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Abstract

We present a new approach to study the symmetry of minimizers for a large class of nonlocal variational
problems. This approach which generalizes the Reflection method is based on the existence of some integral
identities. We study the identities that lead to symmetry results, the functionals that can be considered and
the function spaces that can be used. Then we use our method to prove the symmetry of minimizers for a
class of variational problems involving the fractional powers of Laplacian, for the generalized Choquard
functional and for the standing waves of the Davey–Stewartson equation.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many important partial differential equations arising in physics are Euler–Lagrange equations
of variational problems. Among the solutions of these equations those that correspond to a min-
imum of the associated functional (e.g. the “energy”) subject to some constraint are of particular
interest. For example in many situations the set of such solutions is orbitally stable (see [9]).

* Corresponding author.
E-mail addresses: olopes@ime.usp.br (O. Lopes), mihai.maris@univ-fcomte.fr (M. Mariş).
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536 O. Lopes, M. Mariş / Journal of Functional Analysis 254 (2008) 535–592
In this paper we address the general question of whether, or not, the fact that the underlying
problem has some symmetries is reflected on the minimizers. Namely if a problem is invariant
under the action of a group of transformations, is it true that the corresponding minimizers are
also invariant under the action of this group (or, perhaps, a subgroup of it)? As it is shown in [14],
this may not be the case.

A classical approach to radial symmetry of minimizers is Schwarz symmetrization (or spher-
ical decreasing rearrangement, see [16]). For a nonnegative function u ∈ H 1(RN) its sym-
metrization u∗ is a radially-decreasing function from RN into R which has the property that
meas({x ∈ RN | u(x) > λ} = meas({x ∈ RN | u∗(x) > λ} for any λ > 0. It is well known that u∗
satisfies (among others) the following properties:∫

RN

∣∣∇u∗(x)
∣∣2 dx �

∫
RN

∣∣∇u(x)
∣∣2 dx and

∫
RN

F
(
u∗(x)

)
dx =

∫
RN

F
(
u(x)

)
dx, (1.1)

where F is, say, a smooth function from R into itself such that F(u) ∈ L1(RN) (see [16]). As a
simple application of symmetrization, consider the problem of minimizing

E(u) = 1

2

∫
RN

∣∣∇u(x)
∣∣2 dx +

∫
RN

F
(
u(x)

)
dx

subject to the constraint ∫
RN

G
(
u(x)

)
dx = λ,

where F,G ∈ C1(R,R) have the property that F(u),G(u) ∈ L1(RN) whenever u ∈ H 1(RN).
If u ∈ H 1(RN) is a nonnegative minimizer, then it follows from (1.1) that u∗ also satisfies the
constraint and E(u∗) � E(u); therefore, u∗ is also a minimizer. To show that u ≡ u∗ except
for translation is a more delicate question and this follows from a result in [6] and the Unique
Continuation Principle.

In the case of vector-valued minimizers u : RN → Rk , symmetrization can also be used pro-
vided that each component of the minimizer is nonnegative, the function F : Rk → R satisfies
a cooperative condition Fxixj

� 0 for i �= j and the constraint is of the form
∫

RN G1(u1) +
G2(u2)+· · ·+Gk(uk) dx = constant. Notice that the function defining the constraint must have
a special form because we want the value of the constraint to be preserved by symmetrization.

Another tool to prove radial symmetry of minimizers is the result by Gidas, Ni and Niren-
berg [11] about the radial symmetry of positive solutions of the semilinear elliptic equation

−�u + f (u) = 0.

In the case of systems, an extension of that result has been proved in [7,25] assuming a cooper-
ative condition for the nonlinearity. In [11] as well as in its generalizations the nonlinearities are
also allowed to depend on the space variable in a radial and monotonic way.



O. Lopes, M. Mariş / Journal of Functional Analysis 254 (2008) 535–592 537
As we can see, in the vector case, besides the need to know in advance that the components
of the minimizer are positive, both methods described above require the nonlinearity to satisfy a
cooperative condition and the function defining the constraint to have a special form. To avoid
these two restrictions, the Reflection method has been developed in [18,19]. We now briefly
describe this method.

Consider the problem of minimizing

E(u,v) = 1

2

∫
RN

(∣∣∇u(x)
∣∣2 + ∣∣∇v(x)

∣∣2)dx +
∫

RN

F
(
u(x), v(x)

)
dx

subject to ∫
RN

G
(
u(x), v(x)

)
dx = λ �= 0.

To show that any minimizer (u, v) is symmetric with respect to x1 (except possibly for a transla-
tion), we first make a translation in the x1 variable in such a way that∫

{x1<0}
G
(
u(x), v(x)

)
dx =

∫
{x1>0}

G
(
u(x), v(x)

)
dx = λ

2
. (1.2)

Next, setting x = (x1, x
′), where x′ ∈ RN−1, we define the functions u1 and u2 by

u1(x) = u1(x1, x
′) =

{
u(x1, x

′) if x1 < 0,

u(−x1, x
′) if x1 � 0

and

u2(x) =
{

u(−x1, x
′) if x1 < 0,

u(x1, x
′) if x1 � 0.

In a similar way we define v1 and v2. According to (1.2), the pairs (u1, v1) and (u2, v2) also
satisfy the constraint (i.e. they are admissible). Moreover, a change of variables shows that

E(u1, v1) + E(u2, v2) = 2E(u,v). (1.3)

Thus (u1, v1) and (u2, v2) are also minimizers. This shows that there exist minimizers which are
symmetric with respect to x1. In fact, by using the Euler–Lagrange equations and the Unique
Continuation Principle we can show that necessarily (u1, v1) = (u, v) = (u2, v2). Clearly, this
implies that any minimizer (u, v) is symmetric with respect to the first variable. Replacing the
x1-direction by any other direction in RN and repeating the same argument, we can show that
(u, v) is radially symmetric except for translation (details will be given later). Notice that to use
this argument there is no need to know the sign of components of the minimizers.

The main point of this paper is to extend the Reflection method to a class of nonlocal func-
tionals. To be more specific, consider the problem of minimizing

E(u) =
∫
N

m(ξ)
∣∣̂u(ξ)

∣∣2 dξ +
∫
N

F (u)dx (1.4)
R R



538 O. Lopes, M. Mariş / Journal of Functional Analysis 254 (2008) 535–592
subject to the constraint

Q(u) =
∫

RN

G(u)dx = λ �= 0. (1.5)

Defining W(u) = ∫
RN m(ξ)|̂u(ξ)|2 dξ and u1, u2 as above, instead of (1.3) we have

E(u1) + E(u2) − 2E(u) = W(u1) + W(u2) − 2W(u).

Therefore, to show that u1 and u2 are also minimizers we need to know that

W(u1) + W(u2) − 2W(u) � 0. (1.6)

The key to the method developed here is to show that inequality (1.6) holds true (see Theo-
rem 2.7). In this article we will use this extended Reflection method to prove the symmetry of all
minimizers of the following functionals:

• the Hamiltonian of a coupled system between a multidimensional Korteweg–de Vries equa-
tion and a Benjamin–Ono equation. Here minimizers correspond to solitary waves;

• the generalized Choquard functional. In this case the minimizers give rise to standing waves
for the generalized Hartree equation;

• the Hamiltonian of the generalized Davey–Stewartson equation. Here again, minimizers cor-
respond to standing waves.

The existence of minimizers for these problems can be proved by using the concentration–
compactness method [17] or the alternative method presented in [20] and will not be discussed
here.

Notice that the symmetrization approach, in general, does not apply to the problems above.
Indeed, in the first two examples, symmetrization cannot be used to prove the existence of a
radially symmetric minimizer under the general assumptions on the nonlinearities made in this
paper. Furthermore, with the tools available at the present time, it is not clear how to prove the
radial symmetry of all minimizers, even in the cases where symmetrization can be used to prove
the existence of a radially symmetric minimizer. Finally, in the last example, symmetrization
cannot be used because one term of the Hamiltonian of the Davey–Stewartson equation is a
singular integral operator whose kernel changes sign.

This paper is organized as follows: in the next section we present some integral identities
for functionals of the form W(u) = ∫

RN m(ξ)|̂u(ξ)|2 dξ . These identities are first proved for
functions u ∈ C∞

c and are crucial for our approach to symmetry. It will also appear clearly what
kind of symbols m(ξ) we may consider. In Section 3 we search for appropriate function spaces
on which our method can be applied. It will be proved that we may work on Hs(RN) or on
Ḣ s(RN) if − 1

2 < s < 3
2 . We will extend the integral identities obtained in Section 2 to these

function spaces. In Section 4 we apply our results to the concrete problems presented above. We
end this article with some open problems.
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2. Some identities

In what follows, x = (x1, x2, . . . , xN) = (x1, x
′) denotes a point of RN , x′ = (x2, . . . , xN) ∈

RN−1, ξ = (ξ1, ξ2, . . . , ξN ) = (ξ1, ξ
′) ∈ RN with ξ ′ = (ξ2, . . . , ξN) ∈ RN−1. We denote the

Fourier transform either by ̂ or by F .
The aim of this section is to prove an identity for some functionals of the type

W(u) =
∫

RN

m(ξ)
∣∣̂u(ξ)

∣∣2 dξ (2.1)

which play a very important role in proving symmetries.
Consider a function u ∈ C∞

c (RN). We define the reflected functions u1 and u2 as follows:

u1(x) = u1(x1, x
′) =

{
u(x1, x

′) if x1 < 0,

u(−x1, x
′) if x1 � 0

and

u2(x) =
{

u(−x1, x
′) if x1 < 0,

u(x1, x
′) if x1 � 0.

(2.2)

We also define

g(x) = 1

2

(
u(x1, x

′) + u(−x1, x
′)
)

and f (x) = 1

2

(
u(x1, x

′) − u(−x1, x
′)
)
. (2.3)

Clearly, f,g ∈ C∞
c (RN), g is even and f is odd with respect to x1 and u = f + g. Let

f∗(x) =
{

f (−x1, x
′) = −f (x) if x1 < 0,

f (x1, x
′) if x1 � 0.

(2.4)

Then f∗ is even with respect to x1, u1 = g − f∗ and u2 = g + f∗.
We want to study the quantity W(u1) + W(u2) − 2W(u), where W is given by (2.1). Later

in Theorem 2.7 we specify the class of multipliers under consideration but, at this early stage,
besides integrability conditions, we assume that

m(ξ) is real and m(−ξ1, ξ
′) = m(ξ1, ξ

′). (2.5)

It is easy to see that

ĝ(−ξ1, ξ
′) = ĝ(ξ1, ξ

′) and f̂ (−ξ1, ξ
′) = −f̂ (ξ1, ξ

′). (2.6)

Therefore

W(u1) + W(u2) − 2W(u)

=
∫
N

m(ξ1, ξ
′)
(∣∣̂g(ξ) − f̂∗(ξ)

∣∣2 + ∣∣̂g(ξ) + f̂∗(ξ)
∣∣2 − 2

∣∣̂g(ξ) + f̂ (ξ)
∣∣2)dξ
R
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=
∫

RN

m(ξ1, ξ
′)
(
2
∣∣f̂∗(ξ)

∣∣2 − 2
∣∣f̂ (ξ)

∣∣2 − 4 Re
(
ĝ(ξ)f̂ (ξ)

))
dξ

= 2
∫

RN

m(ξ1, ξ
′)
(∣∣f̂∗(ξ)

∣∣2 − ∣∣f̂ (ξ)
∣∣2)dξ = 2W(f∗) − 2W(f ) (2.7)

because
∫

RN m(ξ1, ξ
′)Re(ĝ(ξ)f̂ (ξ)) dξ = 0 in view of (2.5) and (2.6).

It is obvious that

f̂ (ξ1, ξ
′) =

∫
R

∫
RN−1

e−ix1ξ1−ix′·ξ ′
f (x1, x

′) dx′ dx1

=
∞∫

0

∫
RN−1

(
e−ix1ξ1 − eix1ξ1

)
e−ix′·ξ ′

f (x1, x
′) dx′ dx1

= −2i

∞∫
0

∫
RN−1

sin(x1ξ1)e
−ix′·ξ ′

f (x1, x
′) dx′ dx1

and similarly

f̂∗(ξ1, ξ
′) = 2

∞∫
0

∫
RN−1

cos(x1ξ1)e
−ix′·ξ ′

f (x1, x
′) dx′ dx1.

We denote by FN−1 the partial Fourier transform in the last N − 1 variables, that is

FN−1f (x1, ξ
′) =

∫
RN−1

e−ix′·ξ ′
f (x1, x

′) dx′.

Since f ∈ C∞
c (RN) we may use Fubini’s theorem to get

∣∣f̂ (ξ1, ξ
′)
∣∣2 = f̂ (ξ1, ξ

′)f̂ (ξ1, ξ ′)

= 4

∞∫
0

∞∫
0

sin(x1ξ1) sin(y1ξ1)(FN−1f )(x1, ξ
′)(FN−1f )(y1, ξ ′) dx1 dy1.

In the same way,

∣∣f̂∗(ξ1, ξ
′)
∣∣2 = 4

∞∫
0

∞∫
0

cos(x1ξ1) cos(y1ξ1)(FN−1f )(x1, ξ
′)(FN−1f )(y1, ξ ′) dx1 dy1.

Consequently,
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W(f∗) − W(f )

= 4
∫

RN

m(ξ1, ξ
′)

∞∫
0

∞∫
0

[
cos(x1ξ1) cos(y1ξ1) − sin(x1ξ1) sin(y1ξ1)

]
× (FN−1f )(x1, ξ

′)(FN−1f )(y1, ξ ′) dx1 dy1 dξ

= 4
∫

RN

m(ξ1, ξ
′)

∞∫
0

∞∫
0

cos
(
(x1 + y1)ξ1

)
(FN−1f )(x1, ξ

′)(FN−1f )(y1, ξ ′) dx1 dy1 dξ. (2.8)

For an arbitrary (but fixed) ξ ′ ∈ RN−1, we define ϕξ ′(t) = (FN−1f )(t, ξ ′). Since f ∈
C∞

c (RN), it is clear that ϕξ ′ ∈ C∞
c (R). If supp(f ) ⊂ BRN (0,R), then supp(ϕξ ′) ⊂ [−R,R].

For z ∈ C, we define

hξ ′(z) =
∞∫

0

∞∫
0

ei(x1+y1)zϕξ ′(x1)ϕξ ′(y1) dx1 dy1. (2.9)

Since ϕξ ′ is bounded and has compact support, hξ ′ is well defined and is an holomorphic function
on C. For any z ∈ R we have

hξ ′(z) =
∞∫

0

∞∫
0

e−i(x1+y1)zϕξ ′(x1)ϕξ ′(y1) dx1 dy1 = hξ ′(−z) and

Re
(
hξ ′(z)

) = 1

2

(
hξ ′(z) + hξ ′(z)

) =
∞∫

0

∞∫
0

cos
(
(x1 + y1)z

)
ϕξ ′(x1)ϕξ ′(y1) dx1 dy1.

From (2.7) and (2.8) we get

W(u1) + W(u2) − 2W(u) = 2W(f∗) − 2W(f ) = 8
∫

RN−1

∞∫
−∞

m(ξ1, ξ
′)hξ ′(ξ1) dξ1 dξ ′. (2.10)

Some properties of the function hξ ′ are given in the next lemma. To simplify the notation, we
shall write h instead of hξ ′ .

Lemma 2.1. For any fixed ξ ′, the function h = hξ ′ given by (2.9) has the following properties:

(i) h is bounded in the upper half-plane {z ∈ C | Im(z) � 0}.
(ii) There exists a constant C > 0 (depending on f and ξ ′) such that for any z �= 0 with Im(z) � 0

we have:

∣∣h(z)
∣∣ � C

|z|4 and
∣∣h′(z)

∣∣ � C

|z|5 . (2.11)
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Proof. (i) If b � 0 and x � 0 then |eiax−bx | � 1 and we have

∣∣h(a + ib)
∣∣ =

∣∣∣∣∣
∞∫

0

∞∫
0

ei(x1+y1)a−(x1+y1)bϕξ ′(x1)ϕξ ′(y1) dx1 dy1

∣∣∣∣∣
�

( ∞∫
0

∣∣eiat−bt
∣∣ · ∣∣ϕξ ′(t)

∣∣dt

)2

�
( ∞∫

0

∣∣ϕξ ′(t)
∣∣dt

)2

.

(ii) It is clear that

h(z) =
∞∫

0

eix1zϕξ ′(x1) dx1 ·
∞∫

0

eiy1zϕξ ′(y1) dy1 = Ψ1(z)Ψ2(z), (2.12)

where Ψ1(z) and Ψ2(z) are defined in an obvious way. Notice that ϕξ ′(0) = (FN−1f )(0, ξ ′) = 0
because f (0, x′) = 0 (recall that f is odd with respect to x1). Moreover, for any k ∈ N,

dk

dtk
ϕξ ′(t) =

∫
RN−1

e−ix′ξ ′ ∂kf

∂xk
1

(t, x′) dx′ =
(
FN−1

∂kf

∂xk
1

)
(t, ξ ′)

is a C∞
c function of t , uniformly bounded for (t, ξ ′) ∈ R × RN−1. Integrating by parts, we get:

Ψ1(z) =
∞∫

0

eitzϕξ ′(t) dt = 1

iz
eitzϕξ ′(t)

∣∣∣∣∞
t=0

− 1

iz

∞∫
0

eitzϕ′
ξ ′(t) dt

= − eitz

(iz)2
ϕ′

ξ ′(t)

∣∣∣∣∞
t=0

+ 1

(iz)2

∞∫
0

eitzϕ′′
ξ ′(t) dt = − 1

z2

[
ϕ′

ξ ′(0) +
∞∫

0

eitzϕ′′
ξ ′(t) dt

]
.

It is clear that an analogous estimate is true for Ψ2(z) and the first inequality in (2.11) holds.
Similarly one can prove that |ψ ′

j (z)| � Cj

|z|3 for j = 1,2 and Re(z) � 0. Since h′(z) =
Ψ ′

1(z)Ψ2(z) + Ψ1(z)Ψ
′
2(z), the second estimate in (2.11) follows. �

Remark 2.2. In general, ∂f
∂x1

(0, x′) does not vanish identically; hence FN−1f (0, ξ ′) �= 0 for
some ξ ′, i.e. there exists ξ ′ such that ϕ′

ξ ′(0) �= 0. For such ξ ′, the functions Ψ1 and Ψ2 do not

decay faster than 1
|z|2 and the estimate (2.11) is optimal.

Remark 2.3. Note that for any t ∈ R we have h(it) = |∫ ∞
0 e−x1t ϕξ ′(x1) dx1|2 ∈ [0,∞). Sup-

pose that for any fixed ξ ′ ∈ RN−1, m(ξ1, ξ
′) admits an holomorphic extension z �→ m(z, ξ ′)

to the upper half-plane {z ∈ C | Im(z) > 0}, with possibly some singularities on the imag-
inary axis {it | t ∈ [0,∞)}. If |m(z, ξ ′)| increases more slowly than |z|3 as |z| → ∞, then∫ ∞
−∞ m(ξ1, ξ

′)h(ξ1) dξ1 should depend only on the values of h on the singular set of m(·, ξ ′).
This simple idea will enable us to prove the identities that will be crucial in symmetry problems.
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In order to clarify what kind of symbols may be considered, we start with some auxiliary
technical results about holomorphic functions in a half-plane and their boundary values.

Given a function α ∈ Lp(R), 1 � p < ∞, we recall that its Hilbert transform is defined by

(Hα)(x) = lim
ε→0

1

π

∫
{|y|>ε}

α(x − y)

y
dy or equivalently Ĥα(ξ) = −i sgn(ξ )̂α(ξ).

It is well known that H is a bounded linear mapping from Lp(R) into Lp(R) (see, e.g., [23,
Chapter II], or [24, inequality (2.11), p. 188]).

In the next two lemmas we collect some classical facts that will be very useful in the sequel.
Proofs can be found in [24, Chapters I, II, VI] or in [23].

Lemma 2.4. Consider α ∈ Lp(R), 1 < p < ∞, and let β = Hα. For x > 0 and y ∈ R define

a(x, y) = 1

π

∞∫
−∞

x

x2 + (y − t)2
α(t) dt =

∞∫
−∞

P(y − t, x)α(t) dt and

b(x, y) = − 1

π

∞∫
−∞

y − t

x2 + (y − t)2
α(t) dt = −

∞∫
−∞

Q(y − t, x)α(t) dt,

where P(s, k) = 1
π

k

s2+k2 and Q(s, k) = 1
π

s

s2+k2 are the Poisson kernel, respectively the conju-
gate Poisson kernel.

