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Abstract

We present a new approach to study the symmetry of minimizers for a large class of nonlocal variational
problems. This approach which generalizes the Reflection method is based on the existence of some integral
identities. We study the identities that lead to symmetry results, the functionals that can be considered and
the function spaces that can be used. Then we use our method to prove the symmetry of minimizers for a
class of variational problems involving the fractional powers of Laplacian, for the generalized Choquard
functional and for the standing waves of the Davey—Stewartson equation.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many important partial differential equations arising in physics are Euler—Lagrange equations
of variational problems. Among the solutions of these equations those that correspond to a min-
imum of the associated functional (e.g. the “energy”) subject to some constraint are of particular
interest. For example in many situations the set of such solutions is orbitally stable (see [9]).
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In this paper we address the general question of whether, or not, the fact that the underlying
problem has some symmetries is reflected on the minimizers. Namely if a problem is invariant
under the action of a group of transformations, is it true that the corresponding minimizers are
also invariant under the action of this group (or, perhaps, a subgroup of it)? As it is shown in [14],
this may not be the case.

A classical approach to radial symmetry of minimizers is Schwarz symmetrization (or spher-
ical decreasing rearrangement, see [16]). For a nonnegative function u € H'(RV) its sym-
metrization u* is a radially-decreasing function from RY into R which has the property that
meas({x € RV | u(x) > A} = meas({x ¢ RV | u*(x) > A} for any A > 0. It is well known that u*
satisfies (among others) the following properties:

/|vu*(x)|2dx< /|vu(x)|2dx and
RN RN

/F(u*(x))dx:/F(u(x))dx, (1.1)

RN RN

where F is, say, a smooth function from R into itself such that F(u) € L! (RN) (see [16]). As a
simple application of symmetrization, consider the problem of minimizing

E(u):%f’Vu(x)de—l—/F(u(x))dx

RV RV

subject to the constraint

/ G(u(x)) dx =,

RN

where F, G € C!'(R, R) have the property that F(u), G(u) € L'(RY) whenever u € H'(RV).
If u € H'(RV) is a nonnegative minimizer, then it follows from (1.1) that u* also satisfies the
constraint and E(u*) < E(u); therefore, u* is also a minimizer. To show that u = u™ except
for translation is a more delicate question and this follows from a result in [6] and the Unique
Continuation Principle.

In the case of vector-valued minimizers u : RN — R¥, symmetrization can also be used pro-
vided that each component of the minimizer is nonnegative, the function F :RF — R satisfies
a cooperative condition Fy, ;< 0 for i # j and the constraint is of the form fRN Gi(uy) +
Go(u2) + - - -+ G (ur) dx = constant. Notice that the function defining the constraint must have
a special form because we want the value of the constraint to be preserved by symmetrization.

Another tool to prove radial symmetry of minimizers is the result by Gidas, Ni and Niren-
berg [11] about the radial symmetry of positive solutions of the semilinear elliptic equation

—Au+ f(u)=0.

In the case of systems, an extension of that result has been proved in [7,25] assuming a cooper-
ative condition for the nonlinearity. In [11] as well as in its generalizations the nonlinearities are
also allowed to depend on the space variable in a radial and monotonic way.
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As we can see, in the vector case, besides the need to know in advance that the components
of the minimizer are positive, both methods described above require the nonlinearity to satisfy a
cooperative condition and the function defining the constraint to have a special form. To avoid
these two restrictions, the Reflection method has been developed in [18,19]. We now briefly
describe this method.

Consider the problem of minimizing

E(u,v):%/(’Vu(x)‘z—i—wv(xﬂz)dx—i—/F(u(x),v(x))dx

RN RV

subject to

/ G(u(x), v(x)) dx =Ar#0.

RN

To show that any minimizer (u, v) is symmetric with respect to x; (except possibly for a transla-
tion), we first make a translation in the x; variable in such a way that

A
G(u(x),v(x)) dx = / G(u(x),v(x)) dx = ok (1.2)
{x1 <0} {x1>0}

Next, setting x = (x1, x), where x’ € RV~ we define the functions u1 and u; by

u(xy,x") if x; <0,

. d
u(—xy,x") ifx1 =0 an

ul(x)=u1(x1,X’)={
_Ju(=x1,x") ifx; <0,
u2(x) _{u()q,x’) if x; > 0.

In a similar way we define v; and vp. According to (1.2), the pairs (11, v1) and (u2, v2) also
satisfy the constraint (i.e. they are admissible). Moreover, a change of variables shows that

E(ui,v)) + E(up, v2) =2E(u, v). (1.3)

Thus (11, v1) and (12, vy) are also minimizers. This shows that there exist minimizers which are
symmetric with respect to x;. In fact, by using the Euler-Lagrange equations and the Unique
Continuation Principle we can show that necessarily (u1, vi) = (4, v) = (uz, v2). Clearly, this
implies that any minimizer (u, v) is symmetric with respect to the first variable. Replacing the
xi-direction by any other direction in R¥ and repeating the same argument, we can show that
(u, v) is radially symmetric except for translation (details will be given later). Notice that to use
this argument there is no need to know the sign of components of the minimizers.

The main point of this paper is to extend the Reflection method to a class of nonlocal func-
tionals. To be more specific, consider the problem of minimizing

E(u):/m(§)|ii(§)|2d§+/F(u)dx (1.4)

RN RN
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subject to the constraint

Q(u)sz(u)dxz)\;éo. (1.5)

RN
Defining W (u) = fRN m(E)|ﬁ(§)|2d§ and u 1, up as above, instead of (1.3) we have
E(u1) + E(uz) —2Eu) = W(u1) + Wuz) —2W(u).
Therefore, to show that 1] and u; are also minimizers we need to know that
W)+ W) —2W(u) <0. (1.6)

The key to the method developed here is to show that inequality (1.6) holds true (see Theo-
rem 2.7). In this article we will use this extended Reflection method to prove the symmetry of all
minimizers of the following functionals:

e the Hamiltonian of a coupled system between a multidimensional Korteweg—de Vries equa-
tion and a Benjamin—Ono equation. Here minimizers correspond to solitary waves;

o the generalized Choquard functional. In this case the minimizers give rise to standing waves
for the generalized Hartree equation;

o the Hamiltonian of the generalized Davey—Stewartson equation. Here again, minimizers cor-
respond to standing waves.

The existence of minimizers for these problems can be proved by using the concentration—
compactness method [17] or the alternative method presented in [20] and will not be discussed
here.

Notice that the symmetrization approach, in general, does not apply to the problems above.
Indeed, in the first two examples, symmetrization cannot be used to prove the existence of a
radially symmetric minimizer under the general assumptions on the nonlinearities made in this
paper. Furthermore, with the tools available at the present time, it is not clear how to prove the
radial symmetry of all minimizers, even in the cases where symmetrization can be used to prove
the existence of a radially symmetric minimizer. Finally, in the last example, symmetrization
cannot be used because one term of the Hamiltonian of the Davey—Stewartson equation is a
singular integral operator whose kernel changes sign.

This paper is organized as follows: in the next section we present some integral identities
for functionals of the form W (u) = fRN m(§)|ﬁ($)|2d$. These identities are first proved for
functions u € CZ° and are crucial for our approach to symmetry. It will also appear clearly what
kind of symbols m(§) we may consider. In Section 3 we search for appropriate function spaces
on which our method can be applied. It will be proved that we may work on H*(R") or on
H*(RY) if —% <s< % We will extend the integral identities obtained in Section 2 to these
function spaces. In Section 4 we apply our results to the concrete problems presented above. We
end this article with some open problems.
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2. Some identities

In what follows, x = (xg, x2, ..., xy) = (x1, x") denotes a point of RY, x' = (x2,...,xN) €
RVl & = (51,6, ....6n) = (61,8) e RY with §' = (&,...,6v) € RV~ We denote the
Fourier transform either by ~ or by F.

