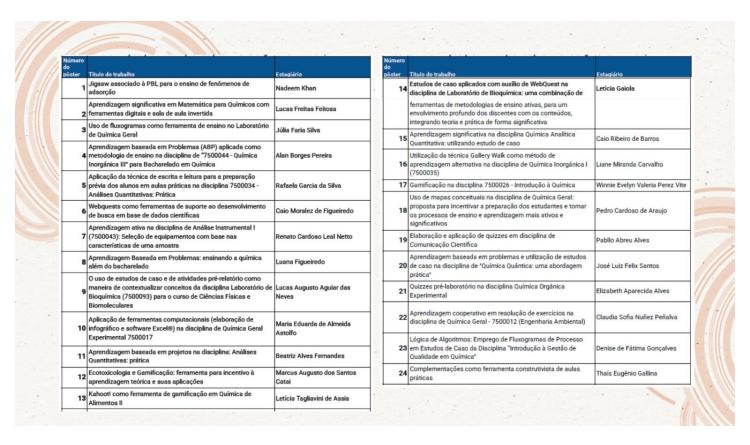
Formação para a docência: alunos de pósgraduação compartilham experiências didáticas no Workshop PAE

O Instituto de Química de São Carlos (IQSC-USP) promove, no dia 22 de agosto de 2025, a 24ª edição do Workshop PAE – Programa de Aperfeiçoamento de Ensino, aberto a toda a comunidade acadêmica e ao público interessado.

O Programa PAE tem como objetivo preparar pós-graduandos para a docência no ensino superior. Após um semestre de formação pedagógica, os participantes vivenciam a prática didática em disciplinas de graduação, sob supervisão docente.


No workshop, os pós-graduandos apresentarão pôsteres com suas experiências práticas, vividas no primeiro semestre de 2025, discutindo os resultados com os avaliadores e o público interessado, trocando experiências que enriquecem o aprendizado e estimulam o debate sobre o ensino de graduação. Após o evento, os pôsteres permanecerão em exposição até o dia 29 de agosto.

A programação inclui a presença da professora Dra. <u>Tathiane Milaré</u> (UFSCar – Araras), que abordará o tema "A problematização de conteúdos virais da internet: possibilidades para o ensino de ciências". A pesquisadora tem experiência na área de Ensino, com ênfase em ensino de Química, atuando principalmente em temas relativos à alfabetização científica e tecnológica e o uso de ilhas interdisciplinares de racionalidade como metodologia de ensino.

Pôsteres

1 of 2 20/08/2025, 12:33

Para acessar o conteúdo dos pôsters: clique aqui.

Inscrições para a palestra: no site do IQSC. Será emitido certificado aos participantes.

Esta atividade relaciona-se com os Objetivos do Desenvolvimento Sustentável (ODS): 4 – Educação de qualidade.

Por Sandra Zambon/Comunicação IQSC

2 of 2 20/08/2025, 12:33

INSTITUTO DE QUÍMICA DE SÃO CARLOS

COMPLEMENTAÇÕES COMO FERRAMENTA CONSTRUTIVISTA DE AULAS PRÁTICAS

Thaís Eugênio Gallina, Igor Renato Bertoni Olivares Química Geral Experimental Aprendizagem experiencial, materiais complementares, fluxograma