Then we have:

(i) b(x, y) = − ∫ ∞
−∞ P(y − t, x)β(t) dt for any x > 0 and t ∈ R.

(ii) ‖a(x, ·)‖Lp(R) � ‖α‖Lp(R), ‖b(x, ·)‖Lp(R) � ‖β‖Lp(R) and ‖a(x, ·) − α‖Lp(R) → 0,
‖b(x, ·) + β‖Lp(R) → 0 as x → 0. Moreover, a(x, y) → α(y) for any y in the Lebesgue
set of α (hence almost everywhere) and b(x, y) → −β(y) for any y in the Lebesgue set
of β .

(iii) The functions a and b are harmonic in {(x, y) ∈ R2 | x > 0} and r(z) = r(x + iy) :=
a(x, y) + ib(x, y) is holomorphic in {z ∈ C | Re(z) > 0}.

(iv) There exists a constant A > 0 such that

∣∣a(x, y)
∣∣ � A‖α‖Lp

x
1
p

and
∣∣b(x, y)

∣∣ � A‖α‖Lp

x
1
p

for any x > 0 and y ∈ R, (2.13)

and for any δ > 0 we have

lim|(x,y)|→∞, x�δ
a(x, y) = 0 and lim|(x,y)|→∞, x�δ

b(x, y) = 0.

Lemma 2.5. Let μ be a finite Borel measure on R. For x > 0 and y ∈ R define

a(x, y) = 1

π

∞∫
x

x2 + (y − t)2
dμ(t) =

∞∫
P(y − t, x) dμ(t) and
−∞ −∞
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b(x, y) = − 1

π

∞∫
−∞

y − t

x2 + (y − t)2
dμ(t) = −

∞∫
−∞

Q(y − t, x) dμ(t),

where P(s, k) and Q(s, k) are the Poisson kernel, respectively the conjugate Poisson kernel.
Then:

(i) The functions a and b are harmonic in {(x, y) ∈ R2 | x > 0} and r(z) = r(x + iy) :=
a(x, y) + ib(x, y) is holomorphic in the right half-plane {z ∈ C | Re(z) > 0}.

(ii) For any x > 0 and any p, 1 � p � ∞, we have

∥∥a(x, ·)∥∥
Lp(R)

� 1

π
1
q x

1
q

‖μ‖, (2.14)

where q is the conjugate exponent of p and ‖μ‖ is the total variation of μ. Furthermore,

lim
x→0

∫
R

a(x, y)φ(y) dy =
∫
R

φ(y)dμ(y) (2.15)

for any function φ which is continuous on R and tends to zero at ±∞.
(iii) For any x > 0 we have b(x, ·) = −Ha(x, ·) and |b(x, y)| � 1

2πx
‖μ‖. Moreover, for any

p ∈ (1,∞) there exists Ap > 0 such that

∥∥b(x, ·)∥∥
Lp(R)

� Apx
− p−1

p ‖μ‖.

(iv) For any δ > 0 we have lim|(x,y)|→∞, x�δ a(x, y) = 0 and lim|(x,y)|→∞, x�δ b(x, y) = 0.
(v) Suppose in addition that μ(S) = μ(−S) and μ(S ∩ [−ε, ε]) = 0 for any Borel measurable

set S. Then a and b are well defined, bounded and holomorphic in the strip {(x, y) ∈ R2 |
− ε

2 < y < ε
2 }, the function r(x + iy) = a(x, y) + ib(x, y) is holomorphic in that strip and

r(0) = 0.

After this preparation, we come back to the study of the integral
∫

R m(ξ1, ξ
′)hξ ′(ξ1) dξ1 which

appears in the right-hand side of (2.10).

Lemma 2.6. Suppose that for a given ξ ′ ∈ RN−1 the symbol m(ξ1, ξ
′) can be written as

m(ξ1, ξ
′) = A0(ξ

′) + A1(ξ
′)|ξ1| + A2(ξ

′)ξ2
1 + 1

π
ξ4

1

∫
R

1

ξ2
1 + t2

αξ ′(t) dt

+ 1

π

[∫
R

1

ξ2
1 + t2

dμξ ′,0(t) + ξ2
1

∫
R

1

ξ2
1 + t2

dμξ ′,1(t) + ξ4
1

∫
R

1

ξ2
1 + t2

dμξ ′,2(t)

]
,

(2.16)

where:

(a) A0(ξ
′), A1(ξ

′), A2(ξ
′) ∈ R,
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(b) αξ ′ ∈ Lp(R) for some p ∈ (1,∞) and αξ ′ is an even function,
(c) μξ ′,i are finite Borel measures on R such that μξ ′,i (S) = μξ ′,i (−S) for any Borel measurable

set S ⊂ R, i = 0,1,2. Moreover, there exists η > 0 such that μξ ′,0(S) = 0 for any Borel
measurable set S ⊂ [−η,η].

Let h = hξ ′ be given by (2.9). Then we have the identity:

1

2

∞∫
−∞

m(ξ1, ξ
′)h(ξ1) dξ1 = −A1(ξ

′)
∞∫

0

th(it) dt +
∞∫

0

t3αξ ′(t)h(it) dt +
∞∫

0

h(it)

t
dμξ ′,0(t)

−
∞∫

0

th(it) dμξ ′,1(t) +
∞∫

0

t3h(it) dμξ ′,2(t). (2.17)

Proof. For z = x + iy ∈ C with Re(z) > 0 we define

r(z) = 1

π

∫
R

x

x2 + (y − t)2
αξ ′(t) dt − i

π

∫
R

y − t

x2 + (y − t)2
αξ ′(t) dt and

pi(z) = 1

π

∫
R

x

x2 + (y − t)2
dμξ ′,i (t) − i

π

∫
R

y − t

x2 + (y − t)2
dμξ ′,i (t) for i = 0,1,2.

It follows from Lemmas 2.4 and 2.5 that r and pi are well defined and holomorphic in the right
half-plane {z ∈ C | Re(z) > 0}. Moreover, assumption (c) and Lemma 2.5(v) imply that p0 admits
an holomorphic extension to the domain {z ∈ C | Re(z) > 0 or |Im(z)| <

η
2 }, and p0(0) = 0.

Consequently, p0(z)
z

is holomorphic in this domain and is bounded in a neighbourhood of zero.
Finally, we define

mξ ′(z) = A0(ξ
′) + A1(ξ

′)z + A2(ξ
′)z2 + z3r(z) + p0(z)

z
+ zp1(z) + z3p2(z). (2.18)

It is obvious that mξ ′ is well defined and holomorphic in the right half-plane. Since αξ ′ and
μξ ′,i are “even” and t �→ t

ξ2
1 +t2 is odd, for any ξ1 > 0 we have Im(mξ ′(ξ1)) = 0 and

mξ ′(ξ1) = Re
(
mξ ′(ξ1)

) = m(ξ1, ξ
′).

For ε,R > 0, consider the closed continuous path γε,R composed by the following pieces:

γ1,ε,R(t) = t, t ∈ [ε, ε + R],
γ2,ε,R(θ) = ε + Reiθ , θ ∈ [0, π

2 ],
γ (t) = ε + i(R − t), t ∈ [0,R].
3,ε,R
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The function z �→ mξ ′(z)h(z) being holomorphic in the right half-plane we have∫
γε,R

mξ ′(z)h(z) dz = 0, that is

R∫
ε

m(ξ1, ξ
′)h(ξ1) dξ1 +

∫
γ2,ε,R

mξ ′(z)h(z) dz +
∫

γ3,ε,R

mξ ′(z)h(z) dz = 0. (2.19)

It follows from (2.18), Lemmas 2.4(iv) and 2.5(iv) that lim|z|→∞,Re(z)�ε
mξ ′ (z)

z3 = 0; hence,

limR→∞
mξ ′ (ε+Reiθ )

(ε+Reiθ )3 = 0 uniformly with respect to θ ∈ [0, π
2 ]. On the other hand, from

Lemma 2.1(ii), we have |h(ε + Reiθ )| � C

|ε+Reiθ |4 and then |(ε + Reiθ )3h(ε + Reiθ ) · iReiθ | �
CR

|ε+Reiθ | � CR
R−ε

� 2C for any R � 2ε. We infer that limR→∞
∫
γ2,ε,R

mξ ′(z)h(z) dz = 0.

From (2.13), (2.14) and the boundedness of p0(z)
z

near 0 it follows that |m(ξ1, ξ
′)| � C for

0 < ξ1 < 1 and |m(ξ1, ξ
′)| � C|ξ1|3−δ for large ξ1 and some C,δ > 0. Since h is continuous and

|h(ξ1)| � C

|ξ1|4 , the integral
∫ ∞

0 m(ξ1, ξ
′)h(ξ1) dξ1 converges absolutely.

Clearly we have
∫
γ3,ε,R

mξ ′(z)h(z) dz = −i
∫ R

0 mξ ′(ε + iy)h(ε + iy) dy. Passing to the limit

as R → ∞ in (2.19) we infer that
∫ ∞

0 mξ ′(ε + iy)h(ε + iy) dy converges and

∞∫
ε

m(ξ1, ξ
′)h(ξ1) dξ1 = i

∞∫
0

mξ ′(ε + iy)h(ε + iy) dy. (2.20)

Since m(ξ1, ξ
′) is real and symmetric with respect to ξ1 and h(−ξ1) = h(ξ1), we have

−ε∫
−∞

m(ξ1, ξ
′)h(ξ1) dξ1 =

∞∫
ε

m(ξ1, ξ
′)h(ξ1) dξ1,

and then, taking (2.20) into account, we get

−ε∫
−∞

m(ξ1, ξ
′)h(ξ1) dξ1 +

∞∫
ε

m(ξ1, ξ
′)h(ξ1) dξ1 = −2

∞∫
0

Im
(
mξ ′(ε + iy)h(ε + iy)

)
dy; (2.21)

hence

∞∫
−∞

m(ξ1, ξ
′)h(ξ1) dξ1 = −2 lim

ε→0

∞∫
0

Im
(
mξ ′(ε + iy)h(ε + iy)

)
dy. (2.22)

Since h(iy) ∈ R for y ∈ [0,∞), using Lemma 2.1 and the Dominated Convergence Theorem we
find
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lim
ε→0

∞∫
0

Im
[(

A0(ξ
′) + A1(ξ

′)(ε + iy) + A2(ξ
′)(ε + iy)2)h(ε + iy)

]
dy

= A1(ξ
′)

∞∫
0

yh(iy) dy. (2.23)

It is easy to see that |(ε + iy)�h(ε + iy) − (iy)�h(iy)| � C1ε min(1, 1
y2 ) for y ∈ (0,∞), � ∈

{0,1,2,3} and ε ∈ [0,1]. Hence there exists C2 > 0 such that∥∥(ε + iy)�h(ε + iy) − (iy)�h(iy)
∥∥

Lq(0,∞)
� C2ε (2.24)

for any ε ∈ [0,1], � ∈ {0,1,2,3} and q ∈ [1,∞]. This implies that∣∣∣∣∣
∞∫

0

Im
(
(ε + iy)3h(ε + iy)r(ε + iy)

)
dy −

∞∫
0

Im
(
(iy)3h(iy)r(ε + iy)

)
dy

∣∣∣∣∣
�

(∥∥Re
(
r(ε + i·))∥∥

Lp + ∥∥Im
(
r(ε + i·))∥∥

Lp

)∥∥(ε + iy)3h(ε + iy) − (iy)3h(iy)
∥∥

Lp′
(0,∞)

�
(‖αξ ′ ‖Lp + ‖Hαξ ′ ‖Lp

)
C2ε → 0 as ε → 0.

On the other hand, by Lemma 2.4(ii) we obtain

lim
ε→0

∞∫
0

Im
[
(iy)3h(iy)r(ε + iy)

]
dy = − lim

ε→0

∞∫
0

y3h(iy)Re
[
r(ε + iy)

]
dy

= −
∞∫

0

y3h(iy)αξ ′(y) dy.

Therefore we have

lim
ε→0

∞∫
0

Im
[
(ε + iy)3h(ε + iy)r(ε + iy)

]
dy = −

∞∫
0

y3h(iy)αξ ′(y) dy. (2.25)

Let χ ∈ C∞
c (R,R+) be such that supp(χ) ⊂ [− η

4 ,
η
4 ] and χ ≡ 1 on [− η

8 ,
η
8 ]. Since the func-

tion z �→ p0(z)
z

h(z) is uniformly continuous on [−1,1] × [− η
4 ,

η
4 ] we have

lim
ε→0

∞∫
0

Im

[
p0(ε + iy)

ε + iy
h(ε + iy)χ(y)

]
dy =

∞∫
0

Im

(
p0(iy)

iy
h(iy)χ(y)

)
dy

= −
∞∫

Re(p0(iy))

y
h(iy)χ(y) dy = 0. (2.26)
0
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By Lemma 2.1 we infer that there exists C3 > 0 such that |h(ε+iy)−h(iy)| � εC3 min(1, 1
|y|5 )

for any y ∈ (0,∞) and ε ∈ [0,1]. It is easy to see that∣∣∣∣(h(ε + iy)

ε + iy
− h(iy)

iy

)(
1 − χ(y)

)∣∣∣∣ � C4ε min

(
1

y6
,1

)
for any y ∈ (0,∞) and some C4 > 0. Consequently there exists C5 > 0 such that∥∥∥∥(h(ε + iy)

ε + iy
− h(iy)

iy

)(
1 − χ(y)

)∥∥∥∥
Lp(0,∞)

� C5ε

for any p ∈ [1,∞]. Using the Cauchy–Schwarz inequality and Lemma 2.5(ii) and (iii), we get

∣∣∣∣∣
∞∫

0

p0(ε + iy)

(
h(ε + iy)

ε + iy
− h(iy)

iy

)(
1 − χ(y)

)
dy

∣∣∣∣∣
�

∥∥p0(ε + i·)∥∥
L2(R)

∣∣∣∣(h(ε + iy)

ε + iy
− h(iy)

iy

)(
1 − χ(y)

)∣∣∣∣
L2(0,∞)

� C6ε
1
2 → 0 as ε → 0. (2.27)

We also have by (2.15) and assumption (c),

lim
ε→0

∞∫
0

Im

[
p0(ε + iy)

h(iy)

iy

(
1 − χ(y)

)]
dy

= − lim
ε→0

∞∫
0

Re
(
p0(ε + iy)

)h(iy)

y

(
1 − χ(y)

)
dy

= −
∞∫

0

h(iy)

y

(
1 − χ(y)

)
dμξ ′,0(y) = −

∞∫
0

h(iy)

y
dμξ ′,0(y). (2.28)

From (2.26)–(2.28) we get

lim
ε→0

∞∫
0

Im

[
p0(ε + iy)

ε + iy
h(ε + iy)

]
dy = −

∞∫
0

h(iy)

y
dμξ ′,0(y). (2.29)

Similarly we find

lim
ε→0

∞∫
Im

(
(ε + iy)p1(ε + iy)h(ε + iy)

)
dy =

∞∫
yh(iy) dμξ ′,1(y) and (2.30)
0 0
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lim
ε→0

∞∫
0

Im
(
(ε + iy)3p2(ε + iy)h(ε + iy)

)
dy = −

∞∫
0

y3h(iy) dμξ ′,2(y). (2.31)

Since mξ ′(z) is given by (2.18), replacing (2.23), (2.25), (2.29)–(2.31) into (2.22) we obtain the
conclusion of Lemma 2.6. �

Now we are ready to state and prove the main result of this section.

Theorem 2.7. Suppose that for any ξ ′ ∈ RN−1, m(ξ1, ξ
′) satisfies the assumptions of Lemma 2.6.

For u ∈ C∞
c (RN) define u1, u2, f , g and W as in (2.1)–(2.4). Then we have the identity:

π2

16

(
W(u1) + W(u2) − 2W(u)

)
= −

∫
RN−1

A1(ξ
′)

∞∫
0

t

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dt dξ ′

+
∫

RN−1

∞∫
0

t3αξ ′(t)

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dt dξ ′

+
∫

RN−1

∞∫
0

1

t

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dμξ ′,0(t) dξ ′

−
∫

RN−1

∞∫
0

t

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dμξ ′,1(t) dξ ′

+
∫

RN−1

∞∫
0

t3

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dμξ ′,2(t) dξ ′. (2.32)

Proof. Since FN−1f ∈ S(RN), the integral
∫ ∞

0 e−x1t (FN−1f )(x1, ξ
′) dx1 is well defined for

all t > 0 and ξ ′ ∈ RN−1. Using Plancherel’s theorem we get

∞∫
0

e−x1t (FN−1f )(x1, ξ
′) dx1 = 〈

FN−1f (·, ξ ′), e−(·)tχ[0,∞)(·)
〉
L2(R)

= (2π)−1〈F1
(
FN−1f (·, ξ ′)

)
,F1

(
e−(·)tχ[0,∞)(·)

)〉
L2(R)

. (2.33)

Moreover, we have

F1
(
e−(·)tχ[0,∞)(·)

)
(ξ1) =

∞∫
e−ix1ξ1e−x1t dx1 = − 1

t + iξ1
e−(t+iξ1)x1

∣∣∣∣∞
x1=0

= 1

t + iξ1

0
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and then, using (2.33) and the oddness of f̂ with respect to ξ1 we get:

hξ ′(it) =
∣∣∣∣∣

∞∫
0

e−x1t (FN−1f )(x1, ξ
′) dx1

∣∣∣∣∣
2

= (2π)−2

∣∣∣∣∣
∞∫

−∞
f̂ (ξ1, ξ

′) · 1

t − iξ1
dξ1

∣∣∣∣∣
2

= 1

(2π)2

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′)
(

1

t − iξ1
− 1

t + iξ1

)
dξ1

∣∣∣∣∣
2

= 1

π2

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

. (2.34)

Identity (2.32) is a simple consequence of (2.10), (2.17) and (2.34) and Theorem 2.7 is
proved. �
Remark 2.8. It is worth to note that we can prove an identity analogous to (2.32) whenever
we work with a symbol m(ξ) = m(ξ1, ξ

′) symmetric with respect to ξ1 and such that for any
ξ ′ ∈ RN−1, m(·, ξ ′) admits an holomorphic extension mξ ′(z) to the domain {z ∈ C | Re(z) > 0,

Im(z) > 0} having the following properties:

P1. limz→ξ1, Im(z)>0 mξ ′(z) = m(ξ1, ξ
′).

P2. For any ε > 0, lim|z|→∞,Re(z)�ε
mξ ′ (z)

z3 = 0.

P3. limε→0
∫ ∞

0 mξ ′(ε + it)hξ ′(ε + it) dt exists (and depends on ξ ′ and the values taken by hξ ′
on the imaginary axis).

Note that assumption P1 implies that m(·, ξ ′) admits an holomorphic extension to the whole
right half-plane. Indeed, it follows from Schwarz’ reflection principle [8, p. 75] that the function

m̃ξ ′ =
{

mξ ′(z) if Im(z) � 0,

mξ ′(z) if Im(z) < 0

is holomorphic in {z ∈ C | Re(z) > 0}.
Assumption P2 is needed in the proof of Lemma 2.6 to show that

lim
R→∞

∫
γ2,ε,R

mξ ′(z)hξ ′(z) dz = 0

(where γ2,ε,R(θ) = ε+Reiθ , θ ∈ [0, π
2 ]). We recall that |hξ ′(z)| behaves like 1

|z|4 as |z| → ∞ (see
Lemma 2.1 and Remark 2.2). This assumption could be replaced by a weaker one that guarantees
at least that

lim
n→∞

∫
γ

mξ ′(z)hξ ′(z) dz = 0 for some sequence Rn → ∞.
2,ε,Rn
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In Theorem 2.7 assumption P3 is satisfied because of the special form of m(·, ξ ′) (see (2.16)).
Conversely, suppose that a function m(z) has the properties P1–P3 above. Let m̃ be the

holomorphic extension of m to the right half-plane and define q(z) = m̃(z)

z3 . Clearly, q is an
holomorphic function in the right half-plane and lim|z|→∞,Re(z)�ε q(z) = 0 for any ε > 0. Thus
for any x > ε we have the Poisson representation formulae

q(x + iy) = 1

π

∞∫
−∞

x − ε

(x − ε)2 + (t − y)2
Re

(
q(ε + it)

)
dt

+ i

π

∞∫
−∞

t − y

(x − ε)2 + (t − y)2
Re

(
q(ε + it)

)
dt (2.35)

and

q(x + iy) = −1

π

∞∫
−∞

t − y

(x − ε)2 + (t − y)2
Im

(
q(ε + it)

)
dt

+ i

π

∞∫
−∞

x − ε

(x − ε)2 + (t − y)2
Im

(
q(ε + it)

)
dt. (2.36)

Multiplying (2.35) (respectively (2.36)) by (x + iy)3, we find the expression of m(x + iy) in
terms of Re(q(ε + it)) (respectively in terms of Im(q(ε + it))). If Re(q(ε + it)) → α(t) as
ε → 0 and if it is possible to pass to the limit as ε → 0 in (2.35) we obtain, at least formally,

m(ξ1) = ξ3
1 q(ξ1) = ξ4

1

π

∞∫
−∞

α(t)

ξ2
1 + t2

dt.

