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Chapter 3

Mixed models and statistical analysis of twin data

Vinicius Frayze David

Although I am a psychologist, I have been working with statistics
for a number of years now. Usually, psychologists do not receive good
statistics training in their undergraduate course, and I can say that, in
the beginning, it is difficult to understand even the basics, but it is
definitely worth the effort. Knowing statistics helps us better
understand our data and other researcher’s studies, and think about
new approaches to our research questions. My aim here is to address
the overall aspects of using linear mixed models in twin designs. I will
use almost no mathematics, because the aim is to show what these
models can do more than how they work, and I will also show an
example of how they can be applied using Stata software. More
information on the mathematics involved can be found elsewhete
(Wang et al, 2011). I hope that this chapter serves as an introduction
for researchers who are not well versed in the issues surrounding twin
data mixed models.

When I talk about statistics with other researchers, most of them
view it according to its purpose: to teach people how to use a limited
sample and make intelligent and accurate conclusions about a large
population (Lammers & Badia, 2004). In this sense, statistics is
interpreted as a tool and a means to an end. However, it is also a
constantly changing field of knowledge, and we have to keep track of
new developments that can help us in our studies. We should always
be careful about statistics in any field of Experimental Psychology, but
when we work with twin designs, even data from the most
straightforward experimental design can be challenging to deal with.

What are the issues involving twin designs? One of the most
uncomplicated designs is comparing the distribution of two groups
with a particular observable trait. In this case, we have a “control
group” and an “experimental group” with its participants and their
measured trait (Figure 3.1a). This design is simple and allows us to
compare different characteristics of intergroup trait distribution using
means, standard deviations, medians, and frequencies, among others.
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FIGURE 3.1. DATA STRUCTURE IN (A) TYPICAL DESIGNS, AND (B) TWIN DESIGNS

When we use the same design with twins, at first glance, it does not
seem very different. We still have two groups of participants and their
measured trait. Here, I am separating monozygotic (MZ) and dizygotic
(DZ) participants because this is usually what we want to compare
(Figure 3.1b). The problem is that these are not independent
participants, as in the first case. In a twin design, we have pairs of
participants: 11mz and 12mz, 21mz and 22mz, and so on. Since they
are pairs, we expect some covariance between them in the measured
trait and are interested in the value of this covariance. After all, if we
find that MZ twins have a greater covariance than DZ twins, we can
surmise that this observed trait involves some genetic influence.

For example, if we measure MZ and DZ pairs data, we may find
that MZ pairs are much more similar than DZ, so there is probably a
genetic influence on this trait (Figure 3.2).

31



Mz Dz ruz = 0.64

ro; =0.34
15.0 ® i .
” N L
10,0/ . ; P
@ ° o oo °
5 s 0
k| o . s
- o e 8 N
f = o p 8 oo, o
g 50/ ‘
.
0.0
5.0 0.0 50 .50 0.0 5.0

Twin 2 data

FIGURE 3.2. RELATIONSHIP BETWEEN HYPOTHETICAL DATA OF MIZ AND DZ PAIRS

What do I mean when I say that there is a genetic influence? We
know that heritability is defined as the portion of phenotype variability
attributed to genetic variation. One of the most common approaches
to calculate heritability is to use the ADCE model.

The ADCE model assumes that the variation of any individual trait
is influenced by genetic and environmental variability, which can be
divided into five different effects. The genetic effect is composed of
the (1) Additive effect, (2) Dominance effect, and (3) Epistasis effect,
while the environmental effect consists of the (4) Common
environmental effect, and (5) Unique environmental effect.

Briefly, additive genetic effects (A) are those involving direct action
of each allele of homologous chromosomes, so that each adds a direct
value to the phenotype; dominant genetic effects (D) result from the
joint action of homologous chromosomes; epistasis (I) is an effect
resulting from the joint action of alleles on different loci. The common
environment effect (C) is the result of the twins’ common experiences,
usually the family environment, parents, home, and others; and the
individual environment effect (E) is the sum of the different
experiences of each individual, along with errors of measurement,
which are also individual.