The aim of this section is to prove an identity for some functionals of the type

W) = / m(&)[aE) [ de @.1)

RN

which play a very important role in proving symmetries.
Consider a function u € CZ° (RV). We define the reflected functions u; and u, as follows:

u(xy, x") if x1 <0,
u(—x1,x") ifx; =0

ul(x):’/‘l(xlsx/):{

u(—xy1,x") ifx; <0,

2.2
u(xy, x") if x; > 0. (2.2)

uz(x) = {
We also define
] !/ /! 1 !/ /!
g(x) = E(u(m,x )+u(—xi,x)) and f(x)= E(u(ch ) —u(—x1,x)).  (2.3)
Clearly, f, g € C° (RV), g is even and f is odd with respect to x; and u = f + g. Let

| fl=x1,x)=—=f(x) ifx; <O,
felx) = { F,x) ifxy >0, (2.4)

Then f, is even with respectto xj, u; =g — fix and up = g + fi.

We want to study the quantity W (u1) + W(uz) — 2W (u), where W is given by (2.1). Later
in Theorem 2.7 we specify the class of multipliers under consideration but, at this early stage,
besides integrability conditions, we assume that

m(£)isreal and m(—£1,&)=m(&,E). (2.5)
It is easy to see that
B(—£1.8)=3¢1.£) and F(—£.8)=—F&.8). (2.6)

Therefore

W) + Wuz) —2W(u)

= /m(él,é’)(|§($) ~ RO+ 26+ A©[ -236 + F©) ds

RN
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=/m@l,é/)(zm(s)ﬁ—2|f(s>|2—4Re(§(§>7§)))ds
RN
—2/m<sl,s/)(|f1<s)|2— |7®)) de =2W (f.) —2W ()
RN

because [py m(£1, &) Re(§(§)f($)) d& =0 1n view of (2.5) and (2.6).
It is obvious that

J?(‘é“l,‘é“/)=/ / ¢TI (v XY dx dxy

RN-
00

=

R

3

=-2i

o

RN-1

and similarly

o0

f:@l,s/):z/
0

2\

RN-1

We denote by Fy—_; the partial Fourier transform in the last N — 1 variables, that is

Fn-1f(xi, &)= / e f(xy, x)dx.

RN-1

Since f € CX (RV) we may use Fubini’s theorem to get

IGRA N GRACRD)

24//Sin(xlél)Sin(ylfl)(]:N—lf)(xla5/)(fN—1f)(YIs5/)dx1dy1-

In the same way,

|f:(§17§/)|224//COS(XISI)COS()’ISI)(]‘—Nflf)(xl»5/)(-7:N71f)()’1,€/)dx1 dyi.
0 0

Consequently,

R
/ (efixl-;ﬁ _ el'Xli?l)e*ix/‘f/f(xl, x")dx"dx
0

f sin(v1&1)e ¢ £ (x1, x") dx’ dxy
N—

cos(x1&)e ™ Fxy, x)dx' dx;.

2.7)
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W(fe) = W(f)

—4/m(%‘l,S/)//[COS(M&)COS(M&)—Sin(MSl)Sin(MSl)]
0 0

RN

X (Fn—1£) 1, ENFn-1 /)01, € dxi dyr d&

—4/m<sl s>//cos (14 yDE) Py )1 €Y Fy 1 DOL B dxy dyy de. (2.8)

RN

For an arbitrary (but fixed) £ € R¥N~!, we define Qe (1) = (Fy—1/)(t,&'). Since f €
CP(RY), it is clear that gz € C(R). If supp(f) C Bgn (0, R), then supp(gg) C [—R, R].
For z € C, we define

o0 0
hé’(Z)=//ei(x1+}’1)z<!)sf(x1)<ﬂs/(yl)dxldyl- (2.9)
0 0

Since ¢z is bounded and has compact support, /¢ is well defined and is an holomorphic function
on C. For any z € R we have

oo 00
he (2) / / eI G (k) @er (V1) dx1 dyr = hgr(—z)  and
00

Re(hg (2)) = (hgf(Z)-I-hg () Z//COS((M + y1)z) e (xD)@e (y1) dx1 dyy.
00

From (2.7) and (2.8) we get

W) + W) =2W () =2W(f) =2W(f) =8 / /m(&,é/)hs/(él)déldé’- (2.10)
RN-1—

Some properties of the function h¢/ are given in the next lemma. To simplify the notation, we
shall write £ instead of hg'.

Lemma 2.1. For any fixed &', the function h = hg' given by (2.9) has the following properties:

(1) h is bounded in the upper half-plane {z € C | Im(z) > 0}.
(ii) There exists a constant C > 0 (depending on f and §') such that for any z # 0 withIm(z) > 0
we have:

<< c

h(2)] < 7 and |h'(z)| < <TE 2.11)
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Proof. (i) If » > 0 and x > O then |ei“"_bx| < 1 and we have

o0 00
|h(a +ib)| = / / fartya=tybg,, (x)) g (y1) dxi dyi
00
00 2 o] 2
<( [t lolar) < ( flola).
0 0
(i1) It is clear that
o0 o0
h) = / g (x) dxy / Mg ) dyi = ¥ (¥ (), (2.12)
0 0

where ¥ (z) and ¥, (z) are defined in an obvious way. Notice that ¢z (0) = (Fn—1 )(0,§") =0
because f(0,x’) =0 (recall that f is odd with respect to x1). Moreover, for any k € N,

d* e _ ff
ﬁ@é’(t)Z / e iNE oxk — (. x")dx (J:N 18—)0 )

X
RN-1 1

is a C° function of ¢, uniformly bounded for (¢,&') € R x R¥ ~! Integrating by parts, we get:

() = f gy di = e — - f gL () dr
iz PR ¥4
0 0
i / > 1 i itz I d _ 1 / 0 i itz I d
_chs/t z=0+(i27 e (1) t_—z—2 e (0)+ [ e () dr .

0

It is clear that an analogous estimate is true for ¥,(z) and the first inequality in (2.11) holds.
Similarly one can prove that W} @) < ‘CP for j = 1,2 and Re(z) > 0. Since #'(z) =
U (2)¥(2) + ¥1(2) ¥, (2), the second estimate in (2.11) follows. O

Remark 2.2. In general, 3){ (O x") does not vanish identically; hence Fy_1 f(0,&") # O for
some &', i.e. there exists & such that (pg,(O) # 0. For such &', the functions ¥; and ¥, do not

decay faster than # and the estimate (2.11) is optimal.

Remark 2.3. Note that for any #+ € R we have h(it) = |f°° e e (x1)dx 12 € [0, 00). Sup-
pose that for any fixed &' € RN m(&1, &’) admits an holomorphic extension z — m(z, &)
to the upper half-plane {z € C | Im(z) > 0}, with possibly some singularities on the imag-
inary axis {ir | ¢ € [0,00)}. If |m(z,&’)| increases more slowly than lzI? as |z] — oo, then
ff‘;om(gl, &)h(&1) d&; should depend only on the values of & on the singular set of m(-, &).
This simple idea will enable us to prove the identities that will be crucial in symmetry problems.
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In order to clarify what kind of symbols may be considered, we start with some auxiliary
technical results about holomorphic functions in a half-plane and their boundary values.
Given a function o € LP(R), 1 < p < 00, we recall that its Hilbert transform is defined by

.1 o(x —y) . — . ~
(Ha)(x) = Slgr%) - f ———dy orequivalently Hoa(§) = —isgn(§)a(§).

{Iyl>¢}

It is well known that H is a bounded linear mapping from L”(R) into L?(R) (see, e.g., [23,
Chapter II], or [24, inequality (2.11), p. 188]).

In the next two lemmas we collect some classical facts that will be very useful in the sequel.
Proofs can be found in [24, Chapters I, II, VI] or in [23].