However, as it will be seen later in applications, the function q may be singular at the origin. In
this case it is not possible to pass to the limit as ε → 0 in (2.35) or in (2.36) in order to express
the function q (hence the function m) in terms of its “boundary values” on the imaginary axis.
For this reason we have introduced “lower order terms” in the expression of mξ ′(z) in (2.16).

It is now clear that Theorem 2.7 can be generalized. For example, if the expression (2.16) of
m(ξ1, ξ

′) contains other terms

1

π

3∑
k=0

|ξ1|k
∫
R

1

ξ2
1 + t2

αξ ′,k(t) dt,

where αξ ′,k ∈ Lpk (R) for some pk ∈ (1,∞), αξ ′,k are even functions and αξ ′,0 vanishes in a
neighborhood of zero, then we have to add terms

∫
N−1

∞∫ [
αξ ′,0(t)

t
+ βξ ′,1(t) − tαξ ′,2(t) − t2βξ ′,3(t)

]∣∣∣∣∣
∞∫

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dt dξ ′
R 0 0
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in the right-hand side of (2.32), where βξ ′,1 and βξ ′,3 are Hilbert transforms of αξ ′,1 and αξ ′,3,
respectively.

We give now some examples illustrating several situations that may be encountered in appli-
cations. Throughout u ∈ C∞

c (RN) and we keep the notation introduced in (2.1)–(2.4).

Example 2.9. If the symbol m is of the form m(ξ1, ξ
′) = A1(ξ

′)|ξ1|, then Theorem 2.7 gives

W(u1) + W(u2) − 2W(u) = − 16

π2

∫
RN−1

A1(ξ
′)

∞∫
0

t

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dt dξ ′. (2.37)

This kind of symbol appears in problems involving operators of the type H1
∂

∂x1
P( ∂

∂x2
, . . . , ∂

∂xN
),

where H1 is the Hilbert transform with respect to the x1 variable and P is a pseudo-differential
operator in the last N − 1 variables.

Example 2.10. (i) Consider the symbol m(ξ) = 1
|ξ |2 appearing in Choquard’s problem. It can be

written as

m(ξ1, ξ
′) = 1

ξ2
1 + |ξ ′|2 = 1

π

∫
R

1

ξ2
1 + t2

dμξ ′,0(t),

where μξ ′,0 = π
2 (δ−|ξ ′| + δ|ξ ′|) and δa is the Dirac measure with support {a}. From Theorem 2.7

we get the identity

W(u1) + W(u2) − 2W(u) = 8

π

∫
RN−1

1

|ξ ′|

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

|ξ ′|2 + ξ2
1

dξ1

∣∣∣∣∣
2

dξ ′. (2.38)

The same identity could be obtained by observing that the function mξ ′(z) = 1
z2+|ξ ′|2 is mero-

morphic in C and has exactly one pole in the upper half-plane, namely i|ξ ′|. Using Residue’s
Theorem it is not hard to see that

∞∫
−∞

mξ ′(z)hξ ′(z) dz = 2πi Res
(
mξ ′hξ ′ , i|ξ ′|),

and integrating this identity over RN−1 we get (2.38).
(ii) Consider the symbol m(ξ) = 1

|ξ |2+a2 = 1
ξ2

1 +|ξ ′|2+a2 corresponding to the operator (−� +
a2)−1. It is obvious that

m(ξ1, ξ
′) = 1

π

∫
R

1

ξ2
1 + t2

dμξ ′,0(t),

where μξ ′,0 = π
2 (δ √ ′ 2 2 + δ√ ′ 2 2). From Theorem 2.7 we get the identity
− |ξ | +a |ξ | +a
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W(u1) + W(u2) − 2W(u) = 8

π

∫
RN−1

1√|ξ ′|2 + a2

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

a2 + |ξ ′|2 + ξ2
1

dξ1

∣∣∣∣∣
2

dξ ′.

(2.39)

The same identity could be obtained by applying Residue’s Theorem to the meromorphic func-
tion z �→ 1

z2+|ξ ′|2+a2 hξ ′(z).

(iii) More generally, consider a symbol of the form m(ξ1, ξ
′) = c(ξ ′)

ξ2
1 +r2(ξ ′) . It can be written as

m(ξ1, ξ
′) = 1

π

∫
R

1

ξ2
1 + t2

dμξ ′,0(t),

where μξ ′,0 = π
2 c(ξ ′)(δ−r(ξ ′) + δr(ξ ′)). Using Theorem 2.7 we obtain the identity

W(u1) + W(u2) − 2W(u) = 8

π

∫
RN−1

c(ξ ′)
r(ξ ′)

·
∣∣∣∣∣

∞∫
0

f̂ (ξ1, ξ
′) ξ1

r2(ξ ′) + ξ2
1

dξ1

∣∣∣∣∣
2

dξ ′. (2.40)

In particular, for the symbol m(ξ1, ξ
′) = ξ2k

j

ξ2
1 +|ξ ′|2+a2 , j = 2, . . . ,N (corresponding to the operator

(−1)k ∂2k

∂x2k
j

(−� + a2)−1)), we get

W(u1) + W(u2) − 2W(u) = 8

π

∫
RN−1

ξ2k
j√|ξ ′|2 + a2

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

a2 + |ξ ′|2 + ξ2
1

dξ1

∣∣∣∣∣
2

dξ ′.

(2.41)

(iv) The symbol m(ξ1, ξ
′) = ξ2

1
ξ2

1 +|ξ ′|2+a2 can be expressed as

m(ξ1, ξ
′) = ξ2

1

π

∫
R

1

ξ2
1 + t2

dμξ ′,1(t),

where μξ ′,1 = π
2 (δ−

√
|ξ ′|2+a2 + δ√|ξ ′|2+a2). From Theorem 2.7 we find the identity

W(u1) + W(u2) − 2W(u) = − 8

π

∫
RN−1

√
|ξ ′|2 + a2

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

a2 + |ξ ′|2 + ξ2
1

dξ1

∣∣∣∣∣
2

dξ ′.

(2.42)

Notice that the right-hand side in (2.42) is nonpositive, while in (2.41) it is nonnegative.
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(v) The symbol m(ξ1, ξ
′) = ξ4

1
ξ2

1 +|ξ ′|2+a2 (corresponding to the operator ∂4

∂x4
1
(−� + a2)−1) can

be written as

m(ξ1, ξ
′) = ξ4

1

π

∫
R

1

ξ2
1 + t2

dμξ ′,2(t),

where μξ ′,2 = π
2 (δ−

√
|ξ ′|2+a2 + δ√|ξ ′|2+a2). By Theorem 2.7 we have the identity

W(u1) + W(u2) − 2W(u) = 8

π

∫
RN−1

(|ξ ′|2 + a2) 3
2

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

a2 + |ξ ′|2 + ξ2
1

dξ1

∣∣∣∣∣
2

dξ ′.

(2.43)

Obviously all the identities in (2.40)–(2.43) could be obtained by using the Residue Theorem.

Example 2.11. Consider the symbol m(ξ) = |ξ |2s , corresponding to the operator (−�)s .
The complex logarithm log(z) = ln|z| + i arg(z) is well defined and holomorphic on C \

(−∞,0]. For z ∈ Ωξ ′ := C \ {it | t ∈ (−∞,−|ξ ′|] ∪ [|ξ ′|,∞)}, we have z2 + |ξ ′|2 /∈ (−∞,0];
hence we may define

mξ ′(z) = es log(z2+|ξ ′|2) = ∣∣z2 + |ξ ′|2∣∣seis arg(z2+|ξ ′|2).

The function mξ ′ is holomorphic in Ωξ ′ and |mξ ′(z)| = |z2 + |ξ ′|2|s for any z ∈ Ωξ ′ . It is easy to
see that, for ξ ′ �= 0,

mξ ′(z) = |ξ ′|2s

(
1 + s

z2

|ξ ′|2 +
∞∑

k=2

Ck
s

z2k

|ξ ′|2k

)
, (2.44)

where Ck
s = s(s−1)···(s−k+1)

k! and the series converges in the open ball BC(0, |ξ ′|).
For s < 3

2 and ξ ′ �= 0, the function z �→ mξ ′ (z)
z3 is holomorphic in Ωξ ′ \ {0}, tends to zero

as |z| → ∞ and has a third order pole at the origin. Consider the function rξ ′(z) = 1
z3 (mξ ′(z) −

|ξ ′|2s − s|ξ ′|2s−2z2). According to (2.44), rξ ′ is a holomorphic function in Ωξ ′ . If s < 3
2 , we have

rξ ′(z) → 0 as |z| → ∞. Consequently, the Poisson representation formula (2.35) holds for rξ ′ .
Since rξ ′(z) = rξ ′(z), the function t �→ Re(rξ ′(ε + it)) is even and we have, in particular,

mξ ′(ξ1) = |ξ ′|2s + s|ξ ′|2s−2ξ2
1 + ξ3

1 rξ ′(ξ1)

= |ξ ′|2s + s|ξ ′|2s−2ξ2
1 + ξ3

1

π

∞∫
−∞

ξ1 − ε

(ξ1 − ε)2 + (t − y)2
Re

(
rξ ′(ε + it)

)
dt. (2.45)

It is clear that for any t ∈ (−|ξ ′|, |ξ ′|) we have limε→0 Re(rξ ′(ε + it)) = Re(rξ ′(it)) = 0.
For any t > |ξ ′| we have limε↓0 mξ ′(ε + it) = (t2 − |ξ ′|2)seisπ and limε↓0 Re(rξ ′(ε + it)) =
−sin(sπ)

(t2−|ξ ′|2)s
3 .
t
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On the other hand, it is straightforward to check that for −1 < s < 3
2 , there exists ps ∈ (1,∞)

and Cs,ξ ′ > 0 such that

∥∥rξ ′(ε + i·)∥∥
Lps (R)

� Cs,ξ ′ for any ε ∈
(

0,
|ξ ′|
2

)
. (2.46)

It follows from (2.46) and [24, Theorem 2.5, p. 50] that there exists kξ ′ ∈ Lps (R) such that
Re(rξ ′(x + iy)) = 1

π

∫ ∞
−∞

x

x2+(y−t)2 kξ ′(t) dt . Moreover, from [24, Theorem 2.1, p. 47] we have
limε↓0 Re(rξ ′(ε + it)) = kξ ′(t) for almost every t ∈ R and ‖Re(rξ ′(ε + i·)) − kξ ′ ‖Lps → 0 as
ε → 0. In view of the pointwise convergence, we infer that kξ ′(−t) = kξ ′(t) a.e. and

kξ ′(t) =
{

0 if t ∈ (−|ξ ′|, |ξ ′|),
−sin(sπ)

(t2−|ξ ′|2)s
|t |3 if |t | > |ξ ′|, a.e. on R.

Now it is clear that the symbol m(ξ1, ξ
′) = (ξ2

1 + |ξ ′|2)s can be written as

m(ξ1, ξ
′) = |ξ ′|2s + s|ξ ′|2s−2ξ2

1 + ξ3
1 rξ ′(ξ1)

= |ξ ′|2s + s|ξ ′|2s−2ξ2
1 + ξ4

1

π

∞∫
−∞

1

ξ2
1 + t2

kξ ′(t) dt. (2.47)

Thus we may apply Theorem 2.7 to get, for any u ∈ C∞
c (RN) and s ∈ (−1, 3

2 ),

W(u1) + W(u2) − 2W(u)

= 16

π2

∫
RN−1

∞∫
0

t3kξ ′(t)

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dt dξ ′

= −16 sin(sπ)

π2

∫
RN−1

∞∫
|ξ ′|

(
t2 − |ξ ′|2)s∣∣∣∣∣

∞∫
0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dt dξ ′. (2.48)

Similarly, if we consider the symbol m(ξ) = (|ξ |2 + a2)s we get the identity

W(u1) + W(u2) − 2W(u)

= −16 sin(sπ)

π2

∫
RN−1

∞∫
√

|ξ ′|2+a2

(
t2 − |ξ ′|2 − a2)s∣∣∣∣∣

∞∫
0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dt dξ ′. (2.49)

3. Symmetry and function spaces

For any u ∈ C∞
c (RN) we define u1 and u2 as in (2.2) and we put T1u = u1, T2u = u2. Clearly,

T1 and T2 are linear continuous mappings from C∞
c (RN) to C0

c (RN). In this section we consider
the following intimately related problems.
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Problem 1. Determine significant subspaces X ⊂ D′(RN) such that T1 and T2 can be extended
to linear continuous mappings from X to X . (Or, equivalently, find subspaces X such that u ∈ X
implies T1u,T2u ∈ X and u �→ T1u, u �→ T2u are continuous for the X topology.)

Problem 2. If X is a subspace as above, how the identities proved in the previous section can be
extended to X ?

The answer to these questions is of great importance in symmetry problems. For instance,
suppose that a function space X has the two properties described above and that the solutions of
the variational problem

minimize E(u) :=
∫

RN

m(ξ)
∣∣̂u(ξ)

∣∣2 dξ +
∫

RN

F (u)dx

under the constraint
∫

RN

G(u)dx = λ �= 0 (3.1)

belong to X . As before, the symbol m(ξ) = m(ξ1, ξ
′) is assumed to be symmetric with respect

to ξ1. Defining W(u) := ∫
RN m(ξ)|̂u(ξ)|2 dξ , we suppose also that an identity of type (2.32)

holds for W(u) and it can be extended to X in such a way that

W(T1u) + W(T2u) − 2W(u) < 0 whenever T1u �= u, T2u �= u.

(We will see later that most of the symbols in Examples 2.9–2.11 have this property.) Then, we
claim that after a translation in the x1 direction, any solution of (3.1) is symmetric with respect
to x1. Indeed, let u be a minimizer. After a translation in the x1 direction, we may assume that∫

{x1<0}
G
(
u(x)

)
dx =

∫
{x1>0}

G
(
u(x)

)
dx = λ

2
.

Denoting u1 = T1u, u2 = T2u, this implies∫
RN

G
(
u1(x)

)
dx = 2

∫
{x1<0}

G
(
u(x)

)
dx = λ and

∫
RN

G
(
u2(x)

)
dx = 2

∫
{x1>0}

G
(
u(x)

)
dx = λ;

consequently u1 and u2 (which belong to X ) also satisfy the constraint. It is obvious that∫
RN

F
(
u1(x)

)
dx +

∫
RN

F
(
u2(x)

)
dx = 2

∫
RN

F
(
u(x)

)
dx.

Suppose by contradiction that u is not symmetric with respect to x1. Then we get

E(u1) + E(u2) − 2E(u) = W(u1) + W(u2) − 2W(u) < 0,

and this implies that either E(u1) < E(u) or E(u2) < E(u). Therefore u cannot be a minimizer
and this proves the claim.
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Given the motivation above, we will study the behavior of T1 and T2 from Hs(RN) to
Hs(RN), respectively from Ḣ s(RN) to Ḣ s(RN), where

Hs
(
RN

) =
{
u ∈ S ′(RN

) ∣∣ û ∈ L1
loc

(
RN

)
and

∫
RN

(
1 + |ξ |2)s∣∣̂u(ξ)

∣∣2 dξ < ∞
}
,

Ḣ s
(
RN

) =
{
u ∈ S ′(RN

) ∣∣ û ∈ L1
loc

(
RN

)
and

∫
RN

|ξ |2s
∣∣̂u(ξ)

∣∣2 dξ < ∞
}
.

It happens that T1 and T2 are not well defined from Hs(RN) to Hs(RN) (respectively from
Ḣ s(RN) to Ḣ s(RN)) if s � 3

2 or if s � − 1
2 , as it can be seen in the following example.

Example 3.1. (i) Define ϕ : R → R, ϕ(x) = xe−|x|. An easy computation shows that ϕ̂(ξ) =
−4iξ

(1+ξ2)2 , hence ϕ ∈ Hs(R) for any s < 5
2 and ϕ ∈ Ḣ s(R) for any s ∈ (− 3

2 , 5
2 ). It is clear that

(T1ϕ)(x) = −|x|e−|x| and T̂1ϕ(ξ) = 2(ξ2−1)

(1+ξ2)2 . Consequently, T1ϕ ∈ Hs(R) for s < 3
2 (respec-

tively T1ϕ ∈ Ḣ s(R) for − 1
2 < s < 3

2 ), but T1ϕ /∈ Hs(R) and T1ϕ /∈ Ḣ s(R) for s � 3
2 .

In dimension N � 2 it suffices to take ψ(x) = ϕ(x1)ϕ1(x2, . . . , xN), where ϕ1 ∈ C∞
c (RN−1),

to see that T1 and T2 are not well defined from Hs(RN) to Hs(RN) (respectively from Ḣ s(RN)

to Ḣ s(RN)) if 3
2 � s < 5

2 .
(ii) If s < 0, the elements of Hs(RN) or Ḣ s(RN) are not necessarily measurable functions. In

this case we extend T1 and T2 to Hs(RN) or Ḣ s(RN) by duality. For u,ϕ ∈ C∞
c (RN) we have

〈T1u,ϕ〉S ′,S =
∫

RN

(T1u)(x)ϕ(x) dx =
∫

{x1<0}
u(x)ϕ(x) dx +

∫
{x1>0}

u(−x1, x
′)ϕ(x) dx

=
∫

{x1<0}
u(x)ϕ(x) dx +

∫
{x1<0}

u(x1, x
′)ϕ(−x1, x

′) dx = 〈
u,T ∗

1 ϕ
〉
L2,L2 ,

where (T ∗
1 ϕ)(x) = χ{x1<0}(ϕ(x1, x

′) + ϕ(−x1, x
′)). Hence, for u ∈ Hs(RN) with s < 0 we

should define T1u by

〈T1u,ϕ〉Hs,H−s = 〈
u,T ∗

1 ϕ
〉
Hs,H−s

for any test function ϕ ∈ C∞
c (RN). However, the operator T ∗

1 does not map Hk(RN) into
Hk(RN) if k � 1

2 (as it can be easily seen by taking the function η(x) = e−|x| in one dimension,
respectively η(x1)η1(x2, . . . , xN), where η1 ∈ C∞

c (RN−1) in dimension N � 2). This shows that
we cannot define T1 and T2 on Hs(RN) and on Ḣ s(RN) if s � − 1

2 .

Our next goal is to prove that the operators T1 and T2 are well defined and continuous
from Hs(RN) to Hs(RN) (respectively from Ḣ s(RN) to Ḣ s(RN)) if − 1

2 < s < 3
2 . It is ob-

vious that T1 and T2 are well defined and continuous from L2(RN) to L2(RN). It is well
known that H 1(RN) = W 1,2(RN) = {ϕ ∈ L2(RN) | ∂ϕ

∂xi
∈ L2(RN), i = 1, . . . ,N} and that

T1, T2 :W 1,2(RN) → W 1,2(RN) are well defined and continuous. Using interpolation theory we
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conclude that T1 and T2 are well defined and continuous from Hs(RN) to Hs(RN) if 0 � s � 1.
However, interpolation gives no information if either s < 0 or s > 1. Our next result deals with
any value of s in (− 1

2 , 3
2 ).

Theorem 3.2. The operators T1 and T2 are well defined and continuous from Hs(RN) to Hs(RN)

and from Ḣ s(RN) to Ḣ s(RN) for any s ∈ (− 1
2 , 3

2 ).