Given that heritability is a relationship between the genetic and
phenotypic variances, we can formulate heritability according to the
ADCE model as:
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_ VarG VarA + VarD + Varl
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We can use variations of the ADCE model if we exclude some of
the factors. One of the most common is the ACE model (Maes, 2005),
in which we consider all genetic variation to be an additive effect.
Mathematically, it is an easier model to work with because it assumes
that the increase in observed trait differences is directly related to a
difference in the genotype. In this case, we assume that the similarity
in an observable trait due to genetic variation in MZ should be twice
as large as in DZ.

We are interested in variances and covariances, so how can we
calculate them? Two of the most widely used techniques are the
intraclass correlation coefficient (ICC), and structural equation
modeling (SEM) (Franic et al, 2012). The ICC quantifies the degree to
which individuals with a fixed degree of relatedness resemble each
other. It can be interpreted in the same way as a Pearson correlation,
which varies from -1.0 to +1.0, where the closer to 1.0, the greater the
similarity between the siblings (negative values are not typically
expected). The most significant difference from a regular Pearson
correlation is that the ICC uses the pooled mean of all the data and its
standard deviation, whereas in the Pearson correlation, each variable is
centered and scaled by its own mean and standard deviation. ICC is
more accurate for twin designs because, when using it, the order of the
pair is not important and there is usually no good reason to select a
twin as number one or number two (which would be the variables in a
Pearson correlation). There are different ICC models, but I will not
discuss them here, and more information can be found in Koo and Li
(2010).

Structural equation modeling (SEM) has been widely used in twin
studies. It is a highly complex and versatile model, containing a set of
methods that check hypotheses about the structure of the relationships
between observed and non-observed (latent) variables (Kaplan, 2008),
as defined by the researcher. It is typically represented as a path
diagram, in which the paths constitute the set of model parameters.
Covariances can be established or calculated for all paths as well as the
variances, making it a very interesting model for twin designs. For
example, the covariances of additive effects can be set at 1 for MZ, and
0.5 for DZ, and/or dominance effects at 1 for MZ, and 0.25 for DZ,
and then calculate the other parameters. Several parameters can be
obtained from the models, which also allows researchers to determine
model goodness-of-fit and compare different models.
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Although ICC and SEM are interesting approaches for studies,
they have some limitations. The most notable limitation of ICC is that
it compares only two sets of data, such as MZ or DZ siblings. If we
are interested in studying other variables such as sex or age, several
analyses must be conducted. For sex, we will have to calculate one
coefficient for male MZ, another for female MZ, and then for male
DZ and female DZ. This increases the likelihood of type I error and
creates a need for larger sample sizes.

With respect to SEM, we know that most of the procedures that
have been suggested involve non-standard and complex model
specifications that are challenging for the average user and therefore
susceptible to error, especially because some of the most promising
models are not easily available in conventional SEM software
(Tomarken & Waller, 2005). Moreover, convergence problems have
been observed with some procedures, which may not work propetly.
Finally, it requires large sample sizes - some rules of thumb suggest at
least 25 observations per parameter.

As such, we have mixed models as an alternative. The main
difference between a linear mixed model (LMM) and a general linear
model such as analysis of variance (ANOVA) is that an LMM includes
both fixed and random effects (Baltagi, 2008). Random effects assume
that the data come from a hierarchy of different populations and that
the differences are related to this hierarchy. In other words, there is an
assumption that individual traits are not related only to the
independent (fixed) variables because non-random errors are present.

Mixed models are widely used in educational and health studies.
One example is the compatison between the performance of male and
female children on a test when we have data from more than one
school in each group. The children’s sex is our fixed factor, but we
have to consider the school in our model because we expect to have
some covariance in our data due to the school. Some schools may have
better facilities and more qualified teachers than others, among several
other differences. If we assume that test results can be influenced by
the school, although not to the same extent as sex, we can include it in
our model as a random factor. The idea of including schools as a
random factor can serve both to control for this possible effect and
calculate how large this effect can be. Mixed models can be used at
several hierarchy levels, such as classrooms, schools and type of school
(public or private), and can also include different effects for each level.
However, for the purposes of this chapter, we will only discuss the
inclusion of covariances between siblings in twin designs.

