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Abstract

In this article, we present an extension of the Full Bayesian Significance Test (FBST) for
nonparametric settings, termed NP-FBST, which is constructed using the limit of finite
dimension histograms. The test statistics for NP-FBST are based on a plug-in estimate
of the cross-entropy between the null hypothesis and a histogram. This method shares
similarities with Kullback–Leibler and entropy-based goodness-of-fit tests, but it can be
applied to a broader range of hypotheses and is generally less computationally intensive.
We demonstrate that when the number of histogram bins increases slowly with the sample
size, the NP-FBST is consistent for Lipschitz continuous data-generating densities. Ad-
ditionally, we propose an algorithm to optimize the NP-FBST. Through simulations, we
compare the performance of the NP-FBST to traditional methods for testing uniformity.
Our results indicate that the NP-FBST is competitive in terms of power, even surpassing
the most powerful likelihood-ratio-based procedures for very small sample sizes.

Keywords: nonparametrics; bayesian nonparametrics; significance testing

1. Introduction and General Setting
Full Bayesian Significance Testing (FBST) [1] is a Bayesian method for testing if a

parameter θ belongs to some set Θ0. In traditional statistical setting, researchers analyze a
collection of n observations Xn = (X1, . . . , Xn) that are presumed to conform to a specified
distribution fθ characterized by an unobserved parameter θ. A Bayesian statistician makes
inferences about θ by updating a prior density π(θ), supported by the set of all possibilities
Θ. After observing Xn, one obtains a posterior density fθ|Xn . Often, one needs to determine
whether fθ|Xn supports a scientific hypothesis framed with respect to θ belonging to some
subset Θ0 ⊂ Θ, written H0 : θ ∈ Θ0. FBST tests H0 by comparing the posterior density
fθ|Xn of points inside and outside Θ0. This comparison is represented by the posterior
probability of the tangential set:

T(Θ0) = {θ : fθ|X(θ) ≤ sup
t∈Θ0

fθ|X(t)}. (1)

T(Θ0) encompasses all points in the parameter space that exhibit lower posterior
density compared to those in Θ0. The FBST methodology posits that if the posterior
probability of T(Θ0) is low, the hypothesis H0 should be rejected, as it is located in a region
characterized by low posterior density.
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Definition 1. In a standard Bayesian statistical model, let Θ be a finite dimensional parametric
space, Xn an observed sample, L the likelihood function, π be the prior distribution, and fθ|Xn the
posterior density proportional to π(θ)L(θ). Also, let Πθ|Xn be the measure on Θ induced by fθ|Xn .
The Full Bayesian Significance Test (FBST) for testing H0 : θ ∈ Θ0 consists on rejecting the null
hypothesis based on the e-value statistic

ev(Θ0; Xn) = Πθ|Xn(T(Θ0)) (2)

where the tangential set T(Θ0) is given by Equation (1). H0 is rejected if ev(Θ0; Xn) < α for some
fixed significance level α ∈ [0, 1].

In other words, the e-value quantifies the credibility of a hypothesis H0 using the
maximum probability argument, whereby a system is optimally represented by its most
probable realization. This probability is defined as the posterior density fθ|Xn , which
quantifies the continuous probability associated with a specific point θ ∈ Θ0. The e-
value directly addresses the question “What is the posterior probability of observing a θ

with a posterior density exceeding that of any point in Θ0?”. A higher e-value signifies
that H0 : θ ∈ Θ0 is deemed more credible, whereas a lower e-value suggests that H0 is
considered less credible.

In this paper, we extend this concept to a nonparametric framework for density
estimation using histograms. Bayesian nonparametric approaches for density estima-
tion can be divided into two main categories. The first type focuses on defining priors
Π0 in the infinite-dimensional space of probability densities. Upon observing the data
Xn, these priors are updated into infinite-dimensional posteriors, facilitating an adapted
approach to Bayesian inference. Well-established examples of such priors include the
Dirichlet Process Mixtures (DPM) and its extensions [2]. In contrast, the second type of
Bayesian nonparametric approach employs regular finite-dimensional Bayesian modeling
in parameter spaces Θk(n) that maintain a fixed dimension k(n), while allowing k(n) for
gradual expansion as the sample sizes increase. This includes truncated versions of infinite-
dimensional priors and histograms with a fixed number of bins that increases with the
sample size. This paper specifically examines a variant of the FBST applied in the context
of increasing dimensionality.

