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Chapter 3 
 

Mixed models and statistical analysis of twin data 

 
Vinicius Frayze David 

 

Although I am a psychologist, I have been working with statistics 

for a number of years now. Usually, psychologists do not receive good 

statistics training in their undergraduate course, and I can say that, in 

the beginning, it is difficult to understand even the basics, but it is 

definitely worth the effort. Knowing statistics helps us better 

understand our data and other researcher`s studies, and think about 

new approaches to our research questions. My aim here is to address 

the overall aspects of using linear mixed models in twin designs. I will 

use almost no mathematics, because the aim is to show what these 

models can do more than how they work, and I will also show an 

example of how they can be applied using Stata software. More 

information on the mathematics involved can be found elsewhere 

(Wang et al, 2011). I hope that this chapter serves as an introduction 

for researchers who are not well versed in the issues surrounding twin 

data mixed models. 

When I talk about statistics with other researchers, most of them 

view it according to its purpose: to teach people how to use a limited 

sample and make intelligent and accurate conclusions about a large 

population (Lammers & Badia, 2004). In this sense, statistics is 

interpreted as a tool and a means to an end. However, it is also a 

constantly changing field of knowledge, and we have to keep track of 

new developments that can help us in our studies. We should always 

be careful about statistics in any field of Experimental Psychology, but 

when we work with twin designs, even data from the most 

straightforward experimental design can be challenging to deal with. 

What are the issues involving twin designs? One of the most 

uncomplicated designs is comparing the distribution of two groups 

with a particular observable trait. In this case, we have a “control 

group” and an “experimental group” with its participants and their 

measured trait (Figure 3.1a). This design is simple and allows us to 

compare different characteristics of intergroup trait distribution using 

means, standard deviations, medians, and frequencies, among others. 
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FIGURE 3.1. DATA STRUCTURE IN (A) TYPICAL DESIGNS, AND (B) TWIN DESIGNS  

When we use the same design with twins, at first glance, it does not 

seem very different. We still have two groups of participants and their 

measured trait. Here, I am separating monozygotic (MZ) and dizygotic 

(DZ) participants because this is usually what we want to compare 

(Figure 3.1b). The problem is that these are not independent 

participants, as in the first case. In a twin design, we have pairs of 

participants:  11mz and 12mz, 21mz and 22mz, and so on. Since they 

are pairs, we expect some covariance between them in the measured 

trait and are interested in the value of this covariance. After all, if we 

find that MZ twins have a greater covariance than DZ twins, we can 

surmise that this observed trait involves some genetic influence. 

     For example, if we measure MZ and DZ pairs data, we may find 

that MZ pairs are much more similar than DZ, so there is probably a 

genetic influence on this trait (Figure 3.2).  
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FIGURE 3.2.  RELATIONSHIP BETWEEN HYPOTHETICAL DATA OF MZ AND DZ PAIRS 

 

What do I mean when I say that there is a genetic influence? We 

know that heritability is defined as the portion of phenotype variability 

attributed to genetic variation. One of the most common approaches 

to calculate heritability is to use the ADCE model. 

The ADCE model assumes that the variation of any individual trait 

is influenced by genetic and environmental variability, which can be 

divided into five different effects. The genetic effect is composed of 

the (1) Additive effect, (2) Dominance effect, and (3) Epistasis effect, 

while the environmental effect consists of the (4) Common 

environmental effect, and (5) Unique environmental effect.  

Briefly, additive genetic effects (A) are those involving direct action 

of each allele of homologous chromosomes, so that each adds a direct 

value to the phenotype; dominant genetic effects (D) result from the 

joint action of homologous chromosomes; epistasis (I) is an effect 

resulting from the joint action of alleles on different loci. The common 

environment effect (C) is the result of the twins’ common experiences, 

usually the family environment, parents, home, and others; and the 

individual environment effect (E) is the sum of the different 

experiences of each individual, along with errors of measurement, 

which are also individual. 

Given that heritability is a relationship between the genetic and 

phenotypic variances, we can formulate heritability according to the 

ADCE model as: 
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𝐻2 =
𝑉𝑎𝑟𝐺

𝑉𝑎𝑟𝐹
 =  

𝑉𝑎𝑟𝐴 + 𝑉𝑎𝑟𝐷 + 𝑉𝑎𝑟𝐼

𝑉𝑎𝑟𝐴 + 𝑉𝑎𝑟𝐷 + 𝑉𝑎𝑟𝐼 + 𝑉𝑎𝑟𝐶 + 𝑉𝑎𝑟𝐸
 

 

We can use variations of the ADCE model if we exclude some of 

the factors. One of the most common is the ACE model (Maes, 2005), 

in which we consider all genetic variation to be an additive effect. 

Mathematically, it is an easier model to work with because it assumes 

that the increase in observed trait differences is directly related to a 

difference in the genotype. In this case, we assume that the similarity 

in an observable trait due to genetic variation in MZ should be twice 

as large as in DZ. 