Proof. We will prove that there exists Cs > 0 such that for any u ∈ C∞
c (RN) we have

‖Tiu‖Hs � Cs‖u‖Hs , respectively ‖Tiu‖Ḣ s � Cs‖u‖Ḣ s , i = 1,2, (3.2)

and then the theorem will follow by density.
Therefore, suppose u ∈ C∞

c (RN). By (2.48) and (2.49) we have

‖T1u‖2
Ḣ s + ‖T2u‖2

Ḣ s − 2‖u‖2
Ḣ s

= −16 sin(sπ)

π2

∫
RN−1

∞∫
|ξ ′|

(
t2 − |ξ ′|2)s∣∣∣∣∣

∞∫
0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dt dξ ′, (3.3)

respectively

‖T1u‖2
Hs + ‖T2u‖2

Hs − 2‖u‖2
Hs

= −16 sin(sπ)

π2

∫
RN−1

∞∫
√

|ξ ′|2+1

(
t2 − |ξ ′|2 − 1

)s∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dt dξ ′. (3.4)

If N = 1 we use the convention R0 = {0} and the measure of {0} is 1.
We begin by proving that T1 and T2 are bounded from Ḣ s(R) to Ḣ s(R), − 1

2 < s < 3
2 . For

N = 1, the integral in the right-hand side of (3.3) can be formally written as

∞∫
0

∞∫
0

∞∫
0

t2s ξ

t2 + ξ2
· η

t2 + η2
f̂ (ξ)f̂ (η) dξ dη dt. (3.5)

Our strategy is as follows: first we compute explicitly the integral

Is(ξ, η) =
∞∫

0

t2s ξ

t2 + ξ2
· η

t2 + η2
dt = ξη

∞∫
0

t2s 1

t2 + ξ2
· 1

t2 + η2
dt. (3.6)

Observe that Is(ξ, η) > 0 if ξ > 0, η > 0. Then we will prove that for any s ∈ (− 1
2 , 3

2 ) and any
ϕ,ψ ∈ L2(0,∞) we have∣∣∣∣∣

∞∫ ∞∫
ξ−sη−sIs(ξ, η)ϕ(ξ)ψ(η)dξ dη

∣∣∣∣∣ � C(s)‖ϕ‖L2(0,∞) · ‖ψ‖L2(0,∞).
0 0
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This will be done in Lemma 3.3. Thereafter it will be clear that for any f ∈ Ḣ s(R) we have

∞∫
0

∞∫
0

Is(ξ, η)
∣∣f̂ (ξ)

∣∣ · ∣∣f̂ (η)
∣∣dξ dη

=
∞∫

0

∞∫
0

ξ−sη−sIs(ξ, η)
∣∣ξ s f̂ (ξ)

∣∣ · ∣∣ηsf̂ (η)
∣∣dξ dη

� C(s)
∥∥| · |s f̂ ∥∥2

L2(0,∞)
� C(s)‖f ‖2

Ḣ s (R)
. (3.7)

This justifies the use of Fubini’s Theorem in evaluating (3.5) and proves that the right-hand side
of (3.3) is less than C1(s)‖f ‖2

Ḣ s (R)
, where C1(s) is a constant depending only on s. Thus we infer

that there exists Cs > 0 such that ‖T1u‖Ḣ s (R) � Cs‖u‖Ḣ s (R) and ‖T2u‖Ḣ s (R) � Cs‖u‖Ḣ s (R) for
any u ∈ C∞

c (R). Consequently, T1 and T2 can be extended as continuous linear mappings form
Ḣ s(R) to Ḣ s(R), − 1

2 < s < 3
2 , as claimed.

To carry out the first step of this strategy, we come back to Is(ξ, η) given by (3.6). Since
the complex logarithm can be defined analytically on C \ {it | t ∈ (−∞,0]}, we may define the
holomorphic function z �→ z2s := e2s log(z) = |z|2se2is arg(z) on C \ {it | t ∈ (−∞,0]}. With this

definition the function k(z) = z2s

(z2+ξ2)(z2+η2)
is meromorphic on C\{it | t ∈ (−∞,0]}. If ξ �= η, k

has two simple poles, namely iξ and iη; if ξ = η it has a double pole at iξ . For 0 < ε < min(ξ, η),
and R > max(ξ, η), consider the closed path βε,R composed by the following pieces:

β1,ε,R(t) = t, t ∈ [−R,−ε],
β2,ε(θ) = εei(π−θ), θ ∈ [0,π],
β3,ε,R(t) = t, t ∈ [ε,R],
β4,R(θ) = Reiθ , θ ∈ [0,π].

If ξ �= η, using the Residue Theorem we get

∫
βε,R

k(z) dz = 2πi
[
Res(k, iξ) + Res(k, iη)

] = πeisπ

[
ξ2s

ξ(η2 − ξ2)
+ η2s

η(ξ2 − η2)

]
. (3.8)

Since s > − 1
2 we have limε→0

∫
β2,ε

k(z) dz = 0. We have also limR→∞
∫
β4,R

k(z) dz = 0 because

s < 3
2 . Passing to the limit as ε → 0 in (3.8) and then passing to the limit as R → ∞ in the

resulting equation, we get

0∫
k(z) dz +

∞∫
k(z) dz = πeisπ ξ2s−1 − η2s−1

η2 − ξ2
,

−∞ 0
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that is

(
e2isπ + 1

) ∞∫
0

t2s

(t2 + ξ2)(t2 + η2)
dt = πeisπ ξ2s−1 − η2s−1

η2 − ξ2
.

For s �= 1
2 we obtain

∞∫
0

t2s

(t2 + ξ2)(t2 + η2)
dt = π

2 cos(sπ)

ξ2s−1 − η2s−1

η2 − ξ2
. (3.9)

For s = 1
2 we compute directly

∞∫
0

t

(t2 + ξ2)(t2 + η2)
dt = 1

η2 − ξ2

∞∫
0

t

t2 + ξ2
− t

t2 + η2
dt = lnη − ln ξ

η2 − ξ2
. (3.10)

Hence

Is(ξ, η) = π

2 cos(sπ)

ξη(ξ2s−1 − η2s−1)

η2 − ξ2
if s �= 1

2
, and

I 1
2
(ξ, η) = ξη(lnη − ln ξ)

η2 − ξ2
. (3.11)

This gives

ξ−sη−sIs(ξ, η) = π

2 cos(sπ)

ξ sη1−s − ξ1−sηs

η2 − ξ2
if s �= 1

2
,

and

ξ− 1
2 η− 1

2 I 1
2
(ξ, η) = ξ

1
2 η

1
2

lnη − ln ξ

η2 − ξ2
.

An interesting property of these functions is given by the next lemma.

Lemma 3.3. Let Ks(ξ, η) = ξsη1−s−ξ1−sηs

η2−ξ2 if s �= 1
2 , respectively K 1

2
(ξ, η) = ξ

1
2 η

1
2

lnη−ln ξ

η2−ξ2 . For

any s ∈ (− 1
2 , 3

2 ) there exists a constant C(s) (depending only on s) such that for any ϕ,ψ ∈
L2(0,∞) we have

∣∣∣∣∣
∞∫

0

∞∫
0

ϕ(ξ)Ks(ξ, η)ψ(η)dξ dη

∣∣∣∣∣ � C(s)‖ϕ‖L2(0,∞)‖ψ‖L2(0,∞).



O. Lopes, M. Mariş / Journal of Functional Analysis 254 (2008) 535–592 561
Proof. Using polar coordinates we write ξ = r cos(θ), η = r sin(θ), where r = √
ξ2 + η2 and

θ = arctan η
ξ

. It is easy to see that Ks(ξ, η) = 1
r
Ls(θ), where

Ls(θ) = (sin θ)s(cos θ)1−s − (cos θ)s(sin θ)1−s

cos2 θ − sin2 θ
if s �= 1

2
,

and

L 1
2
(θ) = −ln tan θ

(1 − tan2 θ) cos2 θ
(sin θ)

1
2 (cos θ)

1
2 .

By a change of variables we get

∞∫
0

∞∫
0

∣∣ϕ(ξ)Ks(ξ, η)ψ(η)
∣∣dξ dη =

π
2∫

0

∞∫
0

∣∣ϕ(r cos θ)ψ(r sin θ)
∣∣dr

∣∣Ls(θ)
∣∣dθ.

Using the Cauchy–Schwarz inequality we have

∞∫
0

∣∣ϕ(r cos θ)ψ(r sin θ)
∣∣dr �

∥∥ϕ(· cos θ)
∥∥

L2(0,∞)

∥∥ψ(· sin θ)
∥∥

L2(0.∞)
= ‖ϕ‖L2(0,∞)‖ψ‖L2(0,∞)√

cos θ · sin θ
.

Consequently,

∞∫
0

∞∫
0

∣∣ϕ(ξ)Ks(ξ, η)ψ(η)
∣∣dξ dη � ‖ϕ‖L2(0,∞)‖ψ‖L2(0,∞)

π
2∫

0

|Ls(θ)|√
cos θ · sin θ

dθ. (3.12)

The lemma will be proved if we show that the last integral in (3.12) is finite. If s �= 1
2 we have

π
2∫

0

|Ls(θ)|√
cos θ · sin θ

dθ =
π
2∫

0

∣∣∣∣ (sin θ)s− 1
2 (cos θ)

1
2 −s − (cos θ)s− 1

2 (sin θ)
1
2 −s

cos2 θ − sin2 θ

∣∣∣∣dθ

=
π
2∫

0

∣∣∣∣ (tan θ)s− 1
2 − (tan θ)

1
2 −s

1 − tan2 θ

∣∣∣∣ · 1

cos2 θ
dθ

=
∞∫

0

∣∣∣∣ t s− 1
2 − t

1
2 −s

1 − t2

∣∣∣∣dt. (3.13)

Using l’Hôspital’s rule it is easy to see that limt→1
t s−1/2−t1/2−s

1−t2 = 1
2 − s; hence the function

t �→ t s−1/2−t1/2−s

2 is bounded near 1. Since s − 1 ∈ (−1,1), the last integral in (3.13) converges.

1−t 2
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If s = 1
2 we have

π
2∫

0

|L 1
2
(θ)|

√
cos θ · sin θ

dθ =
π
2∫

0

∣∣∣∣ −ln tan θ

1 − tan2 θ

∣∣∣∣ · 1

cos2 θ
dθ =

∞∫
0

∣∣∣∣ lny

y2 − 1

∣∣∣∣dy. (3.14)

Note that limy→1
lny

y2−1
= 1

2 and this implies that the last integral in (3.14) converges. This com-

pletes the proof of Lemma 3.3. �
In view of (3.3), (3.5), (3.7), (3.11) and Lemma 3.3, it follows that T1 and T2 are well defined

and continuous from Ḣ s(R) to Ḣ s(R) for − 1
2 < s < 3

2 .
Next we prove that T1 and T2 are continuous from Hs(R) to Hs(R). We estimate the integral

in the right-hand side of (3.4) for N = 1. If s ∈ [0, 3
2 ) we have by (3.5)–(3.7)

∞∫
1

(
t2 − 1

)s∣∣∣∣∣
∞∫

0

f̂ (ξ)
ξ

t2 + ξ2
dξ

∣∣∣∣∣
2

dt �
∞∫

0

t2s

∣∣∣∣∣
∞∫

0

f̂ (ξ)
ξ

t2 + ξ2
dξ

∣∣∣∣∣
2

dt

� C(s)‖f ‖2
Ḣ s � C(s)‖f ‖2

Hs . (3.15)

If s ∈ (− 1
2 ,0), using the change of variable τ = √

t2 − 1 and (3.9) we get

∞∫
1

(t2 − 1)s

(t2 + ξ2)(t2 + η2)
dt =

∞∫
0

τ 2s

(τ 2 + 1 + ξ2)(τ 2 + 1 + η2)
· τ√

τ 2 + 1
dτ

�
∞∫

0

τ 2s

(τ 2 + 1 + ξ2)(τ 2 + 1 + η2)
dτ

= π

2 cos(sπ)
· (1 + ξ2)

2s−1
2 − (1 + η2)

2s−1
2

η2 − ξ2
. (3.16)

Consequently,

∞∫
1

(
t2 − 1

)s∣∣∣∣∣
∞∫

0

f̂ (ξ)
ξ

t2 + ξ2
dξ

∣∣∣∣∣
2

dt

�
∞∫

0

∞∫
0

∣∣f̂ (ξ)
∣∣ · ∣∣f̂ (η)

∣∣ ∞∫
1

(
t2 − 1

)s ξη

(t2 + ξ2)(t2 + η2)
dt dξ dη

� π

2 cos(sπ)

∞∫ ∞∫ ∣∣f̂ (ξ)
∣∣ · ∣∣f̂ (η)

∣∣ · ξη
(1 + ξ2)

2s−1
2 − (1 + η2)

2s−1
2

η2 − ξ2
dξ dη
0 0
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= π

2 cos(sπ)

∞∫
0

∞∫
0

(
1 + ξ2) s

2
∣∣f̂ (ξ)

∣∣ · (1 + η2) s
2
∣∣f̂ (η)

∣∣
× ξη

η2 − ξ2
· (1 + ξ2)

2s−1
2 − (1 + η2)

2s−1
2

(1 + ξ2)
s
2 (1 + η2)

s
2

dξ dη. (3.17)

It is elementary to prove that for any ξ, η > 0, ξ �= η we have

ξη

η2 − ξ2
· (1 + ξ2)

2s−1
2 − (1 + η2)

2s−1
2

(1 + ξ2)
s
2 (1 + η2)

s
2

� ξ sη1−s − ξ1−sηs

η2 − ξ2
= Ks(ξ, η). (3.18)

Coming back to (3.17) and using Lemma 3.3 we obtain

∞∫
1

(
t2 − 1

)s∣∣∣∣∣
∞∫

0

f̂ (ξ)
ξ

t2 + ξ2
dξ

∣∣∣∣∣
2

dt � πC(s)

2 cos(sπ)

∥∥(1 + | · |2) s
2 f̂

∥∥2
L2(0,∞)

� C′(s)‖f ‖2
Hs . (3.19)

From (3.4) and (3.15) if s ∈ [0, 3
2 ), respectively from (3.4) and (3.19) if s ∈ (− 1

2 ,0), we infer
that T1 and T2 can be extended as linear continuous operators from Hs(R) to Hs(R).

Now we prove Theorem 3.2 in the case N � 2.
If s ∈ [0, 3

2 ), arguing as in (3.5)–(3.7) and using Lemma 3.3 we have

∞∫
|ξ ′|

(
t2 − |ξ ′|2)s∣∣∣∣∣

∞∫
0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dt

�
∞∫

0

t2s

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dt

�
∞∫

0

∞∫
0

∣∣f̂ (ξ1, ξ
′)
∣∣ξ s

1 · ∣∣f̂ (η1, ξ ′)
∣∣ηs

1 · (ξ−s
1 η−s

1 Is(ξ1, η1)
)
dξ1 dη1

� C(s)
∥∥| · |s f̂ (·, ξ ′)

∥∥2
L2(0,∞)

� C(s)

∞∫
−∞

(
ξ2

1 + |ξ ′|2)s∣∣f̂ (ξ1, ξ
′)
∣∣2 dξ1. (3.20)

If s ∈ (− 1
2 ,0), using the change of variable τ = √

t2 − |ξ ′|2, arguing as in the proof of (3.16),
then taking (3.9) into account we obtain

∞∫
′

(t2 − |ξ ′|2)s
(t2 + ξ2)(t2 + η2)

dt =
∞∫

τ 2s

(τ 2 + |ξ ′|2 + ξ2
1 )(τ 2 + |ξ ′|2 + η2

1)
· τ√

τ 2 + |ξ ′|2 dτ
|ξ | 0
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�
∞∫

0

τ 2s

(τ 2 + |ξ ′|2 + ξ2
1 )(τ 2 + |ξ ′|2 + η2

1)
dτ

= π

2 cos(sπ)
· (|ξ ′|2 + ξ2

1 )
2s−1

2 − (|ξ ′|2 + η2
1)

2s−1
2

η2
1 − ξ2

1

.

We also have

ξ1η1

η2
1 − ξ2

1

· (ξ2
1 + |ξ ′|2) 2s−1

2 − (η2
1 + |ξ ′|2) 2s−1

2

(ξ2
1 + |ξ ′|2) s

2 (η2
1 + |ξ ′|2) s

2
� Ks(ξ1, η1)

(this inequality is analogous to (3.18)). Arguing as in (3.17), using the two previous inequalities
and Lemma 3.3 we get

∞∫
|ξ ′|

(
t2 − |ξ ′|2)s∣∣∣∣∣

∞∫
0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣
2

dt

� πC(s)

2 cos(sπ)

∥∥(|ξ ′|2 + | · |2) s
2 f̂ (·, ξ ′)

∥∥2
L2(0,∞)

� C′(s)
∞∫

−∞

(
ξ2

1 + |ξ ′|2)s∣∣f̂ (ξ1, ξ
′)
∣∣2 dξ1. (3.21)

Integrating (3.20), respectively (3.21), over RN−1 we infer that the integral in the right-hand
side of (3.3) is less than C′′(s)‖f ‖2

Ḣ s . This proves that T1 and T2 can be extended by continuity

from Ḣ s(RN) to Ḣ s(RN) for s ∈ (− 1
2 , 3

2 ).
In a similar way we show that T1 and T2 can be extended by continuity from Hs(RN) to

Hs(RN) for s ∈ (− 1
2 , 3

2 ). Theorem 3.2 is now proved. �
For a measurable function u defined on RN , we define its antisymmetric part in the x1 di-

rection by Au(x1, x
′) = 1

2 (u(x1, x
′) − u(−x1, x

′)). If u is a tempered distribution, we define Au

by 〈Au,φ〉S ′,S = 〈u,Aφ〉S ′,S for any φ ∈ S . Obviously, Au is odd with respect to x1 (for dis-
tributions, this means that 〈Au,φ(−x1, x

′)〉S ′,S = −〈Au,φ〉S ′,S ). It is clear from the definition
that A defines a linear continuous map from Hs(RN) to Hs(RN) (respectively from Ḣ s(RN)

to Ḣ s(RN)) for any s. Moreover, for any tempered distribution u, the distribution F(Au) is odd
with respect to x1.

It follows from the proof of Theorem 3.2 that for any s ∈ (− 1
2 , 3

2 ), the following complex
bilinear forms are continuous:

BN,s : Ḣ s
(
RN

)× Ḣ s
(
RN

) → C,
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BN,s(u, v) =
∫

RN−1

∞∫
|ξ ′|

(
t2 − |ξ ′|2)s ∞∫

0

Âu(ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

×
∞∫

0

Âv(η1, ξ ′) η1

t2 + η2
1

dη1 dt dξ ′,

B̃N,s :Hs
(
RN

)× Hs
(
RN

) → C,

B̃N,s(u, v) =
∫

RN−1

∞∫
√

|ξ ′|2+1

(
t2 − |ξ ′|2 − 1

)s ∞∫
0

Âu(ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

×
∞∫

0

Âv(η1, ξ ′) η1

t2 + η2
1

dη1 dt dξ ′.

Moreover, from (3.3) and (3.4) we have the identities

‖T1u‖2
Ḣ s (RN)

+ ‖T2u‖2
Ḣ s (RN)

− 2‖u‖2
Ḣ s (RN)

= −16 sin(sπ)

π2
BN,s(Au,Au), (3.22)

‖T1u‖2
Hs(RN)

+ ‖T2u‖2
Hs(RN)

− 2‖u‖2
Hs(RN)

= −16 sin(sπ)

π2
B̃N,s(Au,Au) (3.23)

for any u ∈ C∞
c (RN). From Theorem 3.2, the continuity of BN,s and of B̃N,s and the density

of C∞
c (RN) in Ḣ s(RN) and in Hs(RN) we infer that we have the following.

Corollary 3.4. Let s ∈ (− 1
2 , 3

2 ). The identity (3.22) holds for any u ∈ Ḣ s(RN) and (3.23) holds
for any u ∈ Hs(RN).

Our next aim is to show that the quadratic forms BN,s and B̃N,s define norms in some spaces
of odd functions. We start with the following proposition.

Lemma 3.5. Assume that g : R → C is a measurable function, g(−t) = −g(t) a.e. and

• either g ∈ Lp(R) for some p ∈ (1,∞),
• or (k2 + ξ2)

s
2 g(ξ) ∈ L2(R) for some k ∈ R and s ∈ (− 1

2 , 3
2 ).

Suppose that the set

A =
{

x > 0
∣∣∣ ∞∫

0

ξ

x2 + ξ2
g(ξ) dξ = 0

}

has a limit point x0 > 0.
Then g = 0 almost everywhere on R.
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Proof. We may suppose without loss of generality that g is real (otherwise we carry out the
proof for its real and imaginary parts).

First we deal with the simpler case g ∈ Lp(R) for some p, 1 < p < ∞. We define the Poisson
integrals for g,

a(x, y) = 1

π

∞∫
−∞

x

x2 + (y − t)2
g(t) dt and

b(x, y) = − 1

π

∞∫
−∞

y − t

x2 + (y − t)2
g(t) dt. (3.24)

It follows from Lemma 2.4(iii) that the functions a and b are well defined and harmonic in the
right half-plane and r(x + iy) := a(x, y)+ ib(x, y) is holomorphic in {z ∈ C | Re(z) > 0}. Since
g is odd, we have a(x,0) = 0 for any x > 0. If x ∈ A, we have also b(x,0) = 0. Consequently,
r(x) = 0 for any x ∈ A. But r is holomorphic and A has a limit point x0 > 0, thus necessarily
r ≡ 0. By Lemma 2.4(ii) we know that a(x, y) → g(y) as x → 0 for almost every y, hence g = 0
a.e. on R.