In this paper, we propose an FBST for the problem of Bayesian density estimation
using Dirichlet-Multinomial models, interpreted as histograms where the number of bins
increases with the sample size. This methodology is in alignment with the Bayesian
frameworks outlined by [3–5]. Therefore, we will use consistent notation to leverage
results from the existing literature. The primary advantages of leveraging the Dirichlet-
Multinomial model include (1) the feasibility of deriving an explicit formula for the FBST
test statistic in a nonparametric context, (2) the implicit relation between the formula for
the FBST test statistic and the differential entropy estimation, and (3) the potential to
extend frequentist consistency results from the literature to this method. These attributes
collectively establish a robust framework for nonparametric hypothesis testing that is
mathematically rigorous, interpretable through the lens of information geometry, and
consistent from a frequentist standpoint.

This paper is structured as follows. Section 2 outlines the essential definitions and
properties of our proposed methodology. Section 3 provides simulations demonstrating
the statistical power of our test. Finally, Section 4 offers a discussion of our findings and
potential avenues for future research. The proof of our results are presented in Appendix A.
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2. FBST for Random Histograms
We start with a formal definition of our model. To maintain clarity, we will restrict our

analysis to densities on [0, 1].

Definition 2. For k ∈ N, consider the set of densities with support on [0, 1], defined as

Hk =

{
f ∈ L1([0, 1]) : f (t) = k

k

∑
i=1

1Ii (t)wi and
k

∑
i=1

wi = 1, wi ≥ 0

}

where Ij = [(j − 1)/k, j/k) for j = 1, 2, . . . , k. A random histogram θ is a random variable that
selects a random element of Hk(n).

The distribution of θ is fully characterized by the distribution of the vector of random
weights W = (W1, . . . , Wk). Bayesian posterior inference on θ may also be conducted with
respect to W if the likelihood is given by

L(θ) =
n

∏
i=1

θ(Xi) ∝ w
∑n

i=1 1I1 (Xi)

1 . . . w
∑n

i=1 1Ik
(Xi)

k

which corresponds to the assumption that the sample values X1, . . . , Xn|θ are conditionally
independent and share an identical density θ. In this paper, we shall consider random
histograms sampled implicitly by Dirichlet priors of the weights W. This approach guar-
antees that the posterior inference on θ is conjugate and computationally tractable, as it is
equivalent to inference on a Dirichlet-Multinomial Bayesian model.

Proposition 1. Consider θ a random histogram with weights W ∼ Dirichlet(α1, . . . , αk). If
Xi ⊥ Xj|θ, i ̸= j and Xi|θ ∼ θ, then the posterior θ|Xn remains a random histogram with weights

W|Xn ∼ Dirichlet(α1 + N1, . . . , αk + Nk) (3)

where Nj = ∑n
i=1 1Ij(Xi), 1 ≤ j ≤ k.

A usual approach for Bayesian nonparametric inference on a histogram is letting k(n)
grow slowly with the sample size n. This may be interpreted as a data-dependent prior;
the full parameter space being considered is the set of all densities and, contingent on n,
random histograms puts mass only on specific subsets of this set. One could define priors
that do not depend on n, but this would come at a heavy computational cost. Moreover,
meaningful and computationally sound inference might be conducted both in frequentist
and Bayesian perspective if we also require the priors of w to depend on n [2,4].

Fixing n and k(n), the original definition of ev(Θ0; Xn) may be adapted to conduct
tests regarding θ|Xn. Given that there exists a bijection between an element of Hk(n) and its
corresponding weights (W1, . . . , Wk(n)), the FBST test statistic may be defined in terms of
the Dirichlet distribution defined in Equation (3). However, this approach comes at the price
of being able to only test hypothesis of the form Θ0 ⊂ Hk(n). Therefore, if a researcher is
interested in testing a hypothesis framed in terms of a general Θ0, our proposed procedure
specifies a test statistic based on its finite-dimensional counterpart. As k(n) is permitted to
increase with the sample size, this translation process becomes increasingly negligible.