Resumo

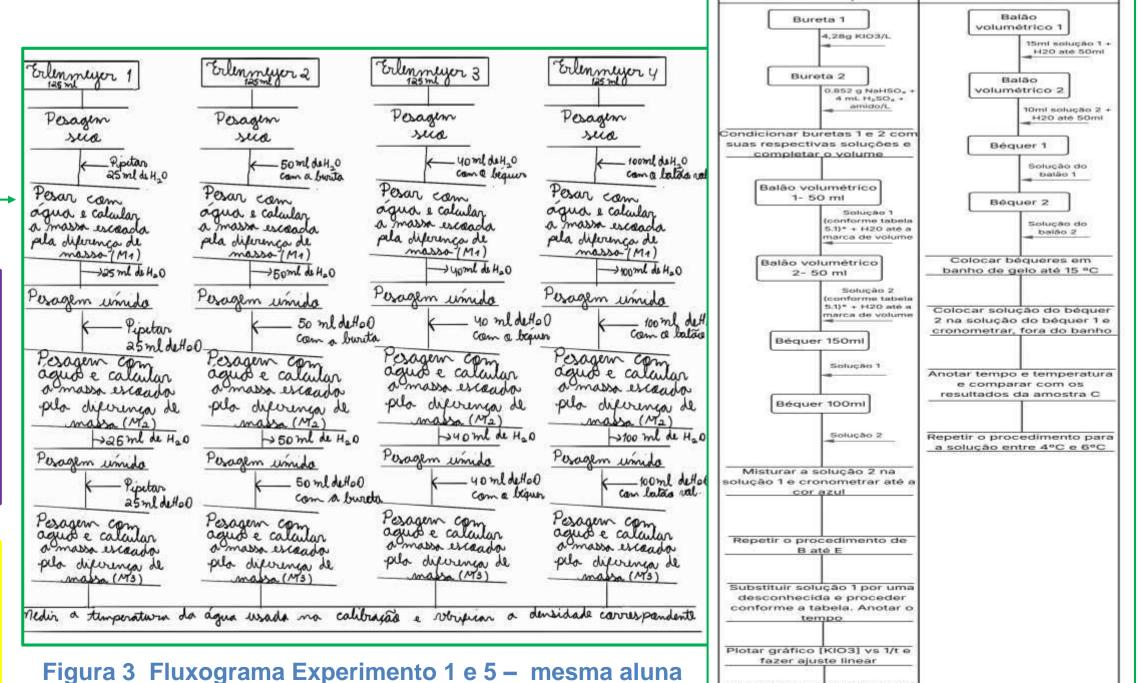
Do ensino específico de disciplinas experimentais os desafios para aproximar o ensino teórico e o profissional em formação apresenta diversas nuances. Neste contexto, o presente trabalho objetivou implementar o uso de materiais complementares como resoluções ambientais, vídeos e artigos de técnicas analíticas correlacionadas com os tópicos de cada aula experimental de química e com aplicação direta na área ambiental contemplando os interesses dos alunos, como ferramenta construtivista no ensino prático, possibilitando um aprendizado significativo, experiencial e investigativo. Posteriormente, através de questionários junto ao material complementar e diálogos na aula, objetivouse investigar como o conteúdo assimilado em aula contribui para resolução de problemas reais na Engenharia Ambiental. Concomitantemente, o uso de fluxogramas foi inserido, objetivando ser uma ferramenta auxiliar na visualização sistêmica da aula com antecedência pelo aluno, maximizando suas potencialidades de aprendizado e desenvolvimento prático da aula.

Introdução

Considerando trabalhos sobre metodologias e impactos do ensino de disciplinas de química e nas aplicações na área ambiental (RODRÍGUEZ-RODRÍGUEZ et al., 2020), destacase as metodologias baseadas na teoria do construtivismo; favorecendo o aprendizado e o desenvolvimento do raciocínio (GARCÍA; PORLÁN, 2000) sendo essa a base pedagógica do presente trabalho de estágio. A Teoria da Aprendizagem Experiencial (ELT) que se correlaciona aos trabalhos construtivistas, descreve um modelo sistêmico do processo de aprendizagem experiencial, destacando como os indivíduos aprendem com a experiência (KOLB; KOLB, 2005). Este processo, é retratado como um ciclo de aprendizagem demonstrado através da **Figura 1**:



Figura 1 Ciclo de Aprendizagem Experiencial de (KOLB; KOLB, 2005).


Resultados

O desenvolvimento dos fluxogramas experimentais ficou cada vez mais elaborados ao longo das aulas; como nota-se neste exemplo **Figura 3**:

- avanço na organização e apresentação,maior elucidação e compreensão do
- experimento e da técnica do fluxograma,
 maior capacidade de síntese e clareza.

Formulário aplicado pela comissão PAE a turma, obtendo 17 respostas da turma de 25 alunos (68%); onde foi unânime (100%) (SIM) :

- atividade foi integralmente desenvolvida no semestre
 o projeto colaborou com o seu aprendizado na disciplina.
- Comentários opcionais relatam: "melhoram minha experiência durante os experimentos e meu conhecimento"; "ajudou muito nas aulas práticas e nos deu uma prima base para fazermos as aulas e absorvemos o máximo de conteúdo possível."

pelo gráfico

Metodologia

O projeto foi desenvolvido de acordo com as etapas representadas na FIGURA 2:

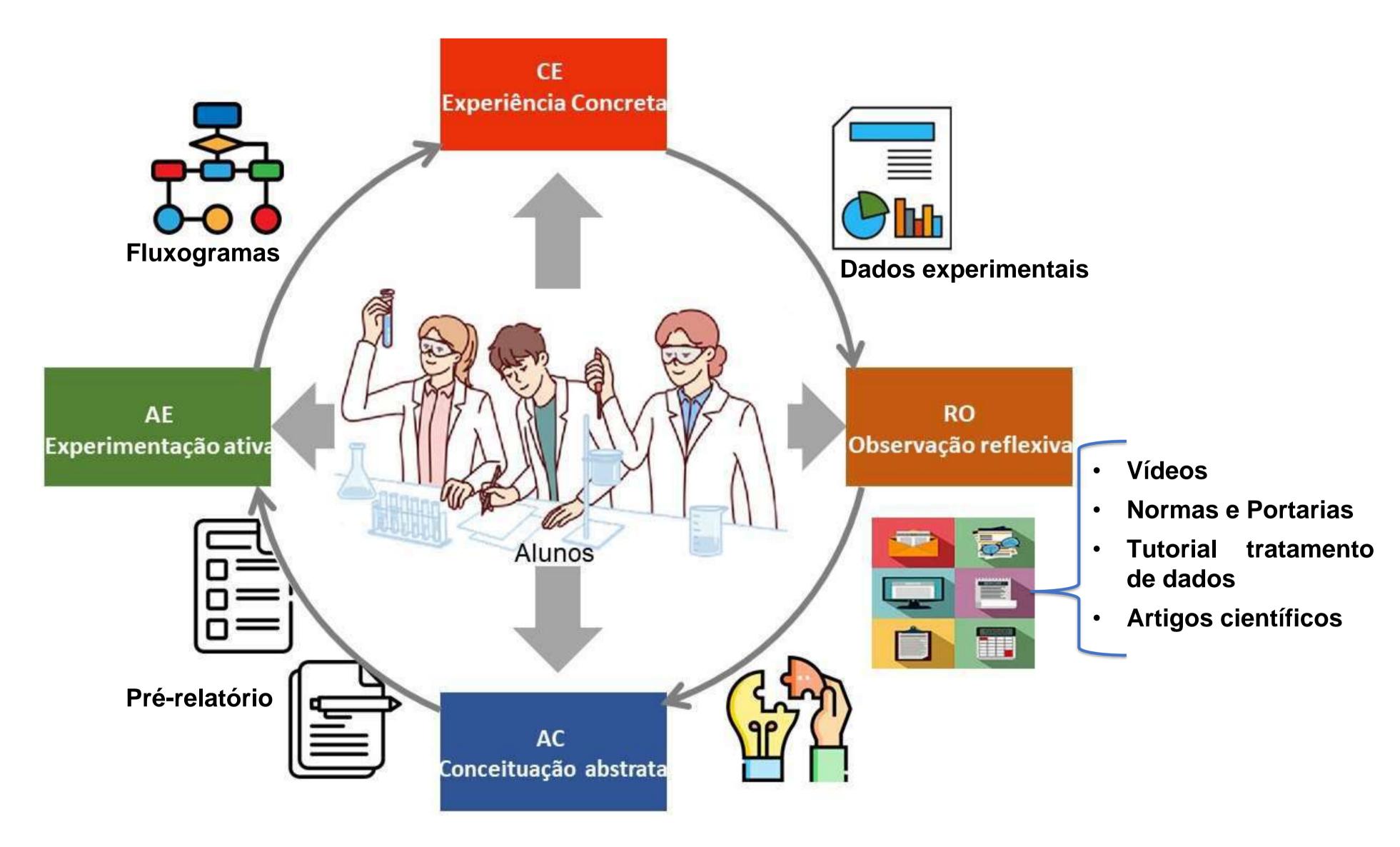


Figura 2 Ciclo de Aprendizagem Experiencial Aplicado

Conclusão

O presente trabalho, demonstrou ser uma valiosa ferramenta construtivista no ensino prático, possibilitando um ensino investigativo colocando o aluno, professor e estagiário como ativos no processo de ensino e centrado no aluno. Maior assimilação do conteúdo e sua aplicação na compreensão de problemas reais na Engenharia Ambiental, percorrendo aprendizagem experiencial, significativa e construtivista. Os resultados também indicaram melhora da capacidade de síntese, facilitador na visualização das etapas e autonomia no laboratório. De acordo com os alunos, contribuindo em sua formação e realização acadêmica-profissional, transformando o aprendizado obtido na disciplina como experiência ativa ao longo de sua trajetória.

Referências

KOLB, A. Y.; KOLB, D. A. The Kolb Learning Style Inventory. Western Reserve University, p. 72, 2005.

MOREIRA, M. A. **LINGUAGEM E APRENDIZAGEM SIGNIFICATIVA**. (UnB, Ed.)Encontro Internacional sobre Aprendizagem Significativa. **Anais**...2003. Disponível em: https://www.if.ufrgs.br/~moreira/linguagem.pdf>

- PORLÁN ARIZA, R. Princípios para la Formación del Profesorado en Secundaria. **Revista interuniversitaria de formación del profesorado**, v. 17, n. 46, p. 23–35, 2003.
- REBELLO, C. M. et al. Augmented reality for chemical engineering education. **Education for Chemical Engineers**, v. 47, n. April, p. 30–44, abr. 2024. RODRÍGUEZ-RODRÍGUEZ, E. et al. Analytical Chemistry Teaching Adaptation in the COVID-19 Period: Experiences and Students' Opinion. **Journal of Chemical Education**, v. 97, n. 9, p. 2556–2564, 8 set. 2020.
- SCHIFFLER, Â. C. DA R. et al. Perspectivas da Utilização do Fluxograma Analisador no Ensino da Administração em Saúde na Faculdade de Medicina da UFRJ. **Revista Brasileira de Educação Médica**, v. 29, n. 3, p. 191–200, dez. 2005.

ZIMMERMANN, A. E.; KING, E. E.; BOSE, D. D. Effectiveness and Utility of Flowcharts on Learning in a Classroom Setting: A Mixed-Methods Study. American Journal of Pharmaceutical Education, v. 88, n. 1, p. 100591, jan. 2024.