Suppose that (k2 + | · |2) s
2 g ∈ L2(R) for some k �= 0 and s ∈ (− 1

2 , 3
2 ). We may assume that

k = 1. If s ∈ [0, 3
2 ), then obviously g ∈ L2(R) and the conclusion of the lemma follows from

the above considerations. If s ∈ (− 1
2 ,0), then for any x > 0 and y ∈ R the functions ϕx,y(t) =

(1 + t2)− s
2 x

x2+(y−t)2 and ψx,y(t) = (1 + t2)− s
2

y−t

x2+(y−t)2 belong to L2(R). We may write

∞∫
−∞

x

x2 + (y − t)2
g(t) dt =

∞∫
−∞

ϕx,y(t)
(
1 + t2) s

2 g(t) dt

and

∞∫
−∞

y − t

x2 + (y − t)2
g(t) dt =

∞∫
−∞

ψx,y(t)
(
1 + t2) s

2 g(t) dt.

Using the Cauchy–Schwarz inequality, we see that the functions a and b in (3.24) are well defined
in the right half-plane (in particular,

∫ ∞
0

ξ

x2+ξ2 g(ξ) dξ exists for any x > 0). Clearly the function
r(x + iy) := a(x, y) + ib(x, y) is holomorphic and, as above we have r(x) = 0 for x ∈ A. Since
A has a limit point x0 > 0, we infer that r ≡ 0. Next, we have limx↓0 a(x, y) = g(y) whenever
y is a Lebesgue point of g (the proof of this fact follows from standard arguments and it is quite
similar to the proof of [24, Theorem 1.25, p. 15]; for brevity, we omit it). This obviously implies
g = 0 a.e., as desired.

Now let us consider the case k = 0. If | · |sg ∈ L2(R) and s ∈ (− 1
2 , 1

2 ), we may repeat almost
word by word the proof above (we have only to replace the functions ϕx,y and ψx,y by t �→
t−s x

x2+(y−t)2 , respectively by t �→ t−s y−t

x2+(y−t)2 ).

If | · |sg ∈ L2(R) and s ∈ [ 1
2 , 3

2 ), the integrals defining a and b in (3.24) do not necessarily
converge. In this case we define
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a1(x, y) = 1

π

∞∫
0

4xyt

[x2 + (y − t)2][x2 + (y + t)2]g(t) dt and

b1(x, y) = 1

π

∞∫
0

2t (t2 + x2 − y2)

[x2 + (y − t)2][x2 + (y + t)2]g(t) dt. (3.25)

Notice that if g ∈ L1
loc(R) is odd and g(t)

t
∈ L1([1,∞)), then a = a1 and b = b1. It is obvi-

ous that for fixed x > 0, y ∈ R and s ∈ (− 1
2 , 3

2 ), the functions ϕ1(t) = t−s 4xyt

[x2+(y−t)2][x2+(y+t)2]
and ψ1(t) = t−s 2t (t2+x2−y2)

[x2+(y−t)2][x2+(y+t)2] belong to L2((0,∞)) and this implies that a1 and b1 are
well defined. It is straightforward that r1(x + iy) := a1(x, y) + ib1(x, y) is holomorphic in the
right half-plane. Obviously a1(x,0) = 0 for any x > 0 and b1(x,0) = 2

π

∫ ∞
0

t

x2+t2 g(t) dt = 0 for
x ∈ A. Consequently r = 0 on A. Since A has a limit point x0 > 0, we infer that r ≡ 0 in the
right half-plane. Let y > 0 be a Lebesgue point of g. Since

∞∫
0

4xyt

[x2 + (y − t)2][x2 + (y + t)2] dt = 2 arctan
y

x
,

proceeding as in the previous cases, one can show that |a1(x, y) − 2
π
(arctan y

x
)g(y)| → 0 as

x → 0, hence limx↓0 a1(x, y) = g(y). Consequently we have limx↓0 a1(x, y) = g(y) for almost
every y and the lemma is proved. �

We set

Hs
1,odd

(
RN

) = {
f ∈ Hs

(
RN

) ∣∣ f is odd with respect to x1
} = {

f ∈ Hs
(
RN

) ∣∣ f = Af
}
,

Ḣ s
1,odd

(
RN

) = {
f ∈ Ḣ s

(
RN

) ∣∣ f is odd with respect to x1
} = {

f ∈ Ḣ s
(
RN

) ∣∣ f = Af
}
,

where, as before, Af is the antisymmetric part of f in the x1 direction. For f ∈ Ḣ s
1,odd(R

N) we

define Ns(f ) = (BN,s(f,f ))
1
2 and for f ∈ Hs

1,odd(R
N) we define Ñs(f ) = (B̃N,s(f, f ))

1
2 .

Theorem 3.6. Ñs is a norm on Hs
1,odd(R

N), continuous with respect to the usual Hs norm, and

Ns is a norm on Ḣ s
1,odd(R

N), continuous with respect to the Ḣ s norm.

Endowed with these norms, Hs
1,odd(R

N) and Ḣ s
1,odd(R

N) are pre-Hilbert spaces.

Proof. It is clear that B̃N,s and BN,s are complex-symmetric bilinear forms on Hs(RN) (re-
spectively on Ḣ s(RN)) and that B̃N,s(f, f ) � 0 and BN,s(f,f ) � 0 for any f (thus, in
particular, Ñs and Ns are well defined). Suppose, for instance, that f ∈ Hs

1,odd(R
N) and

B̃N,s(f, f ) = 0. This implies that for almost every ξ ′ ∈ RN−1 we have f̂ (−·, ξ ′) = −f̂ (·, ξ ′)
a.e., (| · |2 + |ξ ′|2) s

2 f̂ (·, ξ ′) ∈ L2(R) and
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∞∫
√

|ξ ′|2+1

(
t2 − |ξ ′|2 − 1

)s∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1

∣∣∣∣∣dt = 0.

For such ξ ′ we must have

∞∫
0

f̂ (ξ1, ξ
′) ξ1

t2 + ξ2
1

dξ1 = 0 for almost every t ∈ (√|ξ ′|2 + 1,∞)
and using Lemma 3.5 we infer that f̂ (·, ξ ′) = 0 a.e. on R, so

∫
R(ξ2

1 + |ξ ′|2)s |f̂ (ξ1, ξ
′)|2 dξ1 = 0.

Consequently

‖f ‖2
Hs =

∫
RN−1

∫
R

(
ξ2

1 + |ξ ′|2)s∣∣f̂ (ξ1, ξ
′)
∣∣2 dξ1 dξ ′ = 0,

i.e. f = 0 a.e. The proof is the same for f ∈ Ḣ s(RN). Finally, the continuity of Ñs and Ns with
respect to the usual norms follows from Theorem 3.2 and Corollary 3.4. �
4. Applications

In this section we illustrate how the results in Sections 2 and 3 can be used to prove the
symmetry of minimizers in some concrete examples.

4.1. Problems involving fractional powers of the Laplace operator

Theorem 4.1. Let s ∈ (0,1) and assume that F,G : R → R are such that u �→ F(u) and u �→
G(u) map Ḣ s(RN) (or Hs(RN)) into L1(RN). Suppose that either:

Case A. u ∈ Ḣ s(RN) and u is a solution of the minimization problem

minimize E(u) :=
∫

RN

|ξ |2s
∣∣̂u(ξ)

∣∣2 dξ +
∫

RN

F
(
u(x)

)
dx

under the constraint I (u) =
∫

RN

G
(
u(x)

)
dx = λ �= 0, or

Case B. u ∈ Hs(RN) and u is a solution of the minimization problem

minimize E(u) :=
∫

RN

(
1 + |ξ |2)s∣∣̂u(ξ)

∣∣2 dξ +
∫

RN

F
(
u(x)

)
dx

under the constraint I (u) =
∫

RN

G
(
u(x)

)
dx = λ �= 0.

Then, after a translation in RN , u is radially symmetric.
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Proof. Let us prove first that u is symmetric with respect to x1. Making a translation in the
x1 direction if necessary, we may assume that

∫
{x1<0} G(u(x)) dx = ∫

{x1>0} G(u(x)) dx = λ
2 .

Let u1 = T1u and u2 = T2u. It follows from Theorem 3.2 that u1, u2 ∈ Ḣ s(RN) in case A,
respectively u1, u2 ∈ Hs(RN) in case B. It is obvious that we have

∫
RN G(u1(x)) dx =

2
∫
{x1<0} G(u(x)) dx = λ and

∫
RN G(u2(x)) dx = 2

∫
{x1>0} G(u(x)) dx = λ; hence u1 and u2

also satisfy the constraint. From (3.22) and (3.23) we have

E(u1) + E(u2) − 2E(u) = −16 sin(sπ)

π2
N2

s (Au) in case A, respectively

E(u1) + E(u2) − 2E(u) = −16 sin(sπ)

π2
Ñ2

s (Au) in case B,

where, as before, Au(x1, x
′) = 1

2 (u(x1, x
′) − u(−x1, x

′)) is the antisymmetric part of u in the
x1 direction. If Au �≡ 0, then Theorem 3.6 implies N2

s (Au) > 0 (respectively Ñ2
s (Au) > 0) and

we infer that E(u1) + E(u2) − 2E(u) < 0, contradicting the fact that u is a minimizer. Thus
necessarily Au ≡ 0 and this means that u is symmetric with respect to x1.

Arguing similarly with the remaining variables x2, . . . , xN , we find a new origin O ′ such
that u is symmetric with respect to any of the variables x1, . . . , xN ; in particular, u(−x) = u(x)

a.e. on RN . Now let Π be any hyperplane containing the new origin O ′ and let Π+ and Π−
be the halfspaces determined by Π . Since the transformation x �→ −x maps Π− into Π+, we
see that

∫
Π− G(u(x)) dx = ∫

Π+ G(u(x)) dx = λ
2 . Arguing as above we conclude that u must be

symmetric with respect to Π . This implies that u is radially symmetric with respect to the new
origin O ′. �

An application of Theorem 4.1 concerns the solitary waves to the generalized Benjamin–Ono
equation

At + αAAx − β(−�)
1
2 Ax = 0, (x, y) ∈ R2, t ∈ R,

where α,β > 0. Solitary waves are solutions of the form A(t, x, y) = u(x − ct, y). After a scale
change, a solitary wave u(x, y) satisfies the equation

u + (−�)
1
2 u = u2 in R2.

The existence of solitary waves was proved in [21] by minimizing the functional

V (u) = 1

2

∫
R2

∣∣(−�)
1
4 u

∣∣2 dx +
∫
R2

u2 dx = 1

2(2π)2

∫
R2

|ξ |∣∣̂u(ξ)
∣∣2 dξ +

∫
R2

u2 dx

under the constraint I (u) = 1
3

∫
R2 u3 dx = constant. It has been shown in [21] that any solu-

tion u∗ of the above problem also minimizes

E(v) := 1

2

∫
R2

∣∣(−�)
1
4 v

∣∣2 dx − 1

3

∫
R2

v3 dx

under the constraint Q(v) = Q(u∗), where Q(v) = 1 ∫
2 |u|2 dx.
2 R
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It follows directly from Theorem 4.1 that, except for translation, any minimizer of these prob-
lems is radially symmetric.

Next we apply our method to a variational problem involving two unknown functions (the
vector case). Consider the functionals

E(u,v) = 1

2

∫
RN

(∣∣(−�)
s
2 u

∣∣2 + |∇v|2)dx +
∫

RN

F (u, v) dx

where 0 < s < 1, and

Q(u,v) =
∫

RN

G(u, v) dx.

We make the following assumptions:

A1. F,G : R2 → R are C2 functions satisfying F(0,0) = ∂1F(0,0) = ∂2F(0,0) = 0, G(0,0) =
∂1G(0,0) = ∂2G(0,0) = 0 and the growth conditions∣∣∂iF (u, v)

∣∣ � C
(|u|p−1 + |v|q−1) and

∣∣∂iG(u, v)
∣∣ � C

(|u|p−1 + |v|q−1) if
∣∣(u, v)

∣∣ � 1,

where i ∈ {1, 2}, C is a positive constant, 2 < p < 2N
N−2s

and 2 < q < 2N
N−2 .

A2. If (u, v) ∈ Hs(RN)×H 1(RN) and (u, v) �≡ (0,0), then either ∂1G(u,v) �≡ 0 or ∂2G(u,v) �≡
0 (a manifold condition).

Theorem 4.2. Under assumptions A1 and A2, any minimizer (u, v) ∈ Hs(RN) × H 1(RN) of
E(u,v) subject to the constraint Q(u,v) = λ �= 0 is radially symmetric (except for translation).

Proof. First we prove that after a translation, (u, v) is symmetric with respect to x1. In fact, after
possibly a translation in the x1 direction we may assume that∫

{x1<0}
G(u,v) dx =

∫
{x1>0}

G(u,v) dx = λ

2
. (4.1)

We put u1 = T1u, u2 = T2u, v1 = T1v and v2 = T2v. By Theorem 3.2, the pairs (u1, v1) and
(u2, v2) belong to Hs(RN) × H 1(RN) and in view of (4.1) they also satisfy the constraint
Q(u1, v1) = Q(u2, v2) = λ. Moreover, defining W(ϕ) = ∫

RN |ξ |2s |ϕ̂(ξ)|2 dξ and using (3.22)
we see that

E(u1, v1) + E(u2, v2) − 2E(u,v) = 1

2

1

(2π)N

(
W(u1) + W(u2) − 2W(u)

)
= − 1

(2π)N

8 sin(sπ)

π2
BN,s(Au,Au) � 0.

We conclude that (u1, v1) and (u2, v2) are also minimizers and we must have BN,s(Au,Au) = 0.
Theorem 3.6 implies that Au = 0, that is u is symmetric with respect to x1, i.e. u = u1 = u2.
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Since (u, v) and (u1, v1) = (u, v1) are minimizers, they satisfy the Euler–Lagrange equations{
(−�)su + ∂1F(u, v) + α∂1G(u,v) = 0,

−�v + ∂2F(u, v) + α∂2G(u,v) = 0,
(4.2)

respectively {
(−�)su + ∂1F(u, v1) + β∂1G(u,v1) = 0,

−�v1 + ∂2F(u, v1) + β∂2G(u,v1) = 0.
(4.3)

From (4.2), A1, the elliptic regularity for the Laplacian and its fractional powers and the usual
boot-strap argument we get u ∈ H 2s(RN)∩L∞(RN) and v ∈ H 2(RN)∩L∞(RN). Of course that
the same conclusion holds for (u, v1). Notice that the Lp elliptic regularity for fractional powers

of the Laplacian and for 1 < p < ∞ follows from the fact that the multiplier m(ξ) = (1+|ξ |2)s
1+|ξ |2s

satisfies the estimate |Dαm(ξ)| � B(α)
|ξ |α and from the theorem of Mihlin–Hörmander.

We recall the following well-known result.

Unique Continuation Principle. Assume that Φ ∈ H 2(RN,Rm) solves the linear system

−�Φ + A(x)Φ(x) = 0 in RN, (4.4)

where A(x) is an m × m matrix whose elements belong to L∞(RN). If Φ ≡ 0 in some open set
ω ⊂ RN , then Φ ≡ 0 in RN .

A proof for the Unique Continuation Principle is given in [13, Chapter VIII] in the scalar case
and in the appendix of [18] in the vector case. Notice that the Unique Continuation Principle
is essentially a local result. Although it is stated for functions Φ ∈ H 2(RN), it is also valid for
functions Φ ∈ W 2,p(RN) with p > 2 because W

2,p

loc (RN) ⊂ H 2
loc(R

N). This observation will be
useful later.

Now let us come back to the proof of Theorem 4.2.
If (u1, v1) = (0,0), since G(0,0) = 0 we have λ = Q(u1, v1) = 0, a contradiction. Thus

(u1, v1) �= (0,0) and it follows from A2 that there exists (x1, x
′) ∈ (−∞,0) × RN−1 such that

∂1G(u1, v1)(x1, x
′) �= 0 or ∂2G(u1, v1)(x1, x

′) �= 0. Since v = v1 for x1 < 0, we infer from (4.2)
and (4.3) that α = β . Moreover, using the regularity of u,v, v1 we get ∂2F(u, v) − ∂2F(u, v1) =
b(x)(v(x) − v1(x)) and ∂2G(u,v) − ∂2G(u,v1) = c(x)(v(x) − v1(x)) where b, c ∈ L∞(RN).
Let w(x) = v(x) − v1(x). Using the second components of (4.2) and (4.3) and the fact that
α = β , we see that w satisfies the linear equation −�w(x) + a(x)w(x) = 0 in RN , where
a = b + αc ∈ L∞(RN). Since w vanishes on a half-space, by the Unique Continuation Prin-
ciple we conclude that w vanishes everywhere, and this implies v = v1 in RN . Thus we have
shown that (u, v) is symmetric with respect to x1.

Repeating this argument with the variables x2, . . . , xN , we find a new origin O ′ such that
(u, v) is symmetric with respect to x1, . . . , xN . Then as in the proof of Theorem 4.1 we show
that (u, v) is symmetric with respect to any hyperplane Π containing O ′, consequently (u, v) is
radially symmetric with respect to the new origin O ′. �
Remark 4.3. Symmetrization inequalities for functions in the space H 1/2(RN) have been proved
in [3]. Therefore if s = 1 , the function F in Theorem 4.2 satisfies the cooperative condition
2
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∂2
1,2F(u, v) � 0 (see [5]), G has a special form and it is known in advance that the components u,

v of the minimizer are nonnegative, then using symmetrization one can conclude that there exists
a radially symmetric minimizer.

Remark 4.4. In the case F(u, v) = u2 + v2, G(u,v) = u2v, by using symmetrization and Riesz’
inequality it has been proved in [3] that there exists a radially symmetric minimizer. The fact that
F and G are homogeneous plays a crucial role in their proof.

As an example of application for Theorem 4.2, we consider the Hamiltonian system⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
= ∂

∂x1

(
(−�)1/2u + ∂1F(u, v)

)
,

∂v

∂t
= ∂

∂x1

(−�v + ∂2F(u, v)
)
.

(4.5)

The generalized multidimensional Benjamin–Ono equation

∂u

∂t
= ∂

∂x1

(
(−�)1/2u + g(u)

)
(4.6)

with g(u) = u2 and the generalized multidimensional Korteweg–de Vries equation

∂v

∂t
= ∂

∂x1

(−�v + f (v)
)

(4.7)

have been considered in [21] and in [4], respectively; in these papers, references giving the phys-
ical motivation for the above equations can also be found. System (4.5) can be considered a
Hamiltonian coupling between (4.6) and (4.7).

Formally, the system (4.5) has the following conserved quantities:

E(u,v) = 1

2

∫
RN

∣∣(−�)1/4u
∣∣2 + |∇v|2 dx +

∫
RN

F (u, v) dx and

Q(u,v) = 1

2

∫
RN

(
u2 + v2)dx.

If we minimize E(u,v) subject to the constraint Q(u,v) = λ, where λ > 0, then according to [9]

the set Sλ containing the elements of H
1
2 (RN) × H 1(RN) where the minimum is achieved is

invariant and orbitally stable with respect to (4.5). Since any element (φ,ψ) ∈ Sλ satisfies the
Euler–Lagrange system {

(−�)1/2φ + ∂1F(φ,ψ) + cφ = 0,

−�ψ + ∂2F(φ,ψ) + cψ = 0,

we see that (φ,ψ) gives rise to a travelling wave solution of (4.5) of the form (u(t, x), v(t, x)) =
(φ(x1 − ct, x′),ψ(x1 − ct, x′)), x′ ∈ RN−1. As a consequence of Theorem 4.2, the elements
(φ,ψ) obtained in this way are radially symmetric (after a translation).
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4.2. Minimizers of the generalized Choquard functional

In this paragraph we consider the problem of minimizing the generalized Choquard functional

E(u) = 1

2

∫
RN

|∇u|2 dx −
∫

RN

∫
RN

F
(
u(x)

) 1

|x − y|N−2
F
(
u(y)

)
dx dy +

∫
RN

H
(
u(x)

)
dx (4.8)

subject to the constraint Q(u) = ∫
RN G(u(x)) dx = constant �= 0.