The logic of having a random effect has been adapted to twin
designs. We are usually interested in some fixed factors and covariates
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such as sex or age, but we also expect the errors of our participants’
individual trait measures to be related to the error of their siblings.
Thus, in twin designs, we use the pair of twins as our random factor,
making it possible to calculate the covariance between them. Since we
know that the total variance of any mixed model is the sum of the
variance of the random factors and the residual variance, in our case
the total variance will be the variance of the pairs plus the residual
variance.

When dealing with twin data, we also have a second problem. The
first problem I discussed was how to consider and calculate sibling
covariances, and this is similar to many other studies, and not much
different from the school example I used before. But when we use the
school as a random factor, we can assume some form of regular
distribution among schools, and use the school as a unique random
factor. With twins, we want to calculate at least two different and very
specific covariances to investigate the extent to which our trait can be
considered heritable. So, what must we do? We need to separate DZ
from MZ covariance in our model. This can be done using mixed
models. Here, I used an adaptation of what can be found in Twins
Research Australia (https://www.twins.org.au/). Covariance, which is
a function of the twins, whether they are MZ or DZ, can be separated
from the “extra” covariance because they are an MZ pair. In other
words, we can examine the difference between the covatiance of MZ,
and DZ pairs. Thus, our total variance will now be the sum of the
variance of the pair, the extra variance of MZ pairs and the residual
variance.

How can this be achieved? I will show you an example using Stata
software. This analysis can also be carried out in R, SAS, or SPSS using
the appropriate commands.

First, we need to organize our data set (Figure 3.3). Each
participant must be in a different row and we need a variable to identify
each pair. You can use any number, as long as it is the same for each
pair and different pairs have different numbers. Then, the next
columns can contain your variables of interest, such as zygosity, sex,
or any other — the same as in any other analysis. The “trick” is to create
three additional variables responsible for separating MZ covariation
from DZ covariation. First, you have to identify your pair of
participants as MZ or DZ twins, and the easiest way to do that is to
create a column in which you assign Os to DZ and 1s to MZ twins.
Remember that you have to assign these values to each participant,
even knowing that the sibling will have the same number. Next, you
create two new variables that I call dz1 and dz2 in this example. You
will have to assign each of the DZ twins from each pair to one of these
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new columns, using Os and 1s again. The first twin will be 1 and 0, and
the second 0 and 1. It does not matter which one is which, as long as
they are assigned differently. MZ will only have Os here since they were
already defined in the previous column.

A B C D E F G H
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FIGURE 3.3. ORGANIZATION OF THE DATASET FOR MIXED MODEL ANALYSES

Then we have our commands. Below are two examples that can be
modified to fit different designs. First you declare that you are using a
mixed model, then you have your observed trait; subsequently the fixed
factors you are interested in — in the first command, I used only “male”,
the sex variable, and in the second, I declared a more complete model.
The most important part is what comes next, when you need to declare
your two random effects. The first is the pair random effect,
irrespective of whether it is MZ or DZ, and it will calculate the
covariance of the pair that is common to MZ and DZ twins. The other
effect is only valid for MZ, and it will calculate the difference of
covariance between MZ and DZ pairs. Then you can specify the
structure for the covariance matrices of the twins. You can usually
consider it to be identity.

The main difference between these two commands is that the first
uses maximum likelihood estimation with a chi-square distribution,
and the second a restrictive maximum likelihood estimation (reml) with
a t distribution. As a rule of thumb, if you do not have reliable
information to choose between them, and your sample is small, you
should use the reml, and if it is large, you can use maximum likelihood,
a more powerful model (less chance of type II error).