We are interested in variances and covariances, so how can we 

calculate them? Two of the most widely used techniques are the 

intraclass correlation coefficient (ICC), and structural equation 

modeling (SEM) (Franic et al, 2012). The ICC quantifies the degree to 

which individuals with a fixed degree of relatedness resemble each 

other. It can be interpreted in the same way as a Pearson correlation, 

which varies from -1.0 to +1.0, where the closer to 1.0, the greater the 

similarity between the siblings (negative values are not typically 

expected). The most significant difference from a regular Pearson 

correlation is that the ICC uses the pooled mean of all the data and its 

standard deviation, whereas in the Pearson correlation, each variable is 

centered and scaled by its own mean and standard deviation. ICC is 

more accurate for twin designs because, when using it, the order of the 

pair is not important and there is usually no good reason to select a 

twin as number one or number two (which would be the variables in a 

Pearson correlation). There are different ICC models, but I will not 

discuss them here, and more information can be found in Koo and Li 

(2016). 

Structural equation modeling (SEM) has been widely used in twin 

studies. It is a highly complex and versatile model, containing a set of 

methods that check hypotheses about the structure of the relationships 

between observed and non-observed (latent) variables (Kaplan, 2008), 

as defined by the researcher. It is typically represented as a path 

diagram, in which the paths constitute the set of model parameters. 

Covariances can be established or calculated for all paths as well as the 

variances, making it a very interesting model for twin designs. For 

example, the covariances of additive effects can be set at 1 for MZ, and 

0.5 for DZ, and/or dominance effects at 1 for MZ, and 0.25 for DZ, 

and then calculate the other parameters. Several parameters can be 

obtained from the models, which also allows researchers to determine 

model goodness-of-fit and compare different models. 
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Although ICC and SEM are interesting approaches for studies, 

they have some limitations. The most notable limitation of ICC is that 

it compares only two sets of data, such as MZ or DZ siblings. If we 

are interested in studying other variables such as sex or age, several 

analyses must be conducted. For sex, we will have to calculate one 

coefficient for male MZ, another for female MZ, and then for male 

DZ and female DZ. This increases the likelihood of type I error and 

creates a need for larger sample sizes.  

With respect to SEM, we know that most of the procedures that 

have been suggested involve non-standard and complex model 

specifications that are challenging for the average user and therefore 

susceptible to error, especially because some of the most promising 

models are not easily available in conventional SEM software 

(Tomarken & Waller, 2005). Moreover, convergence problems have 

been observed with some procedures, which may not work properly. 

Finally, it requires large sample sizes - some rules of thumb suggest at 

least 25 observations per parameter. 

As such, we have mixed models as an alternative. The main 

difference between a linear mixed model (LMM) and a general linear 

model such as analysis of variance (ANOVA) is that an LMM includes 

both fixed and random effects (Baltagi, 2008). Random effects assume 

that the data come from a hierarchy of different populations and that 

the differences are related to this hierarchy. In other words, there is an 

assumption that individual traits are not related only to the 

independent (fixed) variables because non-random errors are present. 

Mixed models are widely used in educational and health studies. 

One example is the comparison between the performance of male and 

female children on a test when we have data from more than one 

school in each group. The children’s sex is our fixed factor, but we 

have to consider the school in our model because we expect to have 

some covariance in our data due to the school. Some schools may have 

better facilities and more qualified teachers than others, among several 

other differences. If we assume that test results can be influenced by 

the school, although not to the same extent as sex, we can include it in 

our model as a random factor. The idea of including schools as a 

random factor can serve both to control for this possible effect and 

calculate how large this effect can be. Mixed models can be used at 

several hierarchy levels, such as classrooms, schools and type of school 

(public or private), and can also include different effects for each level. 

However, for the purposes of this chapter, we will only discuss the 

inclusion of covariances between siblings in twin designs.  

The logic of having a random effect has been adapted to twin 

designs. We are usually interested in some fixed factors and covariates 
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such as sex or age, but we also expect the errors of our participants’ 

individual trait measures to be related to the error of their siblings. 

Thus, in twin designs, we use the pair of twins as our random factor, 

making it possible to calculate the covariance between them. Since we 

know that the total variance of any mixed model is the sum of the 

variance of the random factors and the residual variance, in our case 

the total variance will be the variance of the pairs plus the residual 

variance.   

When dealing with twin data, we also have a second problem. The 

first problem I discussed was how to consider and calculate sibling 

covariances, and this is similar to many other studies, and not much 

different from the school example I used before. But when we use the 

school as a random factor, we can assume some form of regular 

distribution among schools, and use the school as a unique random 

factor. With twins, we want to calculate at least two different and very 

specific covariances to investigate the extent to which our trait can be 

considered heritable. So, what must we do? We need to separate DZ 

from MZ covariance in our model. This can be done using mixed 

models. Here, I used an adaptation of what can be found in Twins 

Research Australia (https://www.twins.org.au/). Covariance, which is 

a function of the twins, whether they are MZ or DZ, can be separated 

from the “extra” covariance because they are an MZ pair. In other 

words, we can examine the difference between the covariance of MZ 

and DZ pairs. Thus, our total variance will now be the sum of the 

variance of the pair, the extra variance of MZ pairs and the residual 

variance. 