It is worth to note that the complex version of E,

Ẽ(u) = 1

2

∫
RN

|∇u|2 dx −
∫

RN

∫
RN

F1
(∣∣u(x)

∣∣2) 1

|x − y|N−2
F1

(∣∣u(y)
∣∣2)dx dy

+
∫

RN

H1
(∣∣u(x)

∣∣2)dx

is the Hamiltonian for the generalized Hartree equation

iut + �u + 4

( ∫
RN

F1(|u(y)|2)
|x − y|N−2

dy

)
F ′

1

(|u|2)(x)u(x) − 2H ′
1

(∣∣u(x)
∣∣2)u(x) = 0, (4.9)

and Q̃(u) = ∫
RN |u2(x)|dx is a conserved quantity for this evolution equation. The critical points

of Ẽ + ωQ̃ give rise to standing waves for (4.9). As far as minimization is concerned, using an
argument of T. Cazenave and P.-L. Lions (see the proof of Theorem II.1 in [9, p. 555]), we may
restrict ourselves to the real functionals E(u) and Q(u).

In the case N = 3, F(u) = G(u) = u2 and H(u) = 0, the problem of minimizing E(u) sub-
ject to Q(u) = λ has been studied in [15], where the existence, the radial symmetry and the
uniqueness of the minimizer have been proved. The symmetry was proved by using a sharp in-
equality for spherical rearrangements. This can still be used in our case if we know that the
minimizer is nonnegative and if we assume that F is increasing on [0,∞) (because the equal-
ity F(u∗) = (F (u))∗ is needed). Using the results in Sections 2 and 3, we will show the radial
symmetry of minimizers in dimension N � 3 under more general assumptions on F , G and H .

We begin by studying some properties of the nonlocal term appearing in (4.8).

Lemma 4.5. Let N � 3 and let F : R → R be a function of class C2 satisfying F(0) = F ′(0) = 0
and ∣∣F ′(x)

∣∣ � C|x|σ for |x| � 1,

where C > 0 is a constant and σ < 4
N−2 . Then the singular integral operator

I (ϕ)(x) =
∫
N

1

|x − y|N−2
ϕ(y)dy
R
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and the functional

M(ϕ) =
∫

RN

∫
RN

F
(
ϕ(x)

) 1

|x − y|N−2
F
(
ϕ(y)

)
dx dy

have the following properties:

(i) I is continuous from Lp(RN) to Lq(RN) if 1 < p < q < ∞ and 1
q

= 1
p

− 2
N

.

(ii) If 1 � p1 < N
2 < p2 � ∞, then I is continuous from Lp1(RN) ∩ Lp2(RN) to L∞(RN) ∩

C0(RN).
(iii) If 1 � r1 < 2N

N+2 < r2 � 2 and ϕ ∈ Lr1(RN) ∩ Lr2(RN), then

Î (ϕ)(ξ) = 4π
N
2

�(N
2 − 1)

· 1

|ξ |2 ϕ̂(ξ) in S ′(RN
)
.

(iv) M is well defined and differentiable on H 1(RN) and

M ′(u).ϕ = 2
∫

RN

( ∫
RN

F (u(y))

|x − y|N−2
dy

)
F ′(u(x)

)
ϕ(x)dx.

(v) For any u ∈ H 1(RN) we have

M(u) = cN

∫
RN

1

|ξ |2
∣∣̂F(u)(ξ)

∣∣2 dξ, where cN = 1

2N−2π
N
2 �(N

2 − 1)
.

Proof. (i) follows directly from Theorem 1 in [23, pp. 119–120].
(ii) We write 1

|x|N−2 as a1(x) + a2(x), where a1(x) = 1
|x|N−2 χ{|x|>1} and a2(x) = 1

|x|N−2 χ{|x|�1}.
Then we have I (ϕ) = a1 ∗ ϕ + a2 ∗ ϕ. It is obvious that a1 ∈ Lq(RN) for q ∈ ( N

N−2 ,∞] and

a2 ∈ Lq(RN) for q ∈ [1, N
N−2 ). Let p′

1 and p′
2 be the conjugate exponents of p1 and p2. Then

p′
1 > N

N−2 and p′
2 < N

N−2 , so that a1 ∈ Lp′
1(RN) and a2 ∈ Lp′

2(RN). We infer that I (ϕ) is con-
tinuous and by Young’s inequality we get

∥∥I (ϕ)
∥∥

L∞ � ‖a1‖
L

p′
1
· ‖ϕ‖Lp1 + ‖a2‖

L
p′

2
· ‖ϕ‖Lp2 .

(iv) First we consider the bilinear form

P(ϕ,ψ) =
∫
N

∫
N

ϕ(x)
1

|x − y|N−2
ψ(y)dx dy.
R R
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Notice that P is well defined and continuous on L
2N

N+2 (RN) × L
2N

N+2 (RN). Indeed, it follows

from (i) that I is well defined and continuous from L
2N

N+2 (RN) to L
2N

N−2 (RN) and we have

∣∣P(ϕ,ψ)
∣∣ = ∣∣∣∣ ∫

RN

I (ϕ)(x)ψ(x) dx

∣∣∣∣ � ∥∥I (ϕ)
∥∥

L
2N

N−2
· ‖ψ‖

L
2N

N+2
� AN‖ϕ‖

L
2N

N+2
‖ψ‖

L
2N

N+2
.

Without loss of generality we may assume that σ > 2
N

. From the assumptions on F we have
|F(u)| � C|u|2 if |u| � 1 and |F(u)| � C|u|1+σ if |u| > 1. It is well known that H 1(RN)

is continuously embedded in Lp(RN) for p ∈ [2, 2N
N−2 ] and then it is standard (see, e.g. [26,

Appendix A]) that u �→ F(u) is continuously differentiable from H 1(RN) to Lq(RN) for
q ∈ [max(1, 2

1+σ
), 2N

(N−2)(1+σ)
]. In particular, u �→ F(u) is continuously differentiable from

H 1(RN) to L
2N

N+2 (RN) (because 2
1+σ

< 2N
N+2 < 2N

(N−2)(1+σ)
). Since M(u) = P(F(u),F (u)),

(iv) follows.
(iii) and (v). Let K(x) = 1

|x|N−2 . Then K ∈ S ′(RN) and it follows from Theorem 4.1 in [24,

p. 160] or from Lemma 1 in [23, p. 117] that K̂(ξ) = 4π
N
2

�( N
2 −1)

· 1
|ξ |2 . From Lemma 1 in [23, p. 117]

we have

P(ϕ,ψ) = 1

(2π)N

∫
RN

Î (ϕ)(ξ)ψ̂(ξ) dξ = cN

∫
RN

1

|ξ |2 ϕ̂(ξ)ψ̂(ξ) dξ (4.10)

whenever ϕ,ψ ∈ S(RN). We claim that (4.10) holds for any ϕ,ψ ∈ Lr1(RN) ∩ Lr2(RN) with
1 � r1 < 2N

N+2 < r2 � 2. This assertion implies both (iii) and (v).
Now let us prove the claim. Since (4.10) holds on S × S , the bilinear form P is continuous

on L
2N

N+2 (RN)×L
2N

N+2 (RN) and Lr1(RN)∩Lr2(RN) is continuously embedded into L
2N

N+2 (RN),
all we have to do is to show that the bilinear form

P1(ϕ,ψ) =
∫

RN

1

|ξ |2 ϕ̂(ξ)ψ̂(ξ) dξ

is continuous on (Lr1(RN) ∩ Lr2(RN)) × (Lr1(RN) ∩ Lr2(RN)); then the claim follows by den-
sity of S in Lr1(RN) ∩ Lr2(RN).

Let r ′
1, r ′

2 be the conjugate exponents of r1, r2 and let q1, q2 be such that 1
r ′
1

+ 1
q1

= 1
2 , re-

spectively 1
r ′
2
+ 1

q2
= 1

2 . Let b1(ξ) = 1
|ξ |χ{|ξ |�1} and b2(ξ) = 1

|ξ |χ{|ξ |>1}. We have 2 � q1 < N and

q2 > N , so that b1 ∈ Lq1(RN) and b2 ∈ Lq2(RN). Since the Fourier transform maps continuously
Lr1(RN) into Lr ′

1(RN) and Lr2(RN) into Lr ′
2(RN), we have:

∣∣P1(ϕ,ψ)
∣∣ �

∣∣∣∣ ∫
{|ξ |�1}

1

|ξ |2 ϕ̂(ξ)ψ̂(ξ) dξ

∣∣∣∣+ ∣∣∣∣ ∫
{|ξ |>1}

1

|ξ |2 ϕ̂(ξ)ψ̂(ξ) dξ

∣∣∣∣
� ‖b1ϕ̂‖L2 · ‖b1ψ̂‖L2 + ‖b2ϕ̂‖L2 · ‖b2ψ̂‖L2

� ‖b1‖2
Lq1 ‖ϕ̂‖ r′ ‖ψ̂‖ r′ + ‖b2‖2

Lq2 ‖ϕ̂‖ r′ ‖ψ̂‖ r′

L 1 L 1 L 2 L 2
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� C(N, r1, r2)
(‖ϕ‖Lr1 ‖ψ‖Lr1 + ‖ϕ‖Lr2 ‖ψ‖Lr2

)
.

This proves the continuity of P1 and our claim. Thus the proof of Lemma 4.5 is complete. �
Theorem 4.6. Let N � 3 and let F,G,H : R → R be C2 functions satisfying the following as-
sumptions:

(a) F(0) = F ′(0) = 0 and there exist σ < 4
N−2 and C > 0 such that∣∣F ′(u)
∣∣ � C|u|σ if |u| � 1.

(b) There exist σ1 ∈ [1, N+2
N−2 ) and C1 > 0 such that∣∣G′(u)
∣∣ � C1|u|σ1 and

∣∣H ′(u)
∣∣ � C1|u|σ1 for any u ∈ R.

Moreover, if σ1 < 2 then we assume that σ1 � max(
(N−2)(1+2σ)−4

N
,1).

(c) For any ε > 0, G′ �≡ 0 on (−ε,0) and on (0, ε).

Then any minimizer u ∈ H 1(RN) of the functional E given by (4.8) subject to the constraint
Q(u) = λ �= 0 is radially symmetric (after a translation in RN ).

Proof. First of all, notice that the functionals E and Q are well defined and of class C1

on H 1(RN). Let u ∈ H 1(RN) be a minimizer. We will show that, except for translation, u is
symmetric with respect to x1. The same proof is valid for any other direction in RN and the
radial symmetry of u follows as in the proof of Theorem 4.1.

After a translation in the x1 direction we may suppose that∫
{x1<0}

G
(
u(x)

)
dx =

∫
{x1>0}

G
(
u(x)

)
dx = λ

2
.

As before, we define u1 = T1u and u2 = T2u. We know that u1, u2 ∈ H 1(RN). In view of as-
sumption (a), it is obvious that F(u) ∈ L1(RN) and we have T1(F (u)) = F(u1), T2(F (u)) =
F(u2), Q(u1) = Q(u2) = λ. Defining W(ϕ) = ∫

RN
1

|ξ |2 |ϕ̂(ξ)|2 dξ , from Lemma 4.5(v) we get

E(u1) + E(u2) − 2E(u) = −[
M(u1) + M(u2) − 2M(u)

]
= −cN

[
W

(
T1

(
F(u)

))+ W
(
T2

(
F(u)

))− 2W
(
F(u)

)]
. (4.11)

Recall that by (2.38) we have for any ϕ ∈ C∞
c (RN),

W(T1ϕ) + W(T2ϕ) − 2W(ϕ) = 8

π

∫
RN−1

1

|ξ ′|

∣∣∣∣∣
∞∫

0

Âϕ(ξ1, ξ
′) ξ1

|ξ ′|2 + ξ2
1

dξ1

∣∣∣∣∣
2

dξ ′. (4.12)

To show that this identity also holds for F(u) we need the following lemma.
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Lemma 4.7. Let N � 3 and let r1, r2 be such that 1 < r1 < 2N
N+2 < r2 < 2. The bilinear form

R(ϕ,ψ) =
∫

RN−1

1

|ξ ′|
∞∫

0

ϕ̂(ξ1, ξ
′) ξ1

|ξ ′|2 + ξ2
1

dξ1 ·
∞∫

0

ψ̂(η1, ξ
′) η1

|ξ ′|2 + η2
1

dη1 dξ ′

is continuous on (Lr1(RN) ∩ Lr2(RN)) × (Lr1(RN) ∩ Lr2(RN)).

Proof. Consider ϕ,ψ ∈ Lr1(RN)∩Lr2(RN). Then ϕ̂, ψ̂ ∈ Lr ′
1(RN)∩Lr ′

2(RN), where r ′
1 and r ′

2
are the conjugate exponents of r1 and r2. Using Hölder’s inequality and the change of variable
ξ1 = t |ξ ′|, we get for ξ ′ �= 0 and i = 1,2,

∣∣∣∣∣
∞∫

0

ϕ̂(ξ1, ξ
′) ξ1

|ξ ′|2 + ξ2
1

dξ1

∣∣∣∣∣ �
( ∞∫

0

∣∣ϕ̂(ξ1, ξ
′)
∣∣r ′

i dξ1

) 1
r′
i

( ∞∫
0

ξ
ri
1

(|ξ ′|2 + ξ2
1 )ri

dξ1

) 1
ri

= |ξ ′|
1−ri
ri

( ∞∫
0

t ri

(1 + t2)ri
dt

) 1
ri

( ∞∫
0

∣∣ϕ̂(ξ1, ξ
′)
∣∣r ′

i dξ1

) 1
r′
i

= Ci |ξ ′|
1−ri
ri

( ∞∫
0

∣∣ϕ̂(ξ1, ξ
′)
∣∣r ′

i dξ1

) 1
r′
i

. (4.13)

A similar estimate holds for ψ . Let qi be the conjugate exponent of
r ′
i

2 , i.e. qi = ri
2−ri

. Us-
ing (4.13), Hölder’s inequality and the estimate ‖ϕ̂‖

L
r′
i
� Ai‖ϕ‖Lri we have

∣∣∣∣∣
∫

BRN−1 (0,1)

1

|ξ ′|
∞∫

0

ϕ̂(ξ1, ξ
′) ξ1

|ξ ′|2 + ξ2
1

dξ1 ·
∞∫

0

ψ̂(η1, ξ
′) η1

|ξ ′|2 + η2
1

dη1 dξ ′
∣∣∣∣∣

� C2
1

∫
BRN−1 (0,1)

|ξ ′|
2−2r1

r1
−1

( ∞∫
0

∣∣ϕ̂(ξ1, ξ
′)
∣∣r ′

1 dξ1

) 1
r′1
( ∞∫

0

∣∣ψ̂(η1, ξ
′)
∣∣r ′

1 dη1

) 1
r′1

dξ ′

� C2
1

( ∫
BRN−1 (0,1)

|ξ ′|
q1(2−3r1)

r1 dξ ′
) 1

q1

( ∫
BRN−1 (0,1)

∞∫
0

∣∣ϕ̂(ξ1, ξ
′)
∣∣r ′

1 dξ1 dξ ′
) 1

r′1

×
( ∫

BRN−1 (0,1)

∞∫
0

∣∣ψ̂(η1, ξ
′)
∣∣r ′

1 dη1 dξ ′
) 1

r′1

� C2
1A2

1

( ∫
B N−1 (0,1)

|ξ ′|
q1(2−3r1)

r1 dξ ′
) 1

q1 ‖ϕ‖Lr1 ‖ψ‖Lr1 (4.14)
R
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and ∣∣∣∣∣
∫

{|ξ ′|>1}

1

|ξ ′|
∞∫

0

ϕ̂(ξ1, ξ
′) ξ1

|ξ ′|2 + ξ2
1

dξ1 ·
∞∫

0

ψ̂(η1, ξ
′) η1

|ξ ′|2 + η2
1

dη1 dξ ′
∣∣∣∣∣

� C2
2

∫
{|ξ ′|>1}

|ξ ′|
2−2r2

r2
−1

( ∞∫
0

∣∣ϕ̂(ξ1, ξ
′)
∣∣r ′

2 dξ1

) 1
r′2
( ∞∫

0

∣∣ψ̂(η1, ξ
′)
∣∣r ′

2 dη1

) 1
r′2

dξ ′

� C2
2

( ∫
{|ξ ′|>1}

|ξ ′|
q1(2−3r2)

r2 dξ ′
) 1

q2

( ∫
{|ξ ′|>1}

∞∫
0

∣∣ϕ̂(ξ1, ξ
′)
∣∣r ′

2 dξ1 dξ ′
) 1

r′2

×
( ∫

{|ξ ′|>1}

∞∫
0

∣∣ψ̂(η1, ξ
′)
∣∣r ′

2 dη1 dξ ′
) 1

r′2

� C2
2A2

2

( ∫
{|ξ ′|>1}

|ξ ′|
q2(2−3r2)

r2 dξ ′
) 1

q2 ‖ϕ‖Lr2 ‖ψ‖Lr2 . (4.15)

Since 1 < r1 < 2N
N+2 < r2 < 2, a direct computation shows that

∫
BRN−1 (0,1)

|ξ ′|
q1(2−3r1)

r1 dξ ′ and∫
{|ξ ′|>1} |ξ ′|

q2(2−3r2)

r2 dξ ′ are finite. From (4.14) and (4.15) we have∣∣R(ϕ,ψ)
∣∣ � K

(‖ϕ‖Lr1 ‖ψ‖Lr1 + ‖ϕ‖Lr2 ‖ψ‖Lr2

)
and Lemma 4.7 is proved. �

Let r1 and r2 be as in Lemma 4.7. Since the maps ϕ �→ T1ϕ and ϕ �→ T2ϕ are obviously
continuous from Lr1(RN) ∩ Lr2(RN) into itself and we have shown in the proof of Lemma 4.5

that the bilinear form P1(ϕ,ψ) = ∫
RN

1
|ξ |2 ϕ̂(ξ)ψ̂(ξ) dξ is continuous on this space, it follows that

the left-hand side of (4.12) is continuous on Lr1(RN) ∩ Lr2(RN). By Lemma 4.7, the right-hand
side of (4.12) also defines a continuous functional on Lr1(RN) ∩ Lr2(RN). Since (4.12) is valid
for any ϕ ∈ C∞

c (RN), by density we infer that (4.12) holds for any ϕ ∈ Lr1(RN) ∩ Lr2(RN).
Recall that u ∈ H 1(RN) and by the Sobolev embedding and assumption (a) we have F(u) ∈
Lq(RN) for any q ∈ [max(1, 2

1+σ
), 2N

(N−2)(1+σ)
]; hence (4.12) is valid for F(u).

Since u is a minimizer, we must have E(u1) + E(u2) − 2E(u) � 0. From (4.11) and (4.12)
we infer that necessarily

∫
RN−1

1

|ξ ′|

∣∣∣∣∣
∞∫

0

F
(
A
(
F(u)

))
(ξ1, ξ

′) ξ1

|ξ ′|2 + ξ2
1

dξ1

∣∣∣∣∣
2

dξ ′ = 0. (4.16)

Contrary to our previous examples, (4.16) does not imply directly AF(u) ≡ 0. To see this,
consider a function ψ ∈ C∞

c (0,∞) such that supp(ψ) ⊂ [1,∞), ψ �≡ 0 and
∫ ∞ t

2 ψ(t) dt = 0.
0 1+t
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(Such a function exists: for example, take two nonnegative functions ψ0,ψ1 ∈ C∞
c (1,∞)

with disjoint supports and put ψτ = (1 − τ)ψ0 − τψ1. There is some τ ∈ (0,1) such that∫ ∞
0

t

1+t2 ψτ (t) dt = 0.) Extend ψ to an odd function defined on R. Take α ∈ C∞
c (RN−1) such

that α �≡ 0 and supp(α) ⊂ RN−1 \ B(0,1) and put f̂ (ξ1, ξ
′) = α(ξ ′)ψ(

ξ1|ξ ′| ). Then f̂ ∈ C∞
c (RN)

(hence f ∈ S), f �≡ 0 and f is odd with respect to the first variable. However, we have∫ ∞
0 f̂ (ξ1, ξ

′) ξ1

|ξ ′|2+ξ2
1

dξ1 = 0 for any ξ ′ �= 0 and consequently

∫
RN−1

1

|ξ ′|

∣∣∣∣∣
∞∫

0

f̂ (ξ1, ξ
′) ξ1

|ξ ′|2 + ξ2
1

dξ1

∣∣∣∣∣
2

dξ ′ = 0.

To show that u is symmetric with respect to x1, we argue as follows: since u and u1 minimize
E under the constraint Q = λ, these functions satisfy the Euler–Lagrange equations E′(u) +
αQ′(u) = 0, respectively E′(u1) + βQ′(u1) = 0 for some constants α and β , that is

−�u − 2I
(
F(u)

)
F ′(u) + H ′(u) + αG′(u) = 0 in RN, (4.17)

−�u1 − 2I
(
F(u1)

)
F ′(u1) + H ′(u1) + βG′(u1) = 0 in RN. (4.18)

We will show in the next lemma that u and u1 are smooth functions. Then we prove that
I (F (u))(x) = I (F (u1))(x) in the half-space {x1 < 0}. Together with assumption (c), this implies
that α = β in (4.17)–(4.18). Then we will be able to apply the Unique Continuation Principle to
prove that u = u1.