Lemma 2.4. Consider o € L’ (R), 1 < p < o0, and let B = Ha. For x > 0 and y € R define

1 o o0
X
alx,y)=— ——a(t)dt = Py —t,x)a(t)dt and
(x,9) ﬂ/x2+(y_t)2(> | Po=t0e0
—c0 —00
o o
by = [ G2t awar=- [ o - rawa
X, y)=—— —_— =— — 1, X)) ,
Y bid x2 4+ (y—1)? Y
0 —00
where P(s, k) = %ﬁ and Q(s, k) = %ﬁ are the Poisson kernel, respectively the conju-

gate Poisson kernel.
Then we have:

1) b(x,y)= —ffooo P(y—1t,x)B(t)dt forany x >0andt € R.

i) llaCx, Merw < llellierwy, 106G, Hlr® < 1Blr®y and |la(x, ) — allLr® — 0,
Ib(x, ) + BllLrwy — 0 as x — 0. Moreover, a(x,y) — a(y) for any y in the Lebesgue
set of a (hence almost everywhere) and b(x,y) — —B(y) for any y in the Lebesgue set
of B.

(iii) The functions a and b are harmonic in {(x,y) € R® | x > 0} and r(z) = r(x + iy) :=
a(x,y) +ib(x,y) is holomorphic in {z € C | Re(z) > 0}.

(iv) There exists a constant A > 0 such that

Allee|lLr Aller||r
|a(x,y)| <——— and |b(x,y)| < . foranyx >0andy e R, (2.13)
xP xXP
and for any § > O we have
li ,)=0 d li b(x,y)=0.
‘(x’y)‘_l)n;o’x%a(x Y o I(x,y)l—lfgwf}ts (x.3)

Lemma 2.5. Let u be a finite Borel measure on R. For x > 0 and y € R define

oo oo

1 X
a(%)’)Z;/mdu(t):/P(y—t,x)du(t) and

—00 —0Q
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1 o0 _ o0
bx,y) = / ﬁdum:—f O —1.x)dp(o).

—00

where P (s, k) and Q(s, k) are the Poisson kernel, respectively the conjugate Poisson kernel.
Then:

(i) The functions a and b are harmonic in {(x,y) € R® | x > 0} and r(z) = r(x + iy) :=
a(x,y) +ib(x,y) is holomorphic in the right half-plane {z € C | Re(z) > 0}.
(i) Forany x > 0 and any p, 1 < p < 0o, we have

Ha(x, ')HL/’(R) el (2.14)

11
mwaxa

where q is the conjugate exponent of p and ||| is the total variation of . Furthermore,

lim / a(r, () dy = / 6 () du(y) 2.15)
R

for any function ¢ which is continuous on R and tends to zero at +o0.
(iii) For any x > 0 we have b(x,-) = —Ha(x,-) and |b(x,y)| < lnll. Moreover, for any
p € (1, 00) there exists Ap > 0 such that

an

_p=t
P

160G, | oy SApx™ 7 el

(iv) For any § > 0 we have lim|(x, y)|- o0, x>5 a(x, y) = 0 and lim(x y)| 00, x>s P(X, y) =

(v) Suppose in addition that 1(S) = u(—S) and u(S N [—e, €]) = 0 for any Borel measurable
set S. Then a and b are well defined, bounded and holomorphic in the strip {(x, y) € R? |

&

s5<y< %}, the function r(x +iy) = a(x,y) + ib(x, y) is holomorphic in that strip and
r(0) =

After this preparation, we come back to the study of the integral fR m(&1,&)h ¢(&1) d&1 which
appears in the right-hand side of (2.10).

Lemma 2.6. Suppose that for a given &' € RN™! the symbol m (&1, €') can be written as

1 1
M(él,él)=A0(§/)+A1($/)|51|+A2($')$12+—éffz—zaé/(f)df
b4 s E +1

1
d (t)+ / d t) + / d 1 2(1)
[/51 Mg 0 £} P Mg 1 SlR P pe o ( }

(2.16)

where:

(@ Ao(§), A1(§"), A2(§") eR,
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(b) agr € LP(R) for some p € (1, 00) and ag: is an even function,

(c) wg ; are finite Borel measures on R such that pg ; (S) = g ; (—S) for any Borel measurable
set S CR, i =0,1,2. Moreover, there exists n > 0 such that g o(S) = 0 for any Borel
measurable set S C [—n, n].

Let h = hgr be given by (2.9). Then we have the identity:

oo oo oo

] T h
3 / m(&r, Eh(E) d& Z—Al(é/)flh(il)df+/l3a5'(l)h(i1)dl+/%dﬂs’,o(ﬂ
0

—00 0 0
—/zh(z‘r)dw,l(:)+/t3h(n)du§,,2(t). 2.17)
0 0

Proof. For z = x + iy € C with Re(z) > 0 we define

1 by ]
r(z) = ;R/ ma;& W(t)dt — Rfﬂaél(o dt and

1 X i y—t
—d 1)y —— | =———dug ;(t) fori=0,1,2.
no=1 [ e e n/x2+(y—t)2 pe (1) fori
R R

It follows from Lemmas 2.4 and 2.5 that r and p; are well defined and holomorphic in the right
half-plane {z € C | Re(z) > 0}. Moreover, assumption (c) and Lemma 2.5(v) imply that py admits
an holomorphic extension to the domain {z € C | Re(z) > O or |Im(z)| < ﬂ} and pp(0) = 0.

Consequently, 222 ° @ jg holomorphic in this domain and is bounded in a neighbourhood of zero.

Finally, we deﬁne

(2.18)

mes (2) = po(z)
Z

It is obvious that mg/ is well defined and holomorphic in the right half-plane. Since o and

per i are “even” and t > = + s is odd, for any & > 0 we have Im(mg (§1)) =0 and
1

mg:(§1) = Re(mg (£1)) =m(&1,£).
For ¢, R > 0, consider the closed continuous path y, g composed by the following pieces:

Y1,e,R() =1, t €le, e+ R,
VerO)=e+ R 6€[0,5],
Vier(t)=e+i(R—1), te[0,R].
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The function z + mg(z)h(z) being holomorphic in the right half-plane we have
fy&R mg(2)h(z) dz =0, that is

R

/ m(Er, E)h(E) dér + / me (D)h(z)dz + / me (Dh(z)dz=0.  (2.19)

& Y2,e,R V3.e,R
It follows from (2.18), Lemmas 2.4(iv) and 2.5(iv) that lim ;- 0o, Re(z)>e mgl(Z) = 0; hence,
limpg_s % = 0 uniformly with respect to 8 € [0, 2] On the other hand, from
Lemma 2. 1(11) we have |h(e + Re'?)| < R ke and then |(e + Re?)3h(e + Re’e) iRe?| <
\szIZW < $2% <2C forany R >2¢e. We 1nfer that hmR_mof L Mme (Dh(2)dz =

From (2. 13) (2.14) and the boundedness of 2 0@ near 0 it follows that |m(&;,£")| < C for

0<é <1 and |m(&1,&")| < C|&)*~? for large & and some C, 8 > 0. Since / is continuous and
|h(&1)| < ‘4, the integral fo m(&1, E)h(&1) d&| converges absolutely.