Definition 3 (FBST for random histograms). Let θ be a random histogram defined by Dirichlet
weights, and Xn|θ represent an i.i.d. sample drawn from θ. The FBST test statistic for testing a
hypothesis H0 : θ ∈ Θ0, where Θ0 is an arbitrary set of densities on [0, 1], is given by
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ev(Θ0; Xn) = Πθ|Xn

(
k(n)

∑
j=1

(Nj + αj) log
(
Wj
)
≤ sup

w∈S(Θ0)

k(n)

∑
i=1

(Nj + αj) log wj

)
(4)

where S(Θ0) denotes probabilities attributed to the sets I1, . . . , Ik(n) by each element of Θ0:

S(Θ0) =

{(∫
I1

f (t)dt,
∫

I2

f (t)dt, . . . ,
∫

Ik(n)

f (t)dt

)
: f ∈ Θ0

}

The FBST for random histograms may be interpreted in the context of information
theory. Let p and q be two m dimensional probability vectors. We recall that the cross-
entropy divergence H(p, q) between those vectors is given by −∑m

j=1 pi log qi and the

Kullback–Leibler divergence DKL(p||q) is given by ∑ pi log
(

pi
qi

)
. By introducing ŵn =(

N1+αj

n+∑
k(n)
j=1 αj

, . . . ,
Nk(n)+αj

n+∑
k(n)
j=1 αj

)
, Equation (3) can be articulated as

ev(Θ0; Xn) = Πθ|Xn

(
−H(ŵn, W) ≤ sup

w∈S(Θ0)

−H(ŵn, w)

)
, (5)

ev(Θ0; Xn) = Πθ|Xn

(
DKL(ŵn||W) ≥ inf

w∈S(Θ0)
DKL(ŵn||w)

)
. (6)

These equations demonstrate that the application of the FBST definition leads to
statistical tests grounded in an information-theoretic measure of divergence between a dis-
tribution of the sample into k(n) bins and the expected value of counts on those same bins
under the assumption that θ is some hypothesized density f . Indeed, in the context of this
particular test, a related concept has emerged in the literature on goodness-of-fit testing, no-
tably in G-tests [6] and other methodologies rooted in frequentist nonparametric estimates
of the continuous variant of the Kullback–Leibler divergence for probability densities [7].
Both tests utilize a χ2 asymptotic distribution under the null hypothesis. For the FBST,
there are specific rates of increase of k(n) that ensure the presence of analogous results.

Theorem 1. If (1) Xn is an independent and identically distributed sample of X1 with density f ∗

Lipchitz continuous on [0, 1]; (2) θ is a random histogram satisfying M > αi > m for all i and fixed
quantities m, M and (3) k(n) = n1/6

(log n)1/6+ϵ , for any ϵ > 0, then the FBST for random histograms
with H0 : θ = f0 satisfies

1. ev(Θ0; Xn) →L Unif(0, 1) if f0 = f ∗ and
2. ev(Θ0; Xn) →P 0 if f0 ̸= f ∗, where →P denotes convergence in probability with respect

to Xn.

One particular virtue of Equation (4) is the simplicity of the optimization step in the
FBST. This fact is due the convexity of the cross-entropy functional. Also, this optimization
will be able to reject false null hypotheses as the sample size grows larger, as we exemplify
for the case of fixed parametric families.

Theorem 2. Let Pα be a parametric family of differentiable distribution functions fα, such that
min || fα − f ∗||22 = ϵ > 0 and Θk

0 = {(Fα(I1), ..., Fα(Ik(n))) : Fα ∈ Pα} is the corresponding
subset of the k(n) dimensional simplex. Then, the FBST on histograms for goodness-of-fit of this
parametric family satisfies ev(Θk

0) → 0 in f ∗ probability.
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This procedure is similar to other nonparametric methods that do not rely on maximum
likelihood estimates for testing, but instead optimize specific statistics. This idea dates
back to Berkson’s suggestion to minimize chi-squared rather than maximize likelihood [8],
although there have been few attempts to directly optimize test statistics, such as the
Kolmogorov–Smirnov statistic [9]. This may be because optimizing usual test statistics
for goodness-of-fit, such as Kolmogorov–Smirnov, Anderson–Darling, and Cramer–von
Mises [10], requires specialized optimization procedures, like the one developed in [9].