How can this be achieved? I will show you an example using Stata 

software. This analysis can also be carried out in R, SAS, or SPSS using 

the appropriate commands. 

First, we need to organize our data set (Figure 3.3). Each 

participant must be in a different row and we need a variable to identify 

each pair. You can use any number, as long as it is the same for each 

pair and different pairs have different numbers. Then, the next 

columns can contain your variables of interest, such as zygosity, sex, 

or any other – the same as in any other analysis. The “trick” is to create 

three additional variables responsible for separating MZ covariation 

from DZ covariation. First, you have to identify your pair of 

participants as MZ or DZ twins, and the easiest way to do that is to 

create a column in which you assign 0s to DZ and 1s to MZ twins. 

Remember that you have to assign these values to each participant, 

even knowing that the sibling will have the same number. Next, you 

create two new variables that I call dz1 and dz2 in this example. You 

will have to assign each of the DZ twins from each pair to one of these 

https://www.twins.org.au/
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new columns, using 0s and 1s again. The first twin will be 1 and 0, and 

the second 0 and 1. It does not matter which one is which, as long as 

they are assigned differently. MZ will only have 0s here since they were 

already defined in the previous column. 

 

 
FIGURE 3.3. ORGANIZATION OF THE DATASET FOR MIXED MODEL ANALYSES 

Then we have our commands. Below are two examples that can be 

modified to fit different designs. First you declare that you are using a 

mixed model, then you have your observed trait; subsequently the fixed 

factors you are interested in – in the first command, I used only “male”, 

the sex variable, and in the second, I declared a more complete model. 

The most important part is what comes next, when you need to declare 

your two random effects. The first is the pair random effect, 

irrespective of whether it is MZ or DZ, and it will calculate the 

covariance of the pair that is common to MZ and DZ twins. The other 

effect is only valid for MZ, and it will calculate the difference of 

covariance between MZ and DZ pairs. Then you can specify the 

structure for the covariance matrices of the twins. You can usually 

consider it to be identity. 

The main difference between these two commands is that the first 

uses maximum likelihood estimation with a chi-square distribution, 

and the second a restrictive maximum likelihood estimation (reml) with 

a t distribution. As a rule of thumb, if you do not have reliable 

information to choose between them, and your sample is small, you 

should use the reml, and if it is large, you can use maximum likelihood, 

a more powerful model (less chance of type II error). 

 

Commands: 

• mixed Closeness male, || pairid: || pairid: mz dz1 dz2, 

covariance (identity) nocons 
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• mixed Closeness mz##male age || pairid: || pairid: mz dz1 

dz2, reml cov(id) nocons dfmethod(residual) 

 

Now we can look at our outputs. This first one is like any other 

general linear analysis: there are estimates, errors, statistical values, and 

p-values for each of the fixed factors and covariates. There was a 

significant effect of zygosity and age, but not sex (Figure 3.4a). It is 

important to underscore that these effects take into account the 

covariation between pairs. 

 

 

FIGURE 3.4. OUTPUTS OF MIXED MODEL ANALYSIS 

The exciting part is in the other table, which contains the values of 

our variances (Figure 3.4b). The first, var(_cons), is the portion of the 

variance due to pair covariances, which shows how the pairs of siblings 

are related to each other, regardless of their zygosity. The second, 
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var(mz, dz1, dz2), is the increase of variance explained by the 

covariance being MZ and is only valid for MZ twins, and the third is 

residual variance, the portion not explained by the fact that they are 

siblings. Remembering the previous formula, total variance is the sum 

of pair variance, the extra variance of MZ and residual variance. Now 

we have the following: 

 

What is the common variance of the pair, our first component? If 

we are using an ACE model, what is common for every pair? We have 

at least half of the genetic similarity (1/2A) and the common 

environment (C). The extra MZ variance is half of the genetic 

covariance that was missing (1/2 A), since MZ twins are expected to 

double their genetic similarity compared to DZ twins. Residual 

variance is what is explained by neither the additive effect, nor the 

common environment. In an ACE model, we can assume it is the 

portion of variance due to the unique environment effect (E). The sum 

of these three variances is the total variance in our sample. Putting this 

in numbers, we can conclude that, in this example, 15.6% of the trait 

variation is due to common environmental variations, 60.7% to 

additive effects, and the unique environmental variation is responsible 

for the remaining 23.6%. 

It is important to consider that mixed models also have limitations. 

First, I showed you how to perform the analysis with an ACE model, 

and we know that this model can overestimate the genetic effects, so 

we need to keep this in mind. It is possible to include Dominance and 

Epistasis effects in the analysis, but it becomes much more 

complicated, resulting in the loss of the advantage of a simple model. 

More details can be found in Maes (2014).  

Here, I only analyzed one independent variable at a time, but 

several independent variables could have been considered 

simultaneously. This is not difficult to do, since we just need to include 

another random factor: the participant. I also used a linear model, but 

could have used generalized mixed models, which consider different 

distributions, such as binary, ordinal, gamma, Poisson, and others. 

Finally, as far as I know, if you have both observed and latent 

independent variables, there is as yet no solution for mixed models 
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