Clearly we have fV} L Me(Dh(2)dz = —i fo mg: (e + iy)h(e + iy)dy. Passing to the limit
as R — oo in (2.19) we infer that f0°° mgr(e +1y)h(e +1iy)dy converges and

/m(ifl,é/)h(%'l)d%'l =ifmg/(8+iy)h(8+iy)dy- (2.20)
& 0

Since m (&1, &) is real and symmetric with respect to &, and h(—§&;) = h(&]), we have

—& oo

/ m(&1, EHh(E) dE = f m(&, Nh(E)) dé,

—0o0 &

and then, taking (2.20) into account, we get

/ m(&1, ENh(&)) dé ~I—/m(§1,$’)h($1)d€1 =—2/Im(mgf(8+iy)h(8+iy)) dy; (2.21)
—0 e 0
hence
f m(&, ENh(E) dE = —Zgij)rg)flm(mg/(s+iy)h(8+iy))dy- (2.22)
—00 0

Since h(iy) € R for y € [0, 00), using Lemma 2.1 and the Dominated Convergence Theorem we
find
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elg%/ Im[(Ao(&') + A1(E) (e + iy) + A2(E) (e +iy)*)h(e +iy)] dy

=€) [ yhiivydy. (2.23)
It is easy to see that |(¢ + iv)eh(e +iy) — (iy)‘h(iy)| < Cremin(l, yl—z) for y € (0,00), £ €
{0, 1,2, 3} and ¢ € [0, 1]. Hence there exists C, > 0 such that

e +in ‘e +iy) = @ RG] 1o 0,00 < C2t (2.24)

for any ¢ € [0, 1], £ € {0, 1,2, 3} and g € [1, oo]. This implies that

/Im((s +iy) he +iy)r(e +iy))dy — /Im((iy)Sh(iy)r(e +iy))dy
0 0

<([Re(r(e+i0) |, + [tm(rce + )] ) [ 6 + iy hle +iv) = (0 RGN | L 0,00

< (lleglir + |Hagrllp)Coe — 0 ase — 0.

On the other hand, by Lemma 2.4(ii) we obtain

lir%/lm[(iyfh(iy)r(s +iy)]dy =— lin%/ Y h(iy)Re[r(e +iy)]dy
0 0

=— / Y3 h(iy)ag (v)dy.
0

Therefore we have
o0 o0

lim [ Im{(e + iy)3h(e +iy)r(e +iy)]dy = — / Y h(iy)ag () dy. (2.25)
0 0

Let x € C°(R,Ry) be such that supp(x) C [—7, ] and x = 1 on [—¢, ¢]. Since the func-
tion z > pOT@h(z) is uniformly continuous on [—1, 1] x [—%, 7] we have

e—0

lim | Im [—pO( et! y)h(8+ly)x(y):|dy /Im(p()(y)h(zy) (y))
e+iy
0

_ / Wh(iy)x(y)dyzo' 226
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By Lemma 2.1 we infer that there exists C3 > 0 such that |h(e+iy) —h(iy)| < eCzmin(1, ‘y%)
for any y € (0, c0) and ¢ € [0, 1]. It is easy to see that

Kh(s +.iy) B hgiy))(l 3 X(y))‘ Cas mm(ylﬁ, 1)

E+1y 1y

for any y € (0, o0) and some C4 > 0. Consequently there exists Cs > 0 such that

h(e +iy)  h(y)
(920

< Cse
L?(0,00)

for any p €[1, oo]. Using the Cauchy—Schwarz inequality and Lemma 2.5(ii) and (iii), we get

7 he+iy)  h(
'/po<e+iy>( e+ _ (.ly)>(1—x(y))dy
0

g+1y 1y
. h(e +1iy) h(iy)>
< || pole +i) ( — — — I—=x)
T ) (RPN
<Cee? >0 ase— 0. (2.27)
We also have by (2.15) and assumption (c),
i h(iy)
lim [ 1 [po(s + zy)—y( - x(y))} dy
0
h(iy)
=—lim [ Re(poe +iy)) == § (I=x)dy
1
/ yy (1- X)) dpero(y) = / L dug o). (2.28)
0 0
From (2.26)-(2.28) we get
lim Im[Mh(g +iy):| dy = —f @) dpgr o(y). (2.29)
£—0 e+1y y
0 0

Similarly we find

0]

hm Im((s +iy)pi(e +iy)h(e +zy)) /yh(iy) dug 1(y) and (2.30)
0
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o0

lim [ Im((e +iy)’pa(e +iy)h(e +iy))dy = — / Y3 h(iy) dug 2 (y). (2.31)
0

e—0

0

Since mg/(z) is given by (2.18), replacing (2.23), (2.25), (2.29)—(2.31) into (2.22) we obtain the
conclusion of Lemma 2.6. O

Now we are ready to state and prove the main result of this section.

Theorem 2.7. Suppose that for any &' € RN™! m (&), €') satisfies the assumptions of Lemma 2.6.
Foru e CSO(RN) define uy, ua, f, g and W as in (2.1)—(2.4). Then we have the identity:

2
T — (W) + W) —2W(u))
[e9) 00 2
= [ we [ [ Fener észdsl dr dg’
RN-1 0 0
003 Oo" ’ él ’ ’
+ / /lasf(l)/ (51,$)t2+$2d§1 drdé
RN-1 0 0 1
001 OOA ’ r‘;:l ’
+ / / : / ) | dueat0 d
RN-1 0 0
00 [e'e) E 2
y / 1 /
- / fr/ €18 | dite s
RN-1 0 0
00 o) %_ 2
v [ 8] [Faest s an] duanas @32)
ey J 1=+ &

Proof. Since Fy_; f € S(RY), the integral [~ e ™1 (Fy—1 f)(x1,&')dx; is well defined for
all > 0 and &’ € RV~!, Using Plancherel’s theorem we get

o]

/ eI (Fyor )1, ) dvy = (Fot £ D P 10,00 Ol

0
= Qo) F(Fn-1£CED) File™ M x0.000)) 2y (233)

Moreover, we have

o
U —erigon| 1

t+i& xl:o_t‘i‘ié-l

o0
Fi(e™ Y x10,00()) E1) = f e ISl ) =
0
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and then, using (2.33) and the oddness of fwith respect to £1 we get:

00 2 o0 2
_ 1
he (it) = /e‘“’(f/vflf)(xl,é’)dm =(@n)~ /f@"gl T

0 —0Q
o] 2
e ()

(2n) (=i itig )
0

! 00 2

-5 /f L) 52 dt, (2.34)
0

Identity (2.32) is a simple consequence of (2.10), (2.17) and (2.34) and Theorem 2.7 is
proved. O

Remark 2.8. It is worth to note that we can prove an identity analogous to (2.32) whenever
we work with a symbol m(§) = m (&1, &) symmetric with respect to &; and such that for any
& e RN m(., &’) admits an holomorphic extension mg (z) to the domain {z € C | Re(z) > 0,
Im(z) > 0} having the following properties:

Pl. lim,_ ¢ 1m(p)-0me (2) =m(£1,&).

P2. For any & > 0, lim|;| 00, Re(z)>¢ mzﬂ =0.

P3. lim,_,¢ fo mgr(e +it)hg (¢ +it) dt exists (and depends on &’ and the values taken by hg
on the imaginary axis).

Note that assumption P1 implies that m(-, §’) admits an holomorphic extension to the whole
right half-plane. Indeed, it follows from Schwarz’ reflection principle [8, p. 75] that the function

 (me( if Im(x) >0
mf/_{mg/(z) if Tm(z) <0

is holomorphic in {z € C | Re(z) > 0}.
Assumption P2 is needed in the proof of Lemma 2.6 to show that

lim f mg (2)he (2)dz =0
R— o0

Y2.6,R

(where y2,., r(0) =&+ Re', 0 € [0, 51). We recall that |hg/(z)| behaves like e ‘4 as |z| — oo (see

Lemma 2.1 and Remark 2.2). This assumptlon could be replaced by a weaker one that guarantees
at least that

lim mg(z2)he(z)dz =0 for some sequence R, — oo.
n—oo

Y2,e.Rn
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In Theorem 2.7 assumption P3 is satisfied because of the special form of m(-, £’) (see (2.16)).