Alternatively, the most common approach for testing adherence to a parametric family
of distributions involves estimating parameters by maximum likelihood and then deriving
the null distribution of an existing test through resampling [11]. Our new test, as we will
demonstrate in simulations, could also require corrections when the optimization suggested
by Theorem 2 is used.

3. Simulations
In this section, we will compare the statistical power of our test with that of other

available techniques through simulations. Both simple and composite null hypotheses will
be considered. Simulations will be conducted using the R programming language [12] and
its public repository of packages. For simple hypotheses, the following tests are compared:

1. The e-value for histograms, as defined in Definition 3, adopting with αi,j = 1, with the
number of bins defined as the hypothesis of Theorem 1;

2. Classic Kolmogorov–Smirnov (KS) test, as described in [6];
3. Alternative versions of KS, AD, and CV, constructed by [10], implemented by the R

Package [13].

Following [10], we shall compare the NP-FBST of Definition 3 with

k(n) = max{2, n1/6 log(n)−1/6−1}

using sample sizes n = 10, 20, 30, 50, 70, 100, 150, 200, 300. The null hypothesis tested
shall be H0 : f ∗ = Uni f (0, 1) and H1 will be simulated in 4 scenarios: Beta(1.6, 1.6),
Beta(1.3, 1.3), Beta(0.8, 0.8), and Beta(0.6, 0.6). We calculate the statistical power as the %
of correct rejection of H0, with rejection at the 5% level, on 500 Monte Carlo sample. The
results are summarized in Figure 1.

Analyzing Figure 1, we observe the following:

• For α > 1 and β > 1, the NP-FBST power may be much more powerful for small
sample sizes, but it is still competitive for large sample sizes.

• For α < 1 and β < 1, which are non-Lipchitz alternative hypotheses, the test performs
worse than Zhang’s alternatives [10]. However, it still shows comparable or superior
power compared to the usual Kolmogorov–Smirnov statistic.

• For sample sizes below 1000, k(n) will usually be very small, such as 2 or 3, so the test
is just a regular multinomial test.

To showcase the approximation properties of the NP-FBST based on Lemma A1, we
shall simulate one last example, but this time we will adopt k(n) = log2(n), usually referred
as Sturge’s Law, for histogram binning [14]. This is, of course, appropriate asymptotically,
as log2(n) ∈ o(n1/6/ log(n)−1/6−ϵ) for all ϵ > 0. However, this produces very competitive
statistical power for testing if a Beta(2, 2) is a Irwin-Hall(2), as highlighted in Figure 2.
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Figure 1. Simulated power for uniformity tests of several test statistics under specific simulated H1.
All power percentages were calculated considering 500 Monte Carlo samples. (a) H1 : Beta(1.6, 1.6),
(b) H1 : Beta(1.3, 1.3), (c) H1 : Beta(0.8, 0.8), (d) H1 : Beta(0.6, 0.6).

Figure 2. Simulated power for several tests with H0 : f ∗ = Beta(2, 2) under H1 : f ∗ = Irwin-Hall(2).
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4. Conclusions
In this paper, we presented a new nonparametric Bayesian procedure extending the

usual FBST for Bayesian histograms. We summarize our results as practical and theoretical.
On the practical and applied front, we draw the following conclusions:

• For small sample sizes, our method is competitive in terms of statistical power, even
compared to sophisticated alternatives such as Zhang’s tests [10].

• For larger sample sizes, the very slow sample size growth required by Theorem 1
harms the statistical power. Therefore, other binning rules could be considered.
Further research shall look for an adaptable number of bins. Desirable binning rules
should be larger than n1/6 log(n)1/6+ϵ for small sample sizes, but smaller for large
sample sizes. Our simulations suggest that the usual k(n) = O(log2(n)), known as
Sturge’s Law, is a competitive alternative for moderate sample sizes lower than 1000.

• Unlike previous attempts, our method is computationally inexpensive with competi-
tive statistical power.

