
‘‘observed pairs’’ of the input CT images and their observed (actual)

survival-time images of the patients. The training of vox2surv

involves the optimization of G and D through a modified min–max

objective function so that G can learn to generate a survival time that

is close to the observed survival time. The predicted survival time of a

patient is calculated as the median of the predicted survival times of

the patient’s CT images.

We used the concordance index (C-index) as the metric to evaluate

the performance of the prognostic prediction. A bootstrap method

with 50 replications was used to estimate the C-index. The prognostic

prediction performance of pix2surv was compared with those of the

GAP index and the CPI using a two-sided unpaired t-test. We also

compared the equivalence of Kaplan–Meier (KM) survival curves

generated by pix2surv, GAP, and CPI to the actual survival curve of

the patient cohort by using a non-parametric equivalence test.

Results

Table 1 shows the median C-index values calculated from the boot-

strap evaluation, which shows that the performance of the mortality

prediction by the pix2surv model (C-index: 82.6% [95% CI: 80.8,

83.8]) was statistically significantly higher (bootstrap t-test,

p\ 0.0001) than those of the CPI (63.0% [61.7, 64.3]) and the GAP

index (65.9% [64.7, 67.1]).

Figure 2 shows the KM survival curves predicted by the CPI, GAP

index, and pix2surv for the mortality of the IPF patients in magenta,

red, and green colors, respectively, where, in comparison, the actual

survival curve of the patient cohort is shown in blue. Non-parametric

equivalence test showed that the survival curves predicted by pix2-

surv were statistically equivalent to the actual survival curves over the

period of 0 to 5000 days, whereas those predicted by the CPI and

GAP were not. Also, visual assessment indicates that pix2surv

approximates the actual survival curve substantially better than do

CPI and GAP.

Conclusion

We evaluated the performance of our image-based weakly supervised

survival prediction model, pix2surv, which can directly predict the

survival of patients from their chest CT images, on the survival

prediction of patients with PF-ILD. We showed that pix2surv out-

performs the current standards of GAP and CPI in predicting the

survival of patients with PF-ILD, indicating that pix2surv can be an

effective prognostic biomarker for PF-ILD.
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Fig. 1 The schematic architecture of our weakly unsupervised

cGAN-based survival prediction model, pix2surv

Table 1 The C-index values estimated by the bootstrap evaluation of

the CPI, GAP, and vox2pred. 95% CI = 95% bootstrap confidence

interval. *Two-tailed t-test

Fig. 2 Predicted KM survival curves by the CPI, GAP index, and

pix2surv in comparison with the actual survival curves for the patient

cohort
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Purpose

Tuberculosis is the disease responsible for most deaths provoked by

an infectious agent, and it caused around 2.5% of deaths worldwide in

2004 [1]. Tuberculosis can also increase the risk of lung malignancy,

chronic pulmonary aspergillosis, and septic shock, even in patients

that survived the primary infection caused by the ‘‘Mycobacterium

tuberculosis,’’ responsible for this illness [1]. The treatment is suc-

cessful at about 85%, and the mortality rate is about 15% [1].

In diagnosing pulmonary diseases, including tuberculosis, the

initially requested imaging exam is the chest X-ray. Although it is

considered a simple exam, its evaluation can sometimes be complex.

To support radiologists’’ decision-making, computer-aided diagnosis

(CAD) systems have been developed to act as a second opinion

through a computer-supplied suggestion.

The use of artificial intelligence (AI) to support diagnostic deci-

sion-making in radiology has grown exponentially in recent years.

Machine learning (ML) has been the basis for CAD systems. ML is a

way of ‘‘training’’ an algorithm so that it can learn. ‘‘Training’’

involves providing large amounts of data to the algorithm, allowing it

to adjust and improve its performance. ML algorithms look for pat-

terns within a dataset.

From 2010 to 2012, an approach called Deep Learning (DL) was

increasingly adopted for solving ML problems. One approach based

on DL is the Convolutional Neural Network (CNN), focusing on

classifying images. Modeling the best CNN architecture for any sit-

uation by hand can be exhausting, time-consuming, and expensive.

Another difficulty is getting a database with a large number of ima-

ges. However, an alternative option is the Transfer Learning

technique, which uses a network pre-trained on a large dataset, for

example, the ImageNet [2].

This work aimed to develop a CNN model using transfer learning

to support the diagnosis of tuberculosis in chest radiographic images

in frontal projection.

Methods

Our institutional review board approved this retrospective study with

a waiver of the patient’s informed consent (CAAE:

25,762,319.7.0000.5440). For the application of CNN models, a

database of chest X-ray images was used with a total of 547 images,

with 382 images presenting normal cases and 165 images from

patients diagnosed with tuberculosis at the Ribeirao Preto Clinics

Hospital. The database was structured with radiographic exams saved

in.png format and with three channels (RGB).

The processing environment consists of a server that was accessed

remotely; this server has an NVIDIA� TeslaTM T4 16 GB GPU and

operates with the Linux 18.04 LTS system. For the execution of the

codes, the Jupyter Notebook software was used, which is an interface

to browse the server files and execute the codes in the Python lan-

guage (version 3.9) using the TensorFlow framework (version 2.8).

Five types of transfer models based on CNN were tested. The

selected architectures were: VGG19, InceptionV3, DesNet201,

ResNet125v2, and XceptionV3. For the use of the models, a global

average pooling layer was added to the output of the last layer in each

architecture. The original fully connected layers were removed and

replaced by only one fully connected layer with two output neurons

using the activation function Softmax. All the weights of the models

were retrained. These architectures were trained individually, and a

standard preprocessing approach with the function ‘‘preprocess_in-

put’’ was performed on the original images to evaluate each model.

