛽)

(2𝛼2)
}Φ(V)𝑎−1{1 − Φ (V)}𝑏−1, 𝑥 > 0,

(90)

where 𝑎, 𝑏, and𝛼 > 0 are shape parameters and𝛽 > 0 is a scale
parameter, 𝜅(𝛼, 𝛽) = exp(𝛼−2

)/(2𝛼√2𝜋𝛽), 𝜏(𝑧) = 𝑧 + 𝑧
−1,

V = 𝛼
−1

𝜌(𝑥/𝛽), 𝜌(𝑧) = 𝑧
1/2

− 𝑧
−1/2, and Φ(⋅) is the standard

normal cumulative distribution. For 𝑎 = 𝑏 = 1, we obtain the
BS distribution.

We fit the EHLF, EHLLL, EHLGHN, Fréchet, LL, GHN,
BW, and 𝛽-BS distributions to the current data. In order to
estimate the parameters 𝛼, 𝜆, and 𝜉, we adopt the maximum
likelihood estimation method discussed in Section 8. We use
the MLEs of 𝑎 and 𝑏 applied to the corresponding wider
models for theWeibull, LL, andGHNdistributions as starting
values for the iterative procedure. The computations were
done using the NLMixed procedure in SAS. Table 4 lists the
MLEs (and the corresponding standard errors in parenthe-
ses) of the model parameters and the values of the following
statistics for the fitted models: AIC (Akaike Information
Criterion), BIC (Bayesian Information Criterion), and CAIC
(Consistent Akaike Information Criterion). These results
indicate that the EHLLL and LL models have the lowest AIC,
BIC, and CAIC values, and therefore they could be chosen as
the best models.
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Table 4: MLEs of the model parameters for the carbon monoxide data, the corresponding SEs (given in parentheses) and the AIC, CAIC,
and BIC statistics.

Model 𝛼 𝜆 𝑎 𝑏 AIC CAIC BIC

EHLF 0.7763 32571 0.2372 214859 2053.2 2053.3 2068.6
(0.0231) (39.0598) (0.00083) (258.3702)

Fréchet 0.6922 6.4136 2753.5 2753.6 2761.2
(0.0199) (0.5315)

𝛼 𝜆 𝑎 𝑏

EHLLL 0.3606 1.7327 14.7483 6.4320 1965.6 1965.7 1981.0
(0.0243) (0.2559) (0.5335) (0.1514)

LL 11.0946 3.7223 2111.6 2111.7 2119.2
(0.2693) (0.1724)

𝛼 𝜆 𝑎 𝑏

EHLGHN 0.6920 0.2596 2.2792 8.7710 1931.2 1931.4 1946.6
(0.0856) (0.0307) (0.2490) (0.8810)

GHN 2.4436 13.3254 1957.1 1957.2 1964.8
(0.1117) (0.2214)

𝛼 𝛾 𝑎 𝑏

BW 7.5373 4.5942 0.3081 0.0644 1930.1 1930.2 1945.5
(0.7844) (0.2797) (0.0434) (0.0221)

𝛼 𝛽 𝑎 𝑏

𝛽-BS 160.55 0.0064 319.49 212.23 2020.8 2020.9 2036.1
(63.2068) (0.0050) (0.3590) (0.0256)
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Figure 10: Fitted density functions for the tubercle data. (a) Fitted EHLF versus Fréchet models. (b) Fitted EHLLL versus LL models. (c)
Fitted EHLGHN versus GHNmodels.

Now, we will apply formal goodness-of-fit tests in order
to verify which distribution fits better to the carbon data.
In particular, we consider the Cramér-von Mises (𝑊∗) and
Anderson-Darling (𝐴∗) statistics. The 𝑊∗ and 𝐴

∗ statistics
are described in detail in Chen and Balakrishnan [21]. In
general, the smaller the values of these statistics, the better
the fit to the data. Let 𝐻(𝑥; 𝜃) be the cdf, where the form

of 𝐻 is known but 𝜃 (a 𝑘-dimensional parameter vector) is
unknown. To obtain the statistics𝑊∗ and𝐴∗, we can proceed
as follows: (i) compute V

𝑖

= 𝐻(𝑥
𝑖

; 𝜃), where the 𝑥
𝑖

’s are in
ascending order, and then 𝑦

𝑖

= Φ
−1

(V
𝑖

), where Φ−1

(⋅) is the
inverse of Φ(⋅); (ii) compute 𝑢

𝑖

= Φ{(𝑦
𝑖

− 𝑦)/𝑠
𝑦

}, where
𝑦 = (1/𝑛)∑

𝑛

𝑖=1

𝑦
𝑖

and 𝑠
2

𝑦

= (𝑛 − 1)
−1

∑
𝑛

𝑖=1

(𝑦
𝑖

− 𝑦)
2; (iii)
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Figure 11: Estimated cumulative functions and the empirical cdf for tubercle data. (a) Fitted EHLF versus Fréchet models. (b) Fitted EHLLL
versus LL models. (c) Fitted EHLGHN versus GHNmodels.
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Figure 12: Fitted density functions for the carbonmonoxide data. (a) Fitted EHLF versus Fréchetmodels. (b) Fitted EHLLL versus LLmodels.
(c) Fitted EHLGHN versus GHNmodels.