Conversely, suppose that a function m(z) has the properties P1-P3 above. Let m be the
holomorphic extension of m to the right half-plane and define g(z) = m(Z) . Clearly, ¢ is an
holomorphic function in the right half-plane and lim;|—, 00, Re(z)>¢ 9 (2) = 0 for any ¢ > 0. Thus
for any x > ¢ we have the Poisson representation formulae

g(x +iy)= 2_8 5 Re(q(e +in))dt
K (x —e)2+(t—y)?
/ = 8)2 n (, BE Re(g(e +it))dt (2.35)
and
q(x+iy)= / (x_8)2+(t 7 5 Im(q (e +in)) dt
i r xX—¢ .
1] Goorra e Mt tin)dr (2.36)

Multiplying (2.35) (respectively (2.36)) by (x + i y)3, we find the expression of m(x + iy) in
terms of Re(g (e + it)) (respectively in terms of Im(g (e + it))). If Re(g(e + it)) — a() as
& — 0 and if it is possible to pass to the limit as £ — 0 in (2.35) we obtain, at least formally,

o(r)
%-2 +[2

D = g = 5 f

However, as it will be seen later in applications, the function ¢ may be singular at the origin. In
this case it is not possible to pass to the limit as ¢ — 0 in (2.35) or in (2.36) in order to express
the function ¢ (hence the function m) in terms of its “boundary values” on the imaginary axis.
For this reason we have introduced “lower order terms” in the expression of m¢/(z) in (2.16).

It is now clear that Theorem 2.7 can be generalized. For example, if the expression (2.16) of
m(&1, &') contains other terms

3
el [ e
— 1 ——— gk )
= s Slz—i—tz

where ag x € LPK(R) for some pi € (1,00), ag/ ;. are even functions and oy ¢ vanishes in a
neighborhood of zero, then we have to add terms

o

0

2
dtdg’

/ / [aél}o O B — raga(0) - fzﬁﬁ’ﬁ(”}

RN-1 0

5 5 d&
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in the right-hand side of (2.32), where B¢/ | and B¢ 3 are Hilbert transforms of o/ | and ay 3,
respectively.

We give now some examples illustrating several situations that may be encountered in appli-
cations. Throughout u € C° (RV) and we keep the notation introduced in (2.1)—(2.4).

Example 2.9. If the symbol m is of the form m (£, &") = A;(§')|&1|, then Theorem 2.7 gives

oo (0.¢]
16
W(u1)+W(uz)—2W(u)=—F / Al(S/)/t (%‘1,%") f;‘ 5 d&r| drdg'. (2.37)
RN-1 0 0
This kind of symbol appears in problems involving operators of the type Hj 3371 P(B%, ey %),

where Hj is the Hilbert transform with respect to the x; variable and P is a pseudo-differential
operator in the last N — 1 variables.

Example 2.10. (i) Consider the symbol m (&) = |2 appearing in Choquard’s problem. It can be
written as

1

1
S ! = - = — —d ’ s
m(§1,§") 512+|§/|2 ”R/%ZJrfz Mg 0(t)

where g o = %(8_@/‘ + 8j¢7)) and &, is the Dirac measure with support {a}. From Theorem 2.7
we get the identity

00 2
8 1
W) + W) —2W @) = = /-E—/' hsnsﬁ+szsldé. 238)
RN- 0

The same identity could be obtained by observing that the function mg/ (z) = m is mero-
morphic in C and has exactly one pole in the upper half-plane, namely i|£’|. Using Residue’s
Theorem it is not hard to see that

[e.e]

f mg (2)hg (2) dz = 2mi Res(mghgr, i|€']),

—00

and integrating this identity over RV ™! we get (2.38).

_ 1 - _
(ii) Consider the symbol m(§) = BE +a2 = Frerea corresponding to the operator (—A +

a®)~L. It is obvious that

1 1
m@f@=;/§¢?mwmm
R

where g o = %(87«/@/\2%2 + 8\/|§/|2+u2). From Theorem 2.7 we get the identity
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W) + W) —2W(u) =

T &1
/¢|s|2+a 0/ R a2+ EPTE dér) dt.

(2.39)

The same identity could be obtained by applying Residue’s Theorem to the meromorphic func-

: 1
tion z — mhg/(z) /
(iii) More generally, consider a symbol of the form m (&1, ") = <€)

@) It can be written as

1 1
m(Sl,S/)=;deﬂé’,0(f),
R

where wg o = 5 c(&") (8, &y + 8r)). Using Theorem 2.7 we obtain the identity

le%e] 2
8 c(&) &1 ,
wan+ W -2wa == [ S5 [ Fe d1| dg'. 2.40)
nRN—l r(&) 0 2(5 )+El
£
In particular, for the symbol m (&1, &) = m, j=2,..., N (corresponding to the operator
k3% 2y—1 I
(=D (A +a”)7)), we get
J
8 & |7 3 ’
W) + W) —2Wu) = — —L— / dg| dg'.
m L VEP+a]) Dt @ +g'P + &}
(241)
2
(iv) The symbol m (&, &') = #-H;W can be expressed as
& 1
m(&l,é/)Z;lfngrﬂ dpg 1(1),
Rl
where pgr | = %(87\/%/'2“2 + 8\/@/'2“2). From Theorem 2.7 we find the identity
g r ¢ 2
1
W) + Wuz) —=2Wwu) = —— / VIE' +a? / ——————d&| dt’.
w3 J 24P+
(2.42)

Notice that the right-hand side in (2.42) is nonpositive, while in (2.41) it is nonnegative.
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4
(v) The symbol m (&1, &) = EIZ_H;’&W (corresponding to the operator % (—A +a*>)Ycan
be written as

N_E 1
m(gl,é&):;/mdﬂg’z(ﬂ,
R

4 S
where g0 =3 (8—«/|§/\2+a2 + 8\/|g/|2+a2)' By Theorem 2.7 we have the identity

00 2
8 z &1
W(M1)+W(u2)—2W(u)=—f €' + a?) f f1.8) 55 s db| dg
™ J + 182 + &

(2.43)
Obviously all the identities in (2.40)—(2.43) could be obtained by using the Residue Theorem.

Example 2.11. Consider the symbol m(§) = |€ |25, corresponding to the operator (—A)’.

The complex logarithm log(z) = In|z| + i arg(z) is well defined and holomorphic on C \
(—00,0]. For z € 2¢ 1= C\ {it | 1 € (00, —|§'|] U [€'], 00)}, we have 22 + [§'|* ¢ (—o00, O;
hence we may define

mer(z) = & OREHED) |52 1 g1 2ff pisars @ )
The function mg: is holomorphic in ¢/ and |mg(z)| = 122 4 |€'|?)* forany z € §2¢:. It is easy to
see that, for &’ # 0,

2 o Z2k
mer(2) = |&'1% (1 + c§—>, (2.44)

ER T

where Cf = w and the series converges in the open ball B¢(0, |€']).

For s < % and &' # 0, the function z — mi;(Z) is holomorphic in £2¢ \ {0}, tends to zero

as |z| — oo and has a third order pole at the origin. Consider the function rg/ (z) = Zi}(mg/(z) —

|E'|> — 5|€'1%722%). According to (2.44), rg is a holomorphic function in 2¢/. If s < %, we have
rer(z) = 0 as |z| — oo. Consequently, the Poisson representation formula (2.35) holds for rg.
Since r¢/(Z) = rg/(2), the function ¢ = Re(rg/(¢ +it)) is even and we have, in particular,

me (1) = &1 + s|&' %27 + £ rer (81)

o0
- & §1—¢ .
=& +slEP 2+ 2L f Re(rz (e +it))dt. (2.45)
o @arra el )
—00
It is clear that for any ¢t € (—|&'|, |&’|) we have lim, .o Re(rg/ (¢ + it)) = Re(rg (it)) = 0.
For any ¢ > |§'| we have lim, omg (¢ + it) = (12 — |&"1?)%e™™ and lim, o Re(rg/ (e + i) =

sm(syr)(t _‘é 2 >
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On the other hand, it is straightforward to check that for —1 < s < %, there exists p; € (1, 00)
and Cy ¢ > 0 such that

e+ 2]y < Cosr foranyse (0.51). (2.46)

It follows from (2.46) and [24, Theorem 2.5, p. 50] that there exists kg € L (R) such that
Re(rg(x +iy)) = %f_oooo mkg /(t) dt. Moreover, from [24, Theorem 2.1, p. 47] we have
limg o Re(rgr (¢ + it)) = kg (2) for almost every ¢ € R and ||Re(rg/ (s +1i-)) — kg/llLps — O as
& — 0. In view of the pointwise convergence, we infer that kg/(—1) = kg/(2) a.e. and

0 it 1€ (=[], €D,

a.e.on R.
_sin(sr) CoEA" l'fl' L o] > €],

kg/(t) =
Now it is clear that the symbol m (&, £") = (512 + |€/1%)" can be written as
m(Er €)= &' + 512726 + Ere (81)

4 e’}
— I sl 2 4 L / 2

b/ i +1
—00

k(1) . (2.47)

3
Thus we may apply Theorem 2.7 to get, for any u € C2°(RV) and s € (-1, 5),

W) + Wup) —2W(u)

6 [ [, i L
1 / [#reo / 6.6 der| drde
RN-1 0 0 1
00 2
RV 0

Similarly, if we consider the symbol m (&) = (|€]* + a?)* we get the identity

W) + W) —2W(u)

. 16sm(srr) / /‘

VIE P+a?