From a theoretical perspective, we derive the following conclusions:

• The natural Dirichlet-Multinomial formulation of Bayesian histograms induces sta-
tistical tests based on estimates of Kullback–Leibler divergences. This formulation
logically follows from the definition of the FBST, and the same logic could be applied
to other Bayesian density estimation methods. The frequentist properties of other ver-
sions of this NP-FBST remain to be studied in future works, but our results highlight
the Kullback–Leibler divergence as a possible “canonical” statistic for nonparametric
versions of the FBST for density estimation.

• Our results show that taking the limit of a slowly increasing finite-dimensional pa-
rameter space is a viable strategy for building nonparametric versions of the FBST.
The frequentist properties of the FBST are intimately related to the Bernstein–von
Mises theorem. Therefore, if these types of Gaussian approximations are available,
our arguments should also hold. In fact, all the main references of this paper build
specific growth rates of the dimension of the parameter space and could be used to
find other versions of nonparametric FBSTs [3–5].

• For composite hypotheses, our method can be used both for testing based on the
maximum likelihood estimate of nuisance parameters and for directly optimizing
the test statistics, which may be interpreted as a weighted likelihood function. Usual
numerical methods for optimizing the likelihood will work for our test statistic, which
is not the case for other usual statistics such as Anderson–Darling, Cramer–von Mises,
or Kolmogorov–Smirnov.

For future research, we highlight that adaptively choosing the number of bins k(n)
is crucial, as the statistical power is heavily influenced by this quantity. Additionally,
Theorem 1 requires a Lipschitz continuous data-generating density, a usual assumption
for histograms, but excludes unbounded densities, which are important from a practical
and theoretical point of view. Extending our results to Hölder continuous densities is
particularly important but requires the derivation of other versions of Bernstein–von
Mises theorems.
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Appendix A. Proofs
The following lemma is the main ingredient of the proof. As k(n) grows slowly, we

are able to employ a normal approximation to
√

nĴ(θ − ĥ), where J is the square root of the
Fisher information matrix, evaluated at ĥ.

Lemma A1 (Adapted from Theorem 2.4 and the discussion of Section 3 of [3]). Consider

• f ∗ a Lipchitz p.d.f. on [0, 1];
• f ∗ the posterior obtained using the model defined in Definition 2, with k(n) = n1/6 log(n)−1/6−ϵ

with a fixed ϵ > 0;
• J(θ) as the square root of the multinomial Fisher information matrix evaluated at θ ∈ Sk(n),

and Ĵ = J(ĥ) the sample estimate of J(θ);
• D̂ as the diagonal matrix with ĥ in its entries.

Then:

1. fθ|Xn({θ : ||θ − θ0|| ≥ ϵ}) → 0 in f ∗ probability;
2.

√
nĴ(ĥ − θ0) → N(0, 1) in distribution;

3. the largest eigenvalue of Ĵ2 is O(k(n)2);
4. ∫ ∣∣∣ fθ|Xn(θ)− Φ(v; ĥ, Ĵ2/n)

∣∣∣dθ → 0 in f ∗ probability (A1)

Proof of Theorem 1. Let Nn and Φn be the measure and density induced by the Gaussian
approximation of Equation (A1). It follows from Equation (A1) that |Πn(A)− Nn(A)| → 0
in probability for all measurable A. Equation (A1) also implies that the following expecta-
tion vanishes in probability:∫

fθ|Xn(θ)

∣∣∣ fθ|Xn(θ)− Φn(θ)
∣∣∣

fθ|Xn(θ)
dθ = Eθ|Xn


∣∣∣ fθ|Xn(θ)− Φn(θ)

∣∣∣
fθ|Xn(θ)

→ 0.

Now let Bϵ = {θ : | Φn(θ)
fθ|Xn (θ)

− 1| ≤ ϵ}. By Markov’s inequality it follows that

Πθ|Xn(Bc
ϵ) ≤

Eθ|Xn

[
| fθ|Xn (θ)−Φn(θ)|

fθ|Xn (θ)

]
δ

→ 0

in f ∗ probability for all ϵ.
Now, consider

T′(θ0) = {θ : Φn(θ) ≤ Φn(θ0)}

and for a fixed γ > 0

https://github.com/azeloc/histograms.maxent
https://github.com/azeloc/histograms.maxent


Phys. Sci. Forum 2025, 12, 11 9 of 10

Cγ = {||θ − θ0|| < γ}.