Commands:

* mixed Closeness male, || pairid: || pairid: mz dz1 dz2,
covariance (identity) nocons
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*  mixed Closeness mz##male age | | pairid: | | pairid: mz dz1
dz2, reml cov(id) nocons dfmethod(residual)

Now we can look at our outputs. This first one is like any other
general linear analysis: there are estimates, errors, statistical values, and
p-values for each of the fixed factors and covariates. There was a
significant effect of zygosity and age, but not sex (Figure 3.4a). It is
important to underscore that these effects take into account the
covariation between pairs.

a.
Mixed-effects REML regression Number of obs = 1,300
Group variable: pairid Number of groups = 650
Obs per group:

min = 2
avg = 2.0
max = 2
DF method: Residual DF: min = 1,295.00
avg = 1,295.00
max = 1,295.00
F(4, 1295.00) = 8.80
Log restricted-likelihood = -2668.199 Prob > F = 0.0000
Closeness Coef. std. Err. t P>t [95% Conf. Interval]

mz
MZ 5619628 «1813237 3.10 0.002 2062424 9176831

male
Masculino -.2294931 «1631751 -1.41 0.160 -.5496096 .0906235

mz#male
MZ#Masculino -2772218 .19641 1.41 0.158 -.1080949 .6625385
age - 096499 -0281407 3.43 0.001 . 0412927 1517054
cons -.6525122 186734 =3.49 0.000 =1.018847 -.2861779

b.
Random-ef fects Parameters Estimate Std. Err. [95% Conf. Interval]
pairid: Identity
var(_cons) 2.187427 .2297072 1.78052 2.687326
pairid: Identity

var(mz dzl dz2) 1.444014 . 2060063 1.091785 1.909878
var(Residual) 1.12134 . 0873257 .9626069 1.306248

LR test vs. linear model: chi2(2) = 327.14

Prob > chi? = 0.0000

FIGURE 3.4. OUTPUTS OF MIXED MODEL ANALYSIS

The exciting part is in the other table, which contains the values of
our variances (Figure 3.4b). The first, var(_cons), is the portion of the
variance due to pair covariances, which shows how the pairs of siblings
are related to each other, regardless of their zygosity. The second,
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var(mz, dz1, dz2), is the increase of variance explained by the
covariance being MZ and is only valid for MZ twins, and the third is
residual variance, the portion not explained by the fact that they are
siblings. Remembering the previous formula, total variance is the sum
of pair variance, the extra variance of MZ and residual variance. Now
we have the following:

VarTOTAL = VarPAIR + VarMZ + VarRESIDUAL = 2.19 + 1.44 + 1.12 = 4.75

What is the common variance of the pair, our first component? If
we are using an ACE model, what is common for every pair? We have
at least half of the genetic similarity (1/2A) and the common
environment (C). The extra MZ variance is half of the genetic
covatiance that was missing (1/2 A), since MZ twins are expected to
double their genetic similarity compared to DZ twins. Residual
variance is what is explained by neither the additive effect, nor the
common environment. In an ACE model, we can assume it is the
portion of variance due to the unique environment effect (E). The sum
of these three variances is the total variance in our sample. Putting this
in numbers, we can conclude that, in this example, 15.6% of the trait
variation is due to common environmental variations, 60.7% to
additive effects, and the unique environmental variation is responsible
for the remaining 23.6%.

It is important to consider that mixed models also have limitations.
First, I showed you how to perform the analysis with an ACE model,
and we know that this model can overestimate the genetic effects, so
we need to keep this in mind. It is possible to include Dominance and
Epistasis effects in the analysis, but it becomes much more
complicated, resulting in the loss of the advantage of a simple model.
More details can be found in Maes (2014).

Here, I only analyzed one independent variable at a time, but
several independent wvariables could have been considered
simultaneously. This is not difficult to do, since we just need to include
another random factor: the participant. I also used a linear model, but
could have used generalized mixed models, which consider different
distributions, such as binaty, ordinal, gamma, Poisson, and others.
Finally, as far as I know, if you have both observed and latent
independent variables, there is as yet no solution for mixed models
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