The number of epochs used was 100. The callback function Redu-

ceLROnPlateau was applied to find the best learning rate value on the

validation dataset during the training with values of 0.5, 5, ’max,’ and

0.00001 for factor, patience, mode, and min_lr, respectively. The

batch size used was 30, and the optimizer function used was Adam to

minimize the categorical cross-entropy.

To evaluate the models’ performance, the samples were shuffled.

The Holdout method was applied to train the networks and classify

the images, where 481 images were used for training, 10 percent were

separated for validation, and 66 were used for testing the architec-

tures. The models’ performance was evaluated based on specificity,

sensitivity, and accuracy.

Results

At the end of each architecture’s training and testing, results pre-

sented in Table 1 were generated. During the training and testing

phases, the VGG19 model gave the best and most stable results, with

specificity, sensitivity, and accuracy of 90%.

Figure 1 presents the accuracy values during the training and

testing phases of the VGG19 model.

Conclusion

Based on the results obtained, it can be stated that the networks

performed very well when classifying positive images for tubercu-

losis. It can be seen that the Resnet125v2 and Xception networks had

an excellent performance when evaluating the normal cases; however,

when considering the images with a positive result for tuberculosis,

the VGG19, InceptionV3, and Desnet201 networks presented better

results.

In general, the networks presented a satisfactory performance for

classifying tasks, and other tests will be carried out using public

databases to simulate situations of exams from different sources to

verify their generalization power.
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Table 1 Results obtained for each tested model

Model Specificity (%) Sensitivity (%) Accuracy (%)

VGG19 90 90 90

Inception V3 100 81 90

Desnet201 96 81 89

Xception 57 96 77

Resnetl25v2 33 96 65

Fig. 1 Accuracy values obtained during the training and testing

phases of the VGG19 architecture
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Purpose

Distal radius fractures (DRFs) are one of the most common fractures

treated surgically. To examine the injured wrists, standard radio-

graphs, including posteroanterior (PA) and lateral views, are often

taken in the emergency department. DRFs can be classified into intra-

and extra-articular fractures. In extra-articular fractures, the fracture

line does not extend to the joint, while the intra-articular fractures

involve the articular surface, which may require further evaluation

and more complex treatments. Identifying DRFs as intra- or extra-

articular can be useful for guiding further treatment. However,

radiographic classification of DRFs is challenging due to the extreme

variability of fracture patterns, complex anatomy of the wrist and

variability in imaging quality of radiography. The aim of this study is

to propose a deep learning (DL) framework incorporating both PA

and lateral view X-rays for automatic DRF classification and evaluate

the framework on clinically acquired wrist X-ray dataset.

Methods

The proposed framework consists of a distal radius region of interest

(ROI) detection stage and a DRF classification stage as shown in

Fig. 1. The distal radius ROI detection stage used an ensemble model

of 10 YOLOv5 [1] base networks which is a recent release of the

YOLO object detection network. This step allows the framework to

zoom in on the relevant regions on PA and lateral view X-rays for

fracture pattern analysis. Following the ROI extraction, an ensemble

model of 10 dual-branch EfficientNet (DB-EffiNet) was applied to

classify the DRFs into intra- or extra-articular fracture. The DB-

EffiNet is a novel adaptation of the EfficientNet [2] constructed in this

study, which consists of two EfficientNet-b0 branches taking PA and

lateral view X-rays as input respectively. The two branches were

fused at the last linear layer via summation, followed by an additional

linear layer to generate the final classification output.

The dataset used for evaluating the DL framework contains 302

cases of clinically retrieved wrist X-rays. The dataset was randomly

split into a training set of 251 cases with 257 fractures and a testing

set of 51 cases with 52 fractures. There are 193 and 38 intra-articular

DRFs in training and testing set respectively. The training set was

randomly partitioned into 10 folds for cross-validation.

For distal radius ROI detection, the YOLOv5s variant was trained

on the PA and lateral view X-rays separately for 100 epochs within

tenfold cross-validation, generating 10 YOLO base models for each

view. The batch size was set as 8 and image size as 1280 9 1280,

with stochastic gradient descent (SGD) used as the optimizer.

Translation, scaling, horizontal flip and mosaic augmentations were

adopted during training. For DRF classification, the DB-EffiNet was

trained on the PA-lateral ROI pairs for 50 epochs within tenfold

cross-validation. Each EfficientNet-b0 branch was pre-loaded with

ImageNet pretrained weights. The ROI images were resized to

256 9 256 and normalized to the mean and standard deviation of

ImageNet. The Adam optimizer was used with a learning rate of

0.0001 and the batch size was set as 16. Horizontal flip, rotation and

brightness adjustment based on Power–Law transformations were

used for augmentation during training. The model with the best area

under the receiver operating characteristic curve (AUROC) on the

validation set was saved as the base model in each cross-validation

iteration.

Given an unseen testing instance, the distal radius ROI was

detected on each view through merging the 10 YOLO base models by

enabling the model ensemble feature of YOLOv5. The ROIs on the

PA and lateral views were then passed into the 10 DB-EffiNet base

models. The ensemble probability was computed by averaging the

probabilities across all base models.

Results

When evaluated on the testing data, the YOLO ensemble model

successfully detected all distal radius ROIs on PA and lateral view

X-rays with no false positives. As for differentiating intra- from extra-

articular DRFs, the DB-EffiNet ensemble model achieved an AUROC

of 0.90, an accuracy of 0.87, a sensitivity of 0.87 and a specificity of

0.86.

Fig. 1 Diagram of the DL-based DRF classification framework using

both PA and lateral view X-rays. DB-EffiNet stands for dual-branch

EfficientNet
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