2
drdg'. (2.49)

d$1

o
0
3. Symmetry and function spaces

For any u € CgO(RN) we define u1 and u5 as in (2.2) and we put Tyu = uy, Tou = u3. Clearly,

Ty and 75 are linear continuous mappings from CZ° R to CS (RM). In this section we consider
the following intimately related problems.



556 O. Lopes, M. Maris / Journal of Functional Analysis 254 (2008) 535-592

Problem 1. Determine significant subspaces X C D’(R") such that 77 and 7> can be extended
to linear continuous mappings from X to &X'. (Or, equivalently, find subspaces X such that u € X
implies Tiu, Tou € X and u — Tiu, u — Tru are continuous for the X’ topology.)

Problem 2. If X is a subspace as above, how the identities proved in the previous section can be
extended to X'?

The answer to these questions is of great importance in symmetry problems. For instance,
suppose that a function space X" has the two properties described above and that the solutions of
the variational problem

minimize E(u) ::fm(é)\ﬁ(f;‘)fd&—i—fF(u)dx

RN RN

under the constraint / Gu)dx=x1#0 3.1

RN

belong to X. As before, the symbol m(§) = m (&1, &) is assumed to be symmetric with respect
to &;. Defining W (u) := fRN m(§)|ﬁ($)|2dé, we suppose also that an identity of type (2.32)
holds for W (u) and it can be extended to X in such a way that

W (T\u) + W(Tou) —2W(u) <0 whenever T1u # u, Tou # u.

(We will see later that most of the symbols in Examples 2.9-2.11 have this property.) Then, we
claim that after a translation in the x; direction, any solution of (3.1) is symmetric with respect
to x1. Indeed, let u be a minimizer. After a translation in the x; direction, we may assume that

A
/ G(u(x)) dx = / G(u(x)) dx = ok
{x1 <0} {x1>0}
Denoting u| = Tyu, uy = T»u, this implies
/ G(ul(x)) dx =2 / G(u(x)) dx=A and / G(uz(x)) dx =2 / G(u(x)) dx =A;
RV {x1<0} RV {x1>0}
consequently © and uy (which belong to X’) also satisfy the constraint. It is obvious that
/ F(ul(x)) dx + / F(ug(x)) dx = 2/ F(u(x)) dx.
RN RV RV

Suppose by contradiction that u is not symmetric with respect to x;. Then we get

E(uy) + E(uz) —2Eu) = W(up) + Wuz) —2W(u) <0,

and this implies that either E(u1) < E(u) or E(u2) < E(u). Therefore u cannot be a minimizer
and this proves the claim.
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Given the motivation abqve, we Will study the behavior of 71 and 7, from H*® (RN ) to
H’(RV), respectively from H*(R") to H*(RY), where

H'(RY) = {u eS'(RY)|#eL (RY)and f(l +1ER) @ )] d& < oo},

RN

HS(RN)={ueS’(RN) | e L, (R)and /|§|2s|ﬁ(§)|2d§<oo}.
RN

It happens that 77 and T2 are not well deﬁned from HS(RY) to H*(RY) (respectively from
HS(RN)to HS(RN))if s > 3 Z5orifs < — 2 , as it can be seen in the following example.

Example 3.1. (i) Define ¢:R — R, q)(x) = xe I, An easy computatlon shows that p(¢) =

(1+§2)2’ hence ¢ € H*(R) for any s < 5 2 and (NS HS(R) for any s € (—— 2) It is clear that

(Tip)(x) = —|x|e”™ and Tig(&) = ?f‘iéz)z Consequently, T1¢ € H*(R) for 5 < (respec-

tively Ty € HS(R) for —% <5 < 3), but Ty ¢ H*(R) and Ty ¢ H*(R) for s > 3

In dimension N > 2 it suffices to take ¥ (x) = ¢(x1)¢1 (x2, ..., xy), Where ¢ € CCOO(RN_l),
to see that 77 and T2 are not well defined from H*(RY) to H*(R") (respectively from HS(RY)
to HS(RY))if 3 <s < 3.

) Ifs <O, the elements of H*(RV) or H® (RN ) are not necessarily measurable functions. In
this case we extend 7} and T to HS (RY) or HS (RM) by duality. For u, ¢ € C°°(RN ) we have

(Tiu, 9)s.s = f (T1) () (x) dx = / w0 dx + / u(=x1, ) (x) dx
RN {x1 <0} {x1>0}

- / u()p(x) dx + / u(r, X (—x1, ) dx = (1, Ti )2 o
{x1 <0} {x1 <0}

where (T7°¢)(x) = X{x,<0)(¢(x1,x") + ¢(—x1,x")). Hence, for u € HS(RM) with s <0 we
should define T u by

(Tlu7 €0>HS,H’S = <M, Tl*(p>HS’H*J‘

for any test function ¢ € C&° (RM). However, the operator Tl* does not map H kKRN)Y into
HY®RY)if k > % (as it can be easily seen by taking the function n(x) = e~ *!'in one dimension,
respectively n(x1)n1(x2, ..., xy), where n; € C° (RN=1) in dimension N > 2). This shows that
we cannot define 7} and 7> on H*(R") and on H*(RY) if s < —%.

Our next goal is to prove that the operators 77 and 7, are well defined and continuous
from H*(RM) to HS(RY) (respectively from HS(RY) to H*(RM)) if —% <S5 < % It is ob-
vious that 7; and T» are well defined and continuous from LZ(RY) to L2(RM). It is well
known that H'(RY) = WI2(RVN) = {¢p € L2(RV) | E;" € L*(RN), i =1,...,N} and that
71, T>: W2(RN) - WI2(RVN) are well defined and continuous. Using 1nterpolat10n theory we
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conclude that T; and 7> are well defined and continuous from H*(RV) to H*(RY) if 0 <s < 1.
However, interpolation gives no information if either s < 0 or s > 1. Our next result deals with
any value of s in (—%, %).

Theorem 32 The operators Ty and T, are well defined and continuous from H S(RY) 10 HS(RM)
and from H*(RN) to H(RN) for any s € (—%, %).

