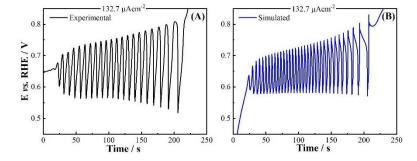


20 a 23 de outubro de 2025

Majestic Hotel - Águas de Lindóia - SP - Brasil

Electrooxidation of Ethanol: From Electrochemical Oscillations to Molecular Mechanisms


Leandro Hostert^{1*}, Enrique A. Paredes-Salazar¹, Alfredo Calderón-Cárdenas², Hamilton Varela¹

¹ São Carlos Institute of Chemistry, University of São Paulo, ² GIFBA, Universidad de Nariño.

*e-mail: <u>l.hostert@usp.br</u>

This study presents an innovative microkinetic model that elucidates both the complex electrochemical oscillations during galvanostatic ethanol electrooxidation reaction (EEOR) and the long-standing mechanistic uncertainties. [1-2] By integrating experimental data with theoretical simulations, our model deconstructs the EEOR mechanism into 16 elementary steps. The model accurately reproduces experimental oscillations at 132.7 μ Acm⁻² (Figure 1 A-B), revealing the competitive dynamics between OH_{ad} and CO_{ad} intermediates. Surface analysis shows CH_x accumulation reaching 60% coverage, driving progressive potential increase during oscillations. Partial oxidation products dominate through pathways avoiding C-C bond cleavage, with CO_{ad} oxidation (k = 1.31 × 10⁻⁶ s⁻¹) identified as the rate-determining step. These mechanistic insights provide crucial guidance for rational catalyst design, representing a significant advancement toward more efficient ethanol fuel cell technology.

Figure 1: (A) Experimental and (B) simulated potential profiles at j_{app} = 132.7 μ A cm⁻². Electrolyte: aqueous solution containing 0.5 mol L⁻¹ H₂SO₄ + 0.05 mol L⁻¹ CH₃CH₂OH.

References:

- [1] Rizo, R.; Ferre-Vilaplana, A., Herrero, E.; Feliu, J. M. Acs Sustain Chem Eng, 11, 4960–4968, (2023).
- [2] Calderón-Cárdenas, A.; Paredes-Salazar, E. A.; Varela, H. New J. Chem., 46, 6837-6846, (2022).