Lemma 4.8. Let u ∈ H 1(RN) be a solution of (4.17), where F,G,H ∈ C2(R) satisfy the as-
sumptions (a) and (b) in Theorem 4.6. Then u ∈ W 3,p(RN) for any p ∈ [2,∞). In particular,
u ∈ C2(RN) and Dαu are continuous and bounded on RN if α ∈ NN , |α| � 2.

Proof. The proof relies on a classical boot-strap argument. We show first that u ∈ L∞(RN). By
the Sobolev embedding we have u ∈ Lq(RN) for q ∈ [2, 2N

N−2 ]. We will improve this estimate by
an inductive argument to get the desired conclusion.

We consider only the case N � 4, the proof in the case N = 3 being similar. Assume that
u ∈ Lq(RN) for any q ∈ [2, β], where β � 2N

N−2 . It is clear that G′(u),H ′(u) ∈ Lq(RN) for

q ∈ [max(1, 2
σ1

),
β
σ1

] and F(u) ∈ Lq(RN) for q ∈ [1,
β

1+σ
]. We distinguish two cases:

Case A. If β
1+σ

> N
2 , then I (F (u)) ∈ Lq(RN) for any q ∈ ( N

N−2 ,∞]. We have F ′(u)χ{|u|�1} ∈
Lq(RN) for q ∈ [2,∞], hence I (F (u))F ′(u)χ{|u|�1} ∈ Lq(RN) for q ∈ (1,∞] if N = 4,
respectively for q ∈ [1,∞] if N � 5 and F ′(u)χ{|u|>1} ∈ Lq(RN) for q ∈ [1,

β
σ
], hence

I (F (u))F ′(u)χ{|u|>1} ∈ Lq(RN) if q ∈ [1,
β
σ
]. Consequently I (F (u))F ′(u) ∈ Lq(RN) for q ∈

(1,
β
σ
] if N = 4, respectively for q ∈ [1,

β
σ
] if N � 5. Notice that β � 2N

N−2 and the sec-

ond part of assumption (b) imply β
σ

� 2
σ1

. Using Eq. (4.17) we infer that �u ∈ Lq(RN) for

q ∈ [max(1, 2
σ1

),min(
β
σ1

,
β
σ
)], q �= 1 if N = 4. Let q3 = min(

β
σ1

,
β
σ
). Notice that q3 � β be-

cause σ1 � 1 and �u ∈ Lq3(RN). If q3 > N � 2, then u ∈ Lq3(RN), hence u ∈ W 2,q3(RN)
2
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and by the Sobolev embedding we get u ∈ L∞(RN). If q3 = N
2 , then u ∈ W 2, N

2 (RN), con-
sequently u ∈ Lq(RN) for any q ∈ [2,∞) and repeating the above proof with β̃ > β we find

u ∈ L∞(RN). If q3 < N
2 , then necessarily q3 = β

σ1
(recall that β

σ
>

β
1+σ

> N
2 because we are

in Case A). By the Sobolev embedding we get u ∈ Lβ1(RN), where 1
β1

= 1
q3

− 2
N

= σ1
β

− 2
N

,

thus 1
β1

− 1
β

= σ1−1
β

− 2
N

� (σ1−1)(N−2)−4
2N

< 0 by (b). Repeating the previous arguments

with β replaced by β1, we find that either u ∈ L∞(RN) or u ∈ Lβ2(RN), where β2 > β1 and
1
β2

− 1
β1

� (σ1−1)(N−2)−4
2N

, and so on. After a finite number of steps we get u ∈ L∞(RN).

Case B. If β
1+σ

� N
2 , we may suppose that β

1+σ
< N

2 . By Lemma 4.5(i), I (F (u)) ∈ Lq(RN) for

q ∈ ( N
N−2 , ( 1+σ

β
− 2

N
)−1]. As in Case A we get I (F (u))F ′(u) ∈ Lq(RN) for q ∈ [1, ( 1+2σ

β
−

2
N

)−1], q �= 1 if N = 4. By (a), (b) and the fact that β � 2N
N−2 we have ( 1+2σ

β
− 2

N
)−1 � 2

σ1
.

Since G′(u),H ′(u) ∈ Lq(RN) for q ∈ [max(1, 2
σ1

),
β
σ1

], using (4.17) we get �u ∈ Lq(RN) for

q ∈ [max(1, 2
σ1

), q4], q �= 1 if N = 4, where q4 = min(
β
σ1

, ( 1+2σ
β

− 2
N

)−1). If q4 � N
2 then, as

above, we obtain u ∈ L∞(RN). Otherwise by the Sobolev embedding we find u ∈ Lβ1(RN),
where 1

β1
= 1

q4
− 2

N
, thus 1

β1
− 1

β
� max(

(σ1−1)(N−2)−4
2N

,
σ(N−2)−4

N
) < 0. Then we restart the

process with β1 instead of β . Continuing in this way, after a finite number of steps we obtain
u ∈ L∞(RN).

We have proved that u ∈ Lq(RN) for any q ∈ [2,∞]. Thus F(u) ∈ L1(RN) ∩ L∞(RN),
I (F (u)) ∈ Lq(RN) for q ∈ ( N

N−2 ,∞], F ′(u) ∈ L2(RN) ∩ L∞(RN), hence I (F (u))F ′(u) ∈
L2(RN) ∩ L∞(RN). Clearly G′(u),H ′(u) ∈ Lq(RN) for q ∈ [max(1, 2

σ1
),∞]. Using (4.17) we

have �u ∈ L2(RN) ∩ L∞(RN), thus u ∈ W 2,p(RN) for any p ∈ [2,∞). In particular, ∂u
∂xi

are

continuous and bounded on RN . Differentiating (4.17) with respect to xi we get

−�

(
∂u

∂xi

)
− 2I

(
F ′(u)

∂u

∂xi

)
F ′(u) − 2I

(
F(u)

)
F ′′(u)

∂u

∂xi

+ G′′(u)
∂u

∂xi

+ αH ′′(u)
∂u

∂xi

= 0 in RN.

It follows that −�( ∂u
∂xi

) ∈ L2(RN) ∩ L∞(RN). Since obviously ∂u
∂xi

∈ L2(RN) ∩ L∞(RN), we

get ∂u
∂xi

∈ W 2,p(RN), which implies u ∈ W 3,p(RN) for any p ∈ [2,∞). �
It follows from Lemma 4.8 that F(u) ∈ C2(RN) and F(u) ∈ W 2,p(RN) for p ∈ [1,∞]. Using

Lemma 4.5(i) and (ii), it is easy to check that I (F (u)) ∈ C2(RN) and I (F (u)) ∈ W 2,p(RN) for
p ∈ ( N

N−2 ,∞]. In particular, I (F (u)) ∈ S ′(RN) and Lemma 4.5(iii) implies F(I (F (u)))(ξ) =
dN

1
|ξ |2 ̂F(u)(ξ), where dN = 4π

N
2

�( N
2 −1)

. Setting U = I (F (u)) we have −�U = dNF(u).

Next we show that ∂U
∂x1

(0, x′) = ∂
∂x1

I (F (u))(0, x′) = 0 for any x′ ∈ RN−1. From (4.16)

we infer that
∫ ∞

0 F(A(F (u)))(ξ1, ξ
′) ξ1

|ξ ′|2+ξ2
1

dξ1 = 0 for almost every ξ ′ ∈ RN−1, that is∫ ∞
−∞ ̂F(u)(ξ1, ξ

′) ξ1
′ 2 2 dξ1 = 0 a.e. ξ ′ ∈ RN−1, or equivalently
|ξ | +ξ1
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∞∫
−∞

ξ1F
(
I
(
F(u)

))
(ξ1, ξ

′) dξ1 = 0 for almost every ξ ′ ∈ RN−1. (4.19)

If ∂
∂x1

I (F (u)) and F( ∂
∂x1

I (F (u))) are in L1(RN), by the Fourier inversion theorem (4.19) is

equivalent to ∂
∂x1

I (F (u))(0, x′) = 0, as desired.

Since we do not know whether ∂
∂x1

I (F (u)) ∈ L1(RN) and F( ∂
∂x1

I (F (u))) ∈ L1(RN), we ar-

gue as follows: we take an arbitrary test function ψ ∈ S(RN−1) and we put ϕn(x1) = n√
2π

e− n2x2
1

2 .

Clearly, ϕn(x1) = nϕ1(nx1), ‖ϕn‖L1(R) = 1 and ϕ̂n(ξ1) = e
− ξ2

1
2n2 . On one hand, we have, by using

Lebesgue’s Dominated Convergence Theorem,

lim
n→∞

∫
RN

ϕn(x1)ψ(x′)
[

∂

∂x1
I
(
F(u)

)]
(x1, x

′) dx

= lim
n→∞

∫
RN

ϕ1(y1)ψ(x′)
[

∂

∂x1
I
(
F(u)

)](y1

n
,x′

)
dy1 dx′

=
∫

RN−1

ψ(x′) ∂

∂x1

(
I
(
F(u)

))
(0, x′) dx′. (4.20)

On the other hand, we have

∫
RN

ϕn(x1)ψ(x′)
[

∂

∂x1
I
(
F(u)

)]
(x1, x

′) dx

=
〈

∂

∂x1

(
I
(
F(u)

))
, ϕn(x1)ψ(x′)

〉
S ′,S

=
〈
F
(

∂

∂x1
I
(
F(u)

))
,F−1(ϕn(x1)ψ(x′)

)〉
S ′,S

= 1

(2π)N

∫
RN

idNξ1

|ξ |2
̂F(u)(ξ)e

− ξ2
1

2n2 ψ̂(−ξ ′) dξ1 dξ ′. (4.21)

Since F(u) ∈ L2(RN), for almost every ξ ′ ∈ RN−1 we have ̂F(u)(·, ξ ′) ∈ L2(R). For any
such ξ ′, arguing as in (4.13) we get

∫ ∣∣∣∣e− ξ2
1

2n2 · ξ1

|ξ |2
̂F(u)(ξ1, ξ

′)
∣∣∣∣dξ1 �

∫ ∣∣∣∣ ξ1

ξ2
1 + |ξ ′|2

̂F(u)(ξ1, ξ
′)
∣∣∣∣dξ1 � C

|ξ ′| 1
2

∥∥̂F(u)(·, ξ ′)
∥∥

L2(R)
,

R R
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where C does not depend on ξ ′. Moreover, the Cauchy–Schwarz inequality gives

∫
RN−1

C|ψ̂(−ξ ′)|
|ξ ′| 1

2

∥∥̂F(u)(·, ξ ′)
∥∥

L2(R)
dξ ′ � C

( ∫
RN−1

|ψ̂(−ξ ′)|2
|ξ ′| dξ ′

) 1
2 ∥∥̂F(u)

∥∥
L2(RN)

< ∞.

By the Dominated Convergence Theorem, we have for almost any ξ ′ ∈ RN−1

∫
R

ξ1

ξ2
1 + |ξ ′|2

̂F(u)(ξ1, ξ
′)e− ξ2

1
2n2 dξ1 →

∫
R

ξ1

ξ2
1 + |ξ ′|2

̂F(u)(ξ1, ξ
′) dξ1 = 0 as n → ∞.

Thus we may use Fubini’s theorem, then the Dominated Convergence Theorem on RN−1 to
obtain

∫
RN

ξ1

|ξ |2
̂F(u)(ξ1, ξ

′)e− ξ2
1

2n2 ψ(−ξ ′) dξ1 dξ ′

=
∫

RN−1

ψ(−ξ ′)
∫
R

ξ1

ξ2
1 + |ξ ′|2

̂F(u)(ξ1, ξ
′)e− ξ2

1
2n2 dξ1 dξ ′

→
∫

RN−1

ψ(−ξ ′) · 0dξ ′ = 0 as n → ∞. (4.22)

From (4.20)–(4.22) we infer that
∫

RN−1 ψ(x′) ∂
∂x1

(I (F (u)))(0, x′) dx′ = 0. Since ψ ∈ S(RN−1)

was arbitrary, we have ∂
∂x1

(I (F (u)))(0, ·) = 0 in S ′(RN−1), hence ∂
∂x1

(I (F (u)))(0, x′) = 0 for

any x′ ∈ RN−1 because ∂
∂x1

(I (F (u))) is a continuous function.
We know that F(u1) is symmetric with respect to x1 and a simple change of variables shows

that the function U1 := I (F (u1)) is also symmetric with respect to x1. Clearly U1 also be-
longs to C2(RN) and satisfies −�U1 = −�(I (F (u1))) = dNF(u1). By symmetry we have
∂U1
∂x1

(0, x′) = 0 for any x′ ∈ RN−1. Since u1(x1, x
′) = u(x1, x

′) if x1 < 0, we have proved that
the functions U and U1 are both solutions of the problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−�W = dNF(u) in
{
(x1, x

′) ∈ RN | x1 < 0
}
,

W ∈ C2(RN
)∩ W 2,p

(
RN

)
for p >

N

N − 2
,

∂W

∂x1
(0, x′) = 0 for any x′ ∈ RN−1.

(4.23)

It is not hard to see that the solution of (4.23) is unique. Consequently, U(x1, x
′) = U1(x1, x

′) if
x1 < 0. From (4.17) and (4.18) it is obvious that (u,U) and (u1,U1) solve the systems{−�u − 2UF ′(u) + H ′(u) + αG′(u) = 0,

−�U − d F(u) = 0
in RN, (4.24)
N



O. Lopes, M. Mariş / Journal of Functional Analysis 254 (2008) 535–592 583
respectively {−�u1 − 2U1F
′(u1) + H ′(u1) + βG′(u1) = 0,

−�U1 − dNF(u1) = 0
in RN. (4.25)

We cannot have u ≡ 0 in the half-space {x1 < 0} because this would imply λ = Q(u) =
Q(u1) = 0. Since u is continuous, necessarily u((−∞,0) × RN−1) = u1((−∞,0) × RN−1)

contains an interval of the form (−ε,0) or (0, ε) for some ε > 0. Now assumption (c), (4.24),
(4.25) and the fact that (u,U) = (u1,U1) on (−∞,0)×RN−1 imply that α = β in (4.24)–(4.25).
As a consequence, we see that (u−u1,U −U1) solves a linear system whose coefficients belong
to L∞(RN). Since (u,U) = (u1,U1) for x1 < 0 and (u,U), (u1,U1) ∈ W 2,p(RN,R2) if p � 2
and p > N

N−2 , by using the Unique Continuation Principle we infer that u = u1 (and U = U1)
in RN , that is u is symmetric with respect to x1.

Similarly we show that u is symmetric with respect to any other hyperplane Π which has
the property that

∫
Π− G(u(x)) dx = ∫

Π+ G(u(x)) dx, where Π− and Π+ are the two half-spaces
determined by Π . As in the proof of Theorem 4.1 it follows that after a translation, u is radially
symmetric. The proof of Theorem 4.6 is complete. �
4.3. Standing waves for the Davey–Stewartson equation

We consider the Davey–Stewartson system{
iut + �u = f

(|u|2)u − uvx1,

�v = (|u|2)
x1

in R3, (4.26)

which can be written as

iut = −�u + f
(|u|2)u + R2

1

(|u|2)u, (4.27)

where R1 is the Riesz transform defined by R̂1ϕ = iξ1|ξ | ϕ̂(ξ). Let F1(t) = ∫ t

0 f (τ) dτ . It is easy to
check that

Ẽ(u) = 1

2

∫
R3

|∇u|2 dx + 1

2

∫
R3

F1
(|u|2)dx − 1

4

∫
R3

∣∣R1
(|u|2)∣∣2 dx

is a Hamiltonian for (4.27) and Q̃(u) = ∫
R3 |u(x)|2 dx is a conserved quantity for the same equa-

tion. The standing waves for (4.27) are precisely the critical points of Ẽ +ωQ̃. As in the previous
example, when we minimize Ẽ(u) subject to Q̃(u) = constant, we may restrict ourselves to real

functions u and to the real version of Ẽ,

E(u) = 1

2

∫
R3

|∇u|2 dx +
∫
R3

F(u)dx − 1

4

∫
R3

∣∣R1
(
u2)∣∣2 dx.

We will consider a more general functional than Q̃, namely Q(u) = ∫
R3 G(u)dx. If

G(u) = u2, in order to guarantee the boundedness from below of the functional E on the set
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of functions satisfying Q(u) = λ, the function F(u) is required to behave as a|u|γ for u large,
with a > 0 and γ > 4. In the case F(u) = a|u|γ , the Cauchy problem for the evolution equa-
tion (4.27) has been analysed in [12]. The global existence of solutions was proved in the case
a > 0 and γ > 4, while in the case γ = 4 the global existence was proved if a is sufficiently
large.

Still in the case of pure power F(u) = a|u|γ , with a > 0 and γ > 4, the existence of min-
imizers of E subject to the constraint Q(u) = ∫

R3 |u|2 dx = λ can be proved by using the
Concentration–Compactness Principle (see [17]) if λ is large enough (this assumption is needed
to prevent vanishing).

In [10] the existence of ground states related to the problem (4.26) has been studied. However,
our method cannot be used to prove the symmetry of these ground states because the nonlocal
term appears in the constraint.

It is well known that R1 is a linear continuous map from Lp(R3) to Lp(R3) for 1 < p < ∞
(see [23]). If u2 ∈ L2(R3), then R1(u

2) ∈ L2(R3) and by Plancherel’s theorem we get

∫
R3

∣∣R1
(
u2)∣∣2 dx = 1

(2π)3

∫
R3

∣∣ ̂R1
(
u2

)
(ξ)

∣∣2 dξ = 1

(2π)3

∫
R3

ξ2
1

|ξ |2
∣∣û2(ξ)

∣∣2 dξ. (4.28)

We have the following symmetry result.

Theorem 4.9. Let u ∈ H 1(R3) be a solution of the minimization problem

minimize E(u) = 1

2

∫
R3

|∇u|2 dx +
∫
R3

F(u)dx − 1

4

∫
R3

∣∣R1
(
u2)∣∣2 dx

subject to Q(u) =
∫
R3

G
(
u(x)

)
dx = λ �= 0

under the following assumptions:

(a) F,G : R → R are C2 functions, F(0) = F ′(0) = 0, G(0) = G′(0) = 0 and there exist C > 0,
σ < 5 such that ∣∣F ′(u)

∣∣ � C|u|σ and
∣∣G′(u)

∣∣ � C|u|σ for |u| � 1.

(b) For any ε > 0, G′ �≡ 0 on (−ε,0) and on (0, ε).

Then, after a translation, u is radially symmetric in the variables (x2, x3) (i.e. u is axially
symmetric).

Proof. Making a translation in the x2 direction if necessary, we may assume that∫
G
(
u(x)

)
dx =

∫
G
(
u(x)

)
dx = λ

2
.

{x2<0} {x2>0}



O. Lopes, M. Mariş / Journal of Functional Analysis 254 (2008) 535–592 585
As before, we define u1 and u2 by

u1(x1, x2, x3) =
{

u(x1, x2, x3) if x2 < 0,

u(x1,−x2, x3) if x2 � 0,
u2(x1, x2, x3) =

{
u(x1,−x2, x3) if x2 < 0,

u(x1, x2, x3) if x2 � 0.

It is obvious that Q(u1) = Q(u2) = λ. Moreover, using (4.28) we get

E(u1) + E(u2) − 2E(u) = −1

4

1

(2π)3

[ ∫
R3

ξ2
1

|ξ |2
∣∣û2

1(ξ)
∣∣2 dξ +

∫
R3

ξ2
1

|ξ |2
∣∣û2

2(ξ)
∣∣2 dξ

− 2
∫
R3

ξ2
1

|ξ |2
∣∣û2(ξ)

∣∣2 dξ

]
. (4.29)

Recall that by (2.40) and (2.41) we have the equality

∫
RN

ξ2
j

|ξ |2
∣∣T̂1ϕ(ξ)

∣∣2 dξ +
∫

RN

ξ2
j

|ξ |2
∣∣T̂2ϕ(ξ)

∣∣2 dξ − 2
∫

RN

ξ2
j

|ξ |2
∣∣ϕ̂(ξ)

∣∣2 dξ

= 8

π

∫
RN−1

ξ2
j

|ξ ′|

∣∣∣∣∣
∞∫

0

Âϕ(ξ1, ξ
′) ξ1

ξ2
1 + |ξ ′|2 dξ1

∣∣∣∣∣
2

dξ ′ (4.30)

for any ϕ ∈ C∞
c (RN), where j ∈ {2, . . . ,N}. It is obvious that the left-hand side of (4.30) de-

fines a continuous functional on L2(RN). By the next lemma, it follows that the right-hand
side of (4.30) also defines a continuous functional on L2(RN). Then the density of C∞

c (RN)

in L2(RN) implies that (4.30) holds for any ϕ ∈ L2(RN).