calculate 𝑊
2

= ∑
𝑛

𝑖=1

{𝑢
𝑖

− (2𝑖 − 1)/(2𝑛)}
2

+ 1/(12𝑛) and
𝐴

2

= −𝑛−(1/𝑛)∑
𝑛

𝑖=1

{(2𝑖−1) ln(𝑢
𝑖

)+(2𝑛+1−2𝑖) ln(1−𝑢
𝑖

)} and
then𝑊∗

= 𝑊
2

(1+0.5/𝑛) and𝐴∗

= 𝐴
2

(1+0.75/𝑛+2.25/𝑛
2

)

(see Table 2).
The 𝑊∗ and 𝐴

∗ statistics for all the models are given in
Table 3. From the figures in this table, the proposed EHLLL
model fits the current data better than the other models.
Therefore, the new family may be an interesting alternative

to the other models available in the literature for modeling
positive real data.

More information is provided by a visual comparison
of the histogram of the data with the fitted EHLF, EHLLL,
EHLGHN, Fréchet, LL, and GHN distributions. The plot of
the fitted EHLLL density is displayed in Figure 10(b) for the
tubercle data. Clearly, the new EHLLL distribution provides
a closer fit to the histogram.
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Figure 13: Estimated cumulative functions and the empirical cdf for carbonmonoxide data. (a) Fitted EHLF versus Fréchet models. (b) Fitted
EHLLL versus LL models. (c) Fitted EHLGHN versus GHWmodels.

Table 5:𝑊∗ and 𝐴∗ statistics.

Model 𝑊
∗

𝐴
∗

EHLF 6.912 37.867
Fréchet 10.222 53.028
EHLL 6.933 39.479
LL 7.357 39.092
EHLGHN 7.152 44.131
GHN 6.958 40.223

Figure 11(a) displays plots of the empirical function and
the estimated cdf ’s of the EHLF, EHLLL, EHLGHN, Fréchet,
LL, and GHN distributions. We note a good fit of the EHLLL
and LL models to these data.

9.2. Carbon Monoxide Data. The first data set consists of
the carbon monoxide (CO) measurements made in several
brands of cigarettes in 1998. The reports show that nicotine
levels, on average, had remained stable since 1980, after falling
in the preceding decade. The report entitled “Tar, nicotine,
and carbonmonoxide of the smoke of 1206 varieties of domestic
cigarettes for the year of 1998” includes the data sets and some
information about the source of the data, smoker’s behavior
and beliefs about nicotine, and tar and carbon monoxide
contents in cigarettes.

The CO data includes 𝑛 = 345 records of measurements
of CO content, in milligrams, in cigarettes of several brands.

We fit the EHLF, EHLLL, EHLGHN, Fréchet, LL, GHN,
BW, and 𝛽-BS distributions to the data. The computations
were done using the NLMixed procedure in SAS. Table 4
lists the MLEs (and the corresponding standard errors in
parentheses) of the model parameters and the values of AIC,

BIC, and CAIC statistics for some models. These results
indicate that the EHLF, EHLGHN, BW, and GHN models
have the lowest AIC, BIC, and CAIC values.

The 𝑊∗ and 𝐴
∗ statistics for all the models are given in

Table 5. From the figures in this table, the proposed EHLF
model fits the current data better than the other models.

In order to assess if the EHL-𝐺 model is really appropri-
ate, the plots of the fitted EHLF, EHLLL, EHLGHN, Fréchet,
LL, and GHN density functions are displayed in Figure 12.
Based on these plots, we conclude that the EHLF distribution
provides the best fit to the carbon monoxide data.

Figure 13(a) displays plots of the empirical function and
the estimated cdf ’s of the EHLF, EHLLL, EHLGHN, Fréchet,
LL, and GHN distributions. We note a good fit of the EHLF
model to these data.

10. Conclusions

We propose a new exponentiated half-logistic (EHL) fam-
ily which represents a competitive alternative for lifetime
data analysis. For any parent continuous distribution 𝐺,
we can define the corresponding EHL-𝐺 distribution with
two positive parameters. So, the new family extends several
common distributions such as Fréchet, normal, log-normal,
Gumbel, and log-logistic distributions. The mathematical
properties of the new family such as ordinary, incomplete and
factorial moments, generating and quantile functions, mean
deviations, Bonferroni and Lorenz curves, Shannon entropy,
Rényi entropy, reliability, and order statistics are obtained for
any EHL-𝐺 distribution.Themodel parameters are estimated
by maximum likelihood. Two examples to real data illustrate
the importance and potentiality of the new family.
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