One may verify that (T′(θ0) ∩ Bϵ1 ∩ Cδ) ⊂ T(θ0) and (T(θ0) ∩ Bϵ2 ∩ Cδ) ⊂ T′(θ0) for
any choice of ϵ1, ϵ2 and δ. It follows that

Πθ|Xn(T
′(θ0)) = Πθ|Xn(T

′(θ0) ∩ (Bϵ ∩ Cδ)) + Πθ|Xn(T
′(θ0) ∩ (Bϵ ∩ Cδ)

c) ≤

Πθ|Xn(T(θ0)) + Πθ|Xn(Bc
ϵ ∪ Cc

δ)

and analogously

Πθ|Xn(T(θ0)) ≤ Πθ|Xn(T
′(θ0)) + Πθ|Xn(Bc

ϵ ∪ Cc
δ).

Therefore

|Πθ|Xn(T(θ0))− Πθ|Xn(T
′(θ0))| ≤ Πθ|Xn(Bc

ϵ) + Πθ|Xn(C
c
δ) → 0

in probability. Finally we conclude that the last convergence implies that

|Πθ|Xn(T(θ0))− Nn(T′(θ0))| ≤

|Πθ|Xn(T(θ0))− Πθ|Xn(T
′(θ0))|+ |Πθ|Xn(T

′(θ0))− Nn(T′(θ0))| → 0

in probability. This conclusion ensures that the e-value statistic may be approximated by
Nn(T′(θ0)). Now, note that as Nn(T′(θ0)) is based on a quadratic form, this probability
shall might expressed in terms of the χ2 distribution:

Nn(T′(θ0)) =

Nn

(
n(θ − ĥ)T Ĵ−2(θ − ĥ) ≥ (θ0 − ĥ)T Ĵ−2(θ0 − ĥ)

)
=

1 − χ2
k(n)

(
(θ0 − ĥ)T Ĵ−2(θ0 − ĥ)

)
.

(A2)

Also, note that χ2 may be approximated in distribution by a Gaussian with same mean
and variance. Therefore we may rewrite

Nn(T′(θ0)) ≈ 1 − Φ

(
(θ0 − ĥ)T Ĵ−2(θ0 − ĥ)− k(n)√

2k(n)

)
(A3)

and also, as ĥ is approximate Gaussian, (θ0 − ĥ)T Ĵ−2(θ0 − ĥ) is approximate χ2
k(n) and

therefore, (θ0−ĥ)T Ĵ−2(θ0−ĥ)−k(n)√
2k(n)

→D N(0, 1). Therefore, by the continuous mapping theorem

1 − Φ
(

(θ0−ĥ)T Ĵ−2(θ0−ĥ)−k(n)√
2k(n)

)
converges to a uniform distribution.

For part 2, note that under H1 (θ0 − ĥ)T Ĵ−2(θ0 − ĥ) might be approximated by a
non-central chi-square with mean k(n) + ∑(θ∗i − θi

0)
2 ≈ k(n) + n

∫
( f0(t)− f ∗(t))dt, which

is asymptotically larger than
√

k(n). Hence,

(θ0 − ĥ)T Ĵ−2(θ0 − ĥ)− k(n)√
2k(n)

→ ∞,

and then Nn(T′(θ0)) must converge to 0.

Proof of Theorem 2. By Lemma A1 we have that the largest eigenvalue of J−2 is of order
k(n)2, and therefore the normal approximation obtained at Equation (A3) becomes
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ev(Θk
0) ≈ 1 − Φ

(
(θα∗ − ĥ)T Ĵ−2(θα∗ − ĥ)− k(n)√

2k(n)

)

Now we note that the condition of the theorem implies that (θα∗−ĥ)T Ĵ−2(θα∗−ĥ)−k(n)√
2k(n)

is asymptotically larger than
√

k(n). Then it follows that the RHS of the above quantity
converges to 0 in f ∗ probability.
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