Proof. We will prove that there exists Cy > 0 such that for any u € C° (RV) we have
ITiulls < Csllullms,  respectively || Tiull gs < Csllullgs, i=1,2, (3.2)

and then the theorem will follow by density.
Therefore, suppose u € C° (RV). By (2.48) and (2.49) we have

2 2 2
IT1ull s + 1 T2ull Gy — 2l

. e X 2
= [ @ -wry| [ Fene) S pdn| ade. 63
b
RV-1 (& 0

respectively

2 2 2
ITvull s + 1 T2ullgs — 2luli s

_ 16sm(sn) / / |5/|2

N— l
R VIEP+T

2
drdg’. (3.4

Of 51 5 déi

If N = 1 we use the convention RY = {0} and the measure of {0} is 1. )
We begin by proving that 7} and 75 are bounded from H*(R) to H*(R), —% <85 < % For
N =1, the integral in the right-hand side of (3.3) can be formally written as

/ / / r”ﬂ g tz_znzf(é)mdédndt. (3.5)
000

Our strategy is as follows: first we compute explicitly the integral

oo o0

_ [ & n _ 1 1
IS(%-’H)_/ISIZ—FSZ.mdt_gn/tsm.mdt. 3.6)
0 0

Observe that I;(&,n) > 0if £ > 0, n > 0. Then we will prove that for any s € (—%, %) and any
@, ¥ € L?(0, 00) we have

SCONellr20,00) 1V 112200,00)-

/f&‘sn‘slx(é,n)w(E)I//(n)dédn
0 0
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This will be done in Lemma 3.3. Thereafter it will be clear that for any f € H*(R) we have
o o0
[ [ rcnlFel-[Fonlae an
0 0

=//s*nﬂ'1s<s,n>|s*‘f<s>| |w Fom| de dn
0 0

<SCON 1 Fl L2000 < CONF I3 gy (3.7)

This justifies the use of Fubini’s Theorem in evaluating (3.5) and proves that the right-hand side
of (3.3)isless than C(s)| f ||2. SR’ where C1(s) is a constant depending only on s. Thus we infer
that there exists Cs > 0 such that ||T1MIIHS(R) < Cy ||u||1_'[;(R) and || Toull gs gy < Csllull s gy for
any u € C°(R). Consequently, 77 and T> can be extended as continuous linear mappings form
H*(R) to H*(R), —% <s< %, as claimed.

To carry out the first step of this strategy, we come back to I;(€, n) given by (3.6). Since
the complex logarithm can be defined analytically on C\ {it | t € (—o0, 0]}, we may define the
holomorphic function z > 72 1= ¢2108() = |7]25¢2528(2) on C\ {it | t € (—o0, 0]}. With this
Wzgzzﬂz) is meromorphic on C\ {it |t € (—o0, 0]}. If &€ #£ n, k
has two simple poles, namely i§ and in; if £ = n it has a double pole at i&. For 0 < ¢ < min(§, ),
and R > max(&, n), consider the closed path B, g composed by the following pieces:

definition the function k(z) =

ﬂl,é‘,R(t)=t7 te[_R9 _8]’
Bre (@) =™~ 0e[0,n],
B3e r() =1, t €leg, R],

Par(0) = Re', 0 <0, n].

If £ # n, using the Residue Theorem we get

E 2s nZS

E2 ) @

/ k(z)dz =2mi[Res(k,i&) + Res(k, in)| = we"" [
Be,R

]. (3.8)

Since s > —% we have lim,_, fﬂz,a k(z) dz = 0. We have also limp_, oo fﬁu k(z) dz = 0 because

s < % Passing to the limit as ¢ — 0 in (3.8) and then passing to the limit as R — oo in the
resulting equation, we get

0 oo

/k(z)dz-i—/k(z)dz:ne””

—0 0

gZx—l _ 772s—1
n2 _ 5:2 ’
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that is

2 2s—1 2s—1
4 _ isné: —n

2ism '
(e +1)!(t2+52)(t2+n2) dt=me n2_€2

For s # % we obtain

o0
2s 2s—1 2s—1
t J—
f dim=— " & T (3.9)
2+ &2+ 1% 2cos(sm)  n?—&2
0
For s = % we compute directly
r T Iny —Iné
t t t nn—In
dt = — dt = ————. 3.10
/(t2+€2)(t2+n2) n2—$2/t2+€2 12 +n? n*—§2 10
0 0
Hence
T En(EZs—l _ n2s—l) ) 1
I;(&,n) = if —, and
s(&.m) 3 coso) g2 s 7 >
__én(lnn —Iné)
I%(:‘E,n)——nz_52 : (3.11)
This gives
1—s 1—5,,5
e T ‘i:sn —£& n . 1
I ) = f ~
§7°n L5, m) 3 o055 e i sséz
and
11 1 1lnp—Ing
2N =522 —F—/7>.
3 ,72 _ 52
An interesting property of these functions is given by the next lemma.
Spl=s _gl=sps | . 11 _
Lemma 3.3. Let K (£, ) = % if s # % respectively Ky (,n) =E&21n2 1’:7271;25. For

any s € (—%, %) there exists a constant C(s) (depending only on s) such that for any ¢,y €
L?(0, 00) we have

/ / P& Ko(&. () dE dn| < CO) 0l 120,000 191 220,000
00
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Proof. Using polar coordinates we write £ = r cos(6), n = rsin(d), where r = /€2 + n? and
6 = arctan g It is easy to see that K (&, 1) = %LS (0), where

(sin@)* (cos0)! =5 — (cos@)*(sinH)! % . 1
L,(0) = if s £ —,
@ cos2 6 — sin’ @ 7é2
and
L.®) —Intan@ (si 9)%( 9)%
= sin cosf)z,
3 (1 —tan26) cos2 6

By a change of variables we get

00 00 7 00
f/|§0(§)Ks(§,n)llf(n)}dédn=//|§0(r0089)1/f(rsin9)|dr|Ls(6’)|d9-
00 0 0

Using the Cauchy—Schwarz inequality we have

||¢||L2(0 00) Iy ||L2(0 00)

/|g0(rcos@)w(rsm0)|dr lo(-cosO)| 129 o) ¥ CSINO | 120 00y =

A/cos@ -sinf
Consequently,
oo 00 z
[ [lv@x.cmvonlagan< ezl o LSO g
- A/cosf -sinf

The lemma will be proved if we show that the last integral in (3.12) is finite. If s # % we have

L@ [ | (sinB)° ¥ (cos0)2~* — (cosf) % (sin@) 1~
= do
Vcos6 - sinf cos26 — sin” 6
0 0
_/ (tan6)*~7 — (tan6)2 | 1 »
N 1 —tan24 cos2 6
0
x ts—% _[%—S
— f — | dr. (3.13)
0
Using I’Hospital’s rule it is easy to see that lim,_, % = % — s; hence the function
12125

t— is bounded near 1. Since s — % € (—1, 1), the last integral in (3.13) converges.

1—12
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Ifs = % we have

/‘ IL1(O)] 46— /—lntané 1 d0—7 Iny
Vcos6 - sinf 1 —tan?6| cos?6 _0 y

lf _yl = % and this implies that the last integral in (3.14) converges. This com-
pletes the proof of Lemma 3.3. O

In view of (3.3), (3. 5) 3.7, (3 11) and Lemma 3.3, it follows that 7 and 75 are well defined
and continuous from H* (R) to HS (R) for —§ <5< %
Next we prove that T and 7> are continuous from H*(R) to H*(R). We estimate the integral

in the right-hand side of (3.4) for N = 1. If s € [0, %) we have by (3.5)—(3.7)

00 o] 00 00 2
[0\ o) s [ | [ R
1 0 0
SCONL I3 < CONf s (3.15)
Ifse (—%, 0), using the change of variable T = +/t2 — 1 and (3.9) we get
/ .[25
(t2+§2)(t2+n2) ) (a4 +0?) m

o]

.L,ZY
</ dt
(2 +14+ED)E2+1+1?)
0

o (48T — (4
" 2cos(sm) n? — &2

(3.16)

Consequently,

< NS 2_ ) &n
<O/O/| @ | (n)!/(r ) (t2+52)(r2+n2)dtdgd,7

T (1R T e, LHEDT — ()T
<—//| ©|- 7| & n2— de dn
0 0

52
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2COS(M)/f &) f @l (1+7)2]F )
00

g1 (A48T A+
PoE A+ )t

d& d. (3.17)

It is elementary to prove that for any &, n > 0, & # n we have

£n ' (1+52)2S2—’1_(1+nz)2x2’ ss 1—s slfsns
T L —§2

=K. ). (3.18)

Coming back to (3.17) and using Lemma 3.3 we obtain

00
G
1

2cos(sm)

0 2

7 C(s) ;
/ ;2+$2 é‘ U< ooy 1017 Tz
0

< OIf I35 (3.19)

From (3.4) and (3.15) if s € [0, %), respectively from (3.4) and (3.19) if s € (—%, 0), we infer
that 7 and 75 can be extended as linear continuous operators from H*(R) to H*(R).

Now we prove Theorem 3.2 in the case N > 2.

If s € [0, %), arguing as in (3.5)—(3.7) and using Lemma 3.3 we have

0 0 2
/t —E'1%) / 115) d&‘l
&' 0

2

d§1

\8

/ (5175/)
0

<f/| &1L ENE - | F o, &N - (6707 I €1, ) d&r dm
00

<SCON 1 FEEN 2000 < C) f E+1€7)|FE. e s, (320)

Ifse (—%, 0), using the change of variable T = /% — |&’|2, arguing as in the proof of (3.16),
then taking (3.9) into account we obtain

&%) T
= . d
/(t2+é-‘2)(t2+772) : J 2+ IEPHENGEEHIE+0D) J2+ g !
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.L.2S

< d
0/(r2+|s/|2+s%>(r2+|s/|2+n%) i

2s—1

_m (EPHEDTT (g P +nd T
~ 2cos(sm) n? — &2 '

We also have

2s

fm EHIEDT R+
n%_%-IZ (5124‘ |§’|2)%(n%+|$/|2)%

< K61, m)

(this inequality is analogous to (3.18)). Arguing as in (3.17), using the two previous inequalities
and Lemma 3.3 we get

o0

(t2 o |F§/|2)S
|

2
dt

OOA / El
0/f<sl,5)t2+$12d51

[
wC(s)
= 2cos(sm)

108 +1- ) 78072000

<C(s) f &+ 187) | F e ) der. (321)

Integrating (3.20), respectively (3.21), over RY~! we infer that the integral in the right-hand
side of (3.3) is less than C”(s)| f ||i-”. This proves that 77 and 7> can be extended by continuity

from H*(RY) to HS(RY) fors € (—1, 3).
In a similar way we show that 77 and 7> can be extended by continuity from H*(RY) to
HSRN) fors e (—%, %). Theorem 3.2 is now proved. O

For a measurable function u defined on R, we define its antisymmetric part in the x; di-
rection by Au(xy,x’) = %(u (x1,x") —u(—x1,x")). If u is a tempered distribution, we define Au
by (Au, ¢)s'.s = (u, Ap)s'. s for any ¢ € S. Obviously, Au is odd with respect to x; (for dis-
tributions, this means that (Au, ¢(—x1,x"))s'.s = —(Au, §)s'.s). It is clear from the definition
that A defines a linear continuous map from H* (RM) to H*(RM) (respectively from HS (RM)
to H*(RN)) for any s. Moreover, for any tempered distribution u, the distribution F(Au) is odd
with respect to x;.

It follows from the proof of Theorem 3.2 that for any s € (—%, %), the following complex
bilinear forms are continuous:

BN,S:I-'IX(RN) X HS(RN) - C,
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pran = [ [0 =Py [ .o 52 déy
RN-1 ¢ 0
/Av(ﬂl,é) dmdfdé
0
EN,S:HS(RN)XHS(RN)AC,
Bratn = [ / - 1) [ ) 52 dt
RV /g 0
< [ T e i
0

Moreover, from (3.3) and (3.4) we have the identities

5 2 16ssin(s)
70 ey + 1720 e ey = 200 oy = = ——3— B (Au, Aw),  (3.22)
2 5 2 16 s1n(s7r) ~
”Tlu”Hx(RN) + ||T2u”Hx(RN) - 2”u”H“(RN) = T N S(Au Au) (323)

for any u € C3° gRN ). From Theorem 3.2, the continuity of By s and of EN,S and the density
of C°(RY) in H*(RY) and in H*(R") we infer that we have the following.

Corollary 3.4. Let s € (—4, 3). The identity (3.22) holds for any u € H*(R) and (3.23) holds
for any u € H*(RV).

Our next aim is to show that the quadratic forms By s and EN,S define norms in some spaces
of odd functions. We start with the following proposition.

Lemma 3.5. Assume that g : R — C is a measurable function, g(—t) = —g(t) a.e. and

o cither g € LP (R) for some p € (1, 00),
o or (k2 4+£2)2g(¢) € LX(R) for some k e Rand s € (-1, %).

Suppose that the set

A:{x>o)f%+§2g(s)dgzo}
0

has a limit point xo > 0.
Then g = 0 almost everywhere on R.
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Proof. We may suppose without loss of generality that g is real (otherwise we carry out the
proof for its real and imaginary parts).

First we deal with the simpler case g € L” (R) for some p, 1 < p < oo. We define the Poisson
integrals for g,

e ¢]

1 X
a(xv)’)zgfmg(l)dt and

9]

1 _
bx,y) =~ / mgg)dn (3.24)

It follows from Lemma 2.4(iii) that the functions a and b are well defined and harmonic in the
right half-plane and r (x +iy) :=a(x, y) +ib(x, y) is holomorphic in {z € C | Re(z) > 0}. Since
g is odd, we have a(x,0) =0 for any x > 0. If x € A, we have also b(x, 0) = 0. Consequently,
r(x) =0 for any x € A. But r is holomorphic and A has a limit point xo > 0, thus necessarily
r = 0. By Lemma 2.4(ii) we know that a(x, y) — g(y) as x — 0 for almost every y, hence g =0
a.e.on R. _

Suppose that (k2 4+ | - |2)%g € L%(R) for some k #0ands e (—%, %). We may assume that
k=1.1If s € 0, %), then obviously g € L?(R) and the conclusion of the lemma follows from
the above considerations. If s € (—%, 0), then for any x > 0 and y € R the functions ¢, ,(¢) =

(1+13732 ooy and Yy () = (1+ 1%)"7 2= belong to L2(R). We may write

/ ey OU [ o142 g ar
and
/mgﬁ)dt: / Yy ) (14+1%) 2 g(0) dr.

Using the Cauchy—Schwarz inequality, we see that the functions a and b in (3.24) are well defined
in the right half-plane (in particular, fooo )%52 g(&) d§ exists for any x > 0). Clearly the function
r(x +1iy):=a(x,y)+ib(x,y) is holomorphic and, as above we have r(x) = 0 for x € A. Since
A has a limit point xo > 0, we infer that r = 0. Next, we have lim, g a(x, y) = g(y) whenever
y is a Lebesgue point of g (the proof of this fact follows from standard arguments and it is quite
similar to the proof of [24, Theorem 1.25, p. 15]; for brevity, we omit it). This obviously implies
g =0a.e., as desired.

Now let us consider the case k =0.If | - g € L2(R) and s € (—%, %), we may repeat almost
word by word the proof above (we have only to replace the functions ¢, , and ¥ , by t >

—s X : —s__y—t
[ awgel respectively by 7 +— ¢ peawe—y: ).

If|-°¢ € L>(R) and s € [%, %), the integrals defining a and b in (3.24) do not necessarily
converge. In this case we define
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(. y) = l/o‘o 4xyt
ae Y=g J O G0+ O ]

g(t)dt and

ey ¥ 20(12 +x2 = y?)
1Y _;0/[x2+(y—t)2][x2+(Y+’)2]

g)dr. (3.25)

Notice that if g € LIIOC(R) is odd and @ e L'([1,00)), then a = a; and b = by. It is obvi-
4xyt
2+ (=012 4+-(y+1)?]
and Yy (1) = 15 ——2CE2 D je1on0 10 L2((0, 00)) and this implies that a; and b; are
B =0 W 0-02I2+ 0107 g ’ P L
well defined. It is straightforward that r1(x +iy) := aj(x, y) +ib1(x, y) is holomorphic in the
right half-plane. Obviously aj (x, 0) = 0 for any x > 0 and by (x,0) = % fooo XQ:LIZ g(t)dt =0 for
x € A. Consequently » =0 on A. Since A has a limit point xg > 0, we infer that r = 0 in the

right half-plane. Let y > 0 be a