Lemma 4.10. Let j ∈ {2, . . . ,N}. The bilinear form

S1(ϕ,ψ) =
∫

RN−1

ξ2
j

|ξ ′|
∞∫

0

ϕ̂(ξ1, ξ
′) ξ1

ξ2
1 + |ξ ′|2 dξ1 ·

∞∫
0

ψ̂(η1, ξ ′) η1

η2
1 + |ξ ′|2 dη1 dξ ′

is continuous on L2(RN) × L2(RN).

Proof. As in (4.13) we have

∣∣∣∣∣
∞∫

0

ϕ̂(ξ1, ξ
′) ξ1

ξ2
1 + |ξ ′|2 dξ1

∣∣∣∣∣ � K
1

|ξ ′| 1
2

( ∞∫
0

∣∣ϕ̂(ξ1, ξ
′)
∣∣2 dξ1

) 1
2

,

where K = (
∫ ∞ t2

2 2 dt)
1
2 . Consequently
0 (1+t )
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∣∣S1(ϕ,ψ)
∣∣ � K2

∫
RN−1

ξ2
j

|ξ ′|2
( ∞∫

0

∣∣ϕ̂(ξ1, ξ
′)
∣∣2 dξ1

) 1
2
( ∞∫

0

∣∣ψ̂(η1, ξ
′)
∣∣2 dη1

) 1
2

dξ ′

� K2
∫

RN−1

( ∞∫
0

∣∣ϕ̂(ξ1, ξ
′)
∣∣2 dξ1

) 1
2
( ∞∫

0

∣∣ψ̂(η1, ξ
′)
∣∣2 dη1

) 1
2

dξ ′

� K2

( ∫
RN−1

∞∫
0

∣∣ϕ̂(ξ1, ξ
′)
∣∣2 dξ1 dξ ′

) 1
2

·
( ∫

RN−1

∞∫
0

∣∣ψ̂(η1, ξ
′)
∣∣2 dη1 dξ ′

) 1
2

� K1‖ϕ‖L2(RN)‖ψ‖L2(RN). �
Since u2, u2

1, u
2
2 ∈ L2(R3) (recall that H 1(R3) ⊂ L2(R3) ∩ L6(R3)), by exchanging the roles

of x1 and x2 and using (4.29) and (4.30) we find

E(u1) + E(u2) − 2E(u)

= −1

4

1

(2π)3

8

π

∫
R2

ξ2
1√

ξ2
1 + ξ2

3

∣∣∣∣∣
∞∫

0

̂A2(u2)(ξ1, ξ2, ξ3)
ξ2

ξ2
1 + ξ2

2 + ξ2
3

dξ2

∣∣∣∣∣
2

dξ1 dξ3, (4.31)

where A2ϕ = 1
2 (ϕ(x1, x2, x3) − ϕ(x1,−x2, x3)).

Since u is a minimizer, we must have E(u1) + E(u2) − 2E(u) � 0, consequently the integral
in the right-hand side of (4.31) must be zero, which is equivalent to

∞∫
0

̂A2(u2)(ξ1, ξ2, ξ3)
ξ2

ξ2
1 + ξ2

2 + ξ2
3

dξ2 = 0 a.e. (ξ1, ξ3) ∈ R2. (4.32)

In particular, u1 and u2 are also minimizers. However, as in the previous example, (4.32) is not
sufficient to prove that A2(u

2) = 0. In order to accomplish this task, we will use the Euler–
Lagrange equation of u: since u minimizes E under the constraint Q(u) = λ, there exists a
constant α such that E′(u) + αQ′(u) = 0, that is

−�u + F ′(u) + R2
1

(
u2)u + αG′(u) = 0. (4.33)

Lemma 4.11. If F and G satisfy assumption (a) in Theorem 4.9 and u ∈ H 1(R3) is a solution
of (4.33), then u ∈ W 3,p(R3) for any p ∈ [2,∞). In particular, u ∈ C2(R3).

Since R1 and R2
1 are linear continuous mappings from Lp(R3) to Lp(R3) for 1 < p < ∞, the

proof of Lemma 4.11 is standard, so we omit it.
Let I (ϕ)(x) = ∫

R3
ϕ(y)
|x−y| dy. Using Lemma 4.5 it is easy to see that I (u2) ∈ W 2,p(R3) for any

p ∈ (3,∞] and I (u2) is a C2 function. Moreover, we have

F
(
R2

1

(
u2))(ξ) = − ξ2

1
2
û2(ξ) = − 1

ξ2
1

̂I
(
u2

)
(ξ),
|ξ | d3
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where d3 = 4π
3
2

�( 1
2 )

, thus R2
1(u2) = 1

d3

∂2

∂x2
1
I (u2). Equation (4.33) can be written as

−�u + F ′(u) + 1

d3

∂2

∂x2
1

(
I
(
u2))u + αG′(u) = 0. (4.34)

Arguing exactly as in the proof of Theorem 4.6, (4.32) implies that ∂
∂x2

(I (u2))(x1,0, x3) = 0 for

any (x1, x3) ∈ R2.
Since u1 is also a minimizer, it satisfies the Euler–Lagrange equation

−�u1 + F ′(u1) + 1

d3

∂2

∂x2
1

(
I
(
u2

1

))
u1 + βG′(u1) = 0. (4.35)

The conclusion of Lemma 4.11 is obviously valid for u1. Since u1 is symmetric with respect
to x2, I (u2

1) is also symmetric with respect to x2 and, consequently, ∂
∂x2

(I (u2
1))(x1,0, x3) = 0 for

any (x1, x3) ∈ R2. We set U = I (u2) and U1 = I (u2
1). Recall that u(x1, x2, x3) = u1(x1, x2, x3)

if x2 < 0; thus U and U1 are both solutions of⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�W = u2 in R × (−∞,0) × R,

W ∈ C2(R3)∩ W 2,p
(
R3) for 3 < p � ∞,

∂W

∂x2
(x1,0, x3) = 0 for any (x1, x3) ∈ R2.

(4.36)

It is not hard to see that the solution of (4.36) is unique. Hence we must have I (u2) = I (u2
1) in

R × (−∞,0] × R. In the same way we obtain I (u2) = I (u2
2) in R × [0,∞) × R.

Now we focus our attention on u1. Making a translation in the x3 direction if necessary, we
may assume that

∫
{x3<0} G(u1(x)) dx = ∫

{x3>0} G(u1(x)) dx = λ
2 . We define

w1(x1, x2, x3) =
{

u1(x1, x2, x3) if x3 < 0,

u1(x1, x2,−x3) if x3 � 0,

w2(x1, x2, x3) =
{

u1(x1, x2,−x3) if x3 < 0,

u1(x1, x2, x3) if x3 � 0.

It is obvious that Q(w1) = Q(w2) = λ. Proceeding as above, we find the identity

E(w1) + E(w2) − 2E(u1)

= −1

4

1

(2π)3

8

π

∫
R2

ξ2
1√

ξ2
1 + ξ2

2

∣∣∣∣∣
∞∫

0

̂A3
(
u2

1

)
(ξ1, ξ2, ξ3)

ξ3

ξ2
1 + ξ2

2 + ξ2
3

dξ3

∣∣∣∣∣
2

dξ1 dξ2, (4.37)

where A3ϕ = 1
2 (ϕ(x1, x2, x3) − ϕ(x1, x2,−x3)). Since u1 is a minimizer, it follows from (4.37)

that w1 and w2 are also minimizers of E under the constraint Q = λ; hence w1 and w2 sat-
isfy the conclusion of Lemma 4.11 and I (w1), I (w2) ∈ C2(R3) ∩ W 2,p(R3) for p ∈ (3,∞].
Moreover, the integral in the right-hand side of (4.37) must be zero. As previously, this gives
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∂
∂x3

I (u2
1)(x1, x2,0) = 0 for any (x1, x2) ∈ R2. Proceeding as above, we find I (u2

1) = I (w2
1) in

R2 × (−∞,0] and I (u2
1) = I (w2

2) in R2 × [0,∞).
Now let us consider the function w1. It is clear that w1(x1,−x2,−x3) = w1(x1,−x2, x3) =

w1(x1, x2, x3), i.e. w1 is symmetric with respect to x2 and with respect to x3. Consider a plane Π

in R3 containing the line {(x1,0,0) | x1 ∈ R} and let Π+ and Π− be the two half-spaces deter-
mined by Π . Since (x1, x2, x3) �→ (x1,−x2,−x3) maps Π+ onto Π−, using the symmetry of w1
we get

∫
Π+ G(w1(x)) dx = ∫

Π− G(w1(x)) dx = λ
2 . Let sΠ denote the symmetry in R3 with re-

spect to Π . We define

r1(x) =
{

w1(x) if x ∈ Π−,

w1(sΠ(x)) if x ∈ Π+
and r2(x) =

{
w1(sΠ(x)) if x ∈ Π−,

w1(x) if x ∈ Π+.

Repeating the above arguments we obtain an integral identity analogous to (4.31) and (4.37)
which implies that r1 and r2 also minimize E subject to the constraint Q = λ. Furthermore,
using the fact that the integral in the right-hand side of this identity must vanish we find

∂

∂n
I
(
w2

1

)
(x1, x2, x3) = 0 whenever (x1, x2, x3) ∈ Π, (4.38)

where n is the unit normal to Π . Passing to cylindrical coordinates we write

I
(
w2

1

)
(x1, x2, x3) = I

(
w2

1

)
(x1, r cos θ, r sin θ) = Φ(x1, r, θ),

where r =
√

x2
2 + x2

3 . Since I (w2
1) is a C2 function and (4.38) is valid for any plane Π con-

taining {(x1,0,0) | x1 ∈ R}, (4.38) is equivalent to ∂Φ
∂θ

= 0, that is Φ does not depend on θ , i.e.

I (w2
1)(x1, x2, x3) = Φ1(x1,

√
x2

2 + x2
3) for some function Φ1. In other words, we have proved

that I (w2
1) is radially symmetric in the variables (x2, x3). In the same way we show that

I (w2
2)(x1, x2, x3) = Φ2(x1,

√
x2

2 + x2
3) for some function Φ2. Since I (u2

1) is continuous on R3,

I (u2
1) = I (w2

1) in the half-space {x3 < 0} and I (u2
1) = I (w2

2) in the half-space {x3 > 0}, we have
necessarily Φ1 = Φ2, and then I (u2

1) is radially symmetric in the variables (x2, x3).
Similarly, there exists k ∈ R such that

∫
{x3<k} G(u2(x)) dx = ∫

{x3>k} G(u2(x)) dx = λ
2 . (We

have fixed the origin in such a way that
∫
{x3<0} G(u1(x)) dx = ∫

{x3>0} G(u1(x)) dx = λ
2 and

nothing guarantees a priori that k = 0.) Arguing as above, we infer that I (u2
2) is radially sym-

metric with respect to the variables (x2, x3 − k). Thus we have proved that there exist con-

tinuous functions η, γ defined on R × [0,∞) such that I (u2
1)(x1, x2, x3) = η(x1,

√
x2

2 + x2
3 )

and I (u2
2)(x1, x2, x3) = γ (x1,

√
x2

2 + (x3 − k)2 ). Since I (u2
1)(x1,0, x3) = I (u2)(x1,0, x3) =

I (u2
2)(x1,0, x3), we get η(x1, |x3|) = γ (x1, |x3 − k|) for any x1, x3 ∈ R. In particular, if k � 0,

for t � 0 we have η(x1, t + 2k) = γ (x1, t + k) = η(x1, t); that is, for any fixed x1, the func-
tion η(x1, ·) is periodic of period 2k. On the other hand, we have I (u2

1), I (u2
2) ∈ W 2,p(RN) for

p ∈ (3,∞], thus I (u2
1) and I (u2

2) tend to zero at infinity, hence η(x1, t) → 0 and γ (x1, t) → 0
as x2

1 + t2 → ∞. We infer that either k = 0, or η ≡ 0 in R × [0,∞). In both cases we get η = γ

on R ×[0,∞) and I (u2
1) = I (u2

2) in R3. Thus we have I (u2) = I (u2
1) = I (u2

2) on R3, and I (u2)

is radially symmetric with respect to (x2, x3).
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Since Q(u) = Q(u1) = λ �= 0, we cannot have u ≡ 0 in the half-space {x2 < 0}. Assump-
tion (b) implies that there exists (x1, x2, x3) ∈ R3, x2 < 0 such that G′(u(x1, x2, x3)) �= 0. Since
u = u1 on {x2 < 0} and I (u2) = I (u2

1) on R3, from (4.34) and (4.35) we infer that α = β .

Let a(x) = 1
d3

∂2

∂x2
1
(I (u2))(x) = 1

d3

∂2

∂x2
1
(I (u2

1))(x). We know that a is a continuous and bounded

function on R3. The functions u and u1 both satisfy the equation −�w + F ′(w) + a(x)w +
αG′(w) = 0 in R3 and using the Unique Continuation Principle again we conclude that u ≡ u1
in R3, i.e. u is symmetric with respect to x2.

In the same way we prove that u is symmetric with respect to x3 (after possibly a translation).
Proceeding as in the proof of Theorem 4.1 we can show that u is symmetric with respect to any
plane containing the line {(x1,0,0) | x1 ∈ R}, consequently u is radially symmetric with respect
to (x2, x3) variables. �
Remark 4.12. (i) We have stated and proved Theorem 4.9 in dimension N = 3 only for sim-
plicity. Replacing the term

∫
R3 |R1(u

2)|2(x) dx in E(u) by
∫

RN |R1(H(u))|2(x) dx and making
suitable assumptions on the function H , this result admits a straightforward generalization to RN ,
N � 3.

(ii) We do not know whether the minimizers in Theorem 4.9 are symmetric or not with respect
to x1. Recall that by (2.42) we have

∫
RN

ξ2
1

|ξ |2
∣∣T̂1ϕ(ξ)

∣∣2 dξ +
∫

RN

ξ2
1

|ξ |2
∣∣T̂2ϕ(ξ)

∣∣2 dξ − 2
∫

RN

ξ2
1

|ξ |2
∣∣ϕ̂(ξ)

∣∣2 dξ

= − 8

π

∫
RN−1

|ξ ′|
∣∣∣∣∣

∞∫
0

Âϕ(ξ)
ξ1

ξ2
1 + |ξ ′|2 dξ1

∣∣∣∣2 dξ ′ (4.39)

for any ϕ ∈ C∞
c (RN). Clearly, the left-hand side of (4.39) is continuous on L2(RN). Proceeding

as in Lemma 4.10, it is easy to see that the right-hand side of (4.39) also defines a continuous
functional on L2(RN). Consequently, (4.39) holds for any ϕ ∈ L2(RN). Using (4.28) and (4.39)
we have

E(T1u) + E(T2u) − 2E(u) = 2

π

1

(2π)N

∫
RN−1

|ξ ′|
∣∣∣∣∣

∞∫
0

F
(
A
(
H(u)

))
(ξ)

ξ1

|ξ |2 dξ1

∣∣∣∣∣
2

dξ ′. (4.40)

The right-hand side in this integral identity is always nonnegative and (4.40) does not imply the
symmetry of minimizers with respect to x1.

(iii) Let us change the sign of the nonlocal term appearing in Theorem 4.9, i.e. let us consider
the minimization problem

minimize E∗(u) = 1

2

∫
R3

|∇u|2 dx +
∫
R3

F(u)dx + 1

4

∫
R3

∣∣R1
(
u2)∣∣2 dx

under the constraint Q(u) :=
∫

3

G
(
u(x)

)
dx = λ. (4.41)
R
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The minimizers of this problem (when they exist) give rise to standing waves for Eq. (4.27)
where the sign of the nonlocal term R2

1(|u|2)u has been reversed. Clearly, the integral identities
that we have do not imply the symmetry of solutions of (4.41) with respect to x2 and x3.

The symmetry of minimizers of (4.41) with respect to x1 is also an open problem. As above,
in this case we have the identity

E∗(T1u) + E∗(T2u) − 2E∗(u) = − 2

π

1

(2π)3

∫
R2

|ξ ′|
∣∣∣∣∣

∞∫
0

F
(
A
(
u2))(ξ)

ξ1

|ξ |2 dξ1

∣∣∣∣∣
2

dξ2 dξ3. (4.42)

If u is a minimizer, the right-hand side of (4.42) must vanish. As in the proof of Theorem 4.9,
this implies ∂

∂x1
I (u2)(0, x2, x3) = 0 for any (x2, x3) ∈ R2. Repeating the argument already used

in Theorem 4.9 we get I (u2) = I ((T1u)2) on {x1 � 0} and I (u2) = I ((T2u)2) on {x1 � 0}.
Moreover, if λ �= 0 then u and u1 := T1u satisfy the same Euler–Lagrange equation, namely

−�w + F ′(w) − 1

d3

∂2

∂x2
1

(
I
(
w2))w + αG′(w) = 0. (4.43)

Equivalently, defining U = I (u2) and U1 = I (u2
1), we see that (u,U) and (u1,U1) are both

solutions to the system

⎧⎪⎨⎪⎩−�w + F ′(w) − 1

d3

∂2W

∂x2
1

w + αG′(w) = 0,

−�W = w2.

(4.44)

Moreover, (u,U) = (u1,U1) on {x1 � 0} and u, u1 satisfy the conclusion of Lemma 4.11. We
do not know whether this information together with the boundary condition ∂U

∂x1
(0, x2, x3) =

∂U1
∂x1

(0, x2, x3) = 0 imply that u ≡ u1.

Remark 4.13. If N = 3, the nonlocal term in Theorem 4.9 can be written as

∫
R3

∣∣R1
(
u2)∣∣2 dx = 1

(2π)3

∫
R3

ξ2
1

|ξ |2
∣∣û2(ξ)

∣∣2 dξ = − 1

d3(2π)3

∫
R3

F
(

∂2

∂x2
1

I
(
u2))(ξ)û2(ξ) dξ

= − 1

d3

∫
R3

∂2

∂x2
1

I
(
u2)(x)u2(x) dx = − 1

d3

∫
R3

∫
R3

u2(x)K(x − y)u2(y) dx dy,

where K(x) = ∂2

∂x2
1
( 1
|x| ) = 2x2

1−x2
2−x2

3

(x2
1+x2

2+x2
3 )

5
2

. Since this kernel changes sign, spherical rearrangements

in the variables (x2, x3) combined with Riesz’ inequality cannot be used to prove the symmetry
of minimizers.
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5. Some open problems

We close this paper speaking about several problems for which the methods described above
(including ours) seem to fail.

First, let us come back to the two minimization problems considered in Theorem 4.1. As
before, if u is a minimizer of any of these problems, we may assume that

∫
{x1<0} G(u)dx =∫

{x1>0} G(u)dx and we set u1 = T1u and u2 = T2u. Assume that s ∈ (1, 3
2 ). Then the identi-

ties (3.22) and (3.23) are still valid (see Corollary 3.4) and we get

E(u1) + E(u2) − 2E(u) = −16 sin(sπ)

π2
N2

s (Au) � 0 in Case A,

respectively

E(u1) + E(u2) − 2E(u) = −16 sin(sπ)

π2
Ñ2

s (Au) � 0 in Case B.

It is easy to see that these integral identities work in the wrong direction. Are the minimizers still
radially symmetric for s ∈ (1, 3

2 )?
Another problem is to study the symmetry of minimizers of

E(u) = 1

2

∫
R3

|∇u|2 +
∫

R3×R3

1

|x − y|u(x)2u(y)2 dx dy +
∫
R3

F
(
u(x)

)
dx

subject to the constraint ∫
R3

u2(x) dx = λ > 0.

In the particular case F(u) = −C|u|8/3, this problem arises in connection with the Schrödinger–
Poisson–Slater system [22]. Due to the repulsive effect of the nonlocal term, Riesz’ inequality as
well as the Reflection method work in the wrong direction.

The last problem concerns the symmetry of minimizers of

E(u) =
+∞∫

−∞

(
u2

x(x) + u3(x)
)
dx − γ

+∞∫
−∞

|ξ |∣∣̂u(ξ)
∣∣2 dξ,

where γ > 0, subject to the constraint
∫ +∞
−∞ u2(x) dx = λ > 0. These two functionals are con-

served quantities for the Benjamin equation (see [1,2]). Symmetrization and reflection cannot be
used due to the sign of the nonlocal term. Oscillating travelling waves for this equation have been
found numerically; perhaps this is an indication that the minimizers of the problem above may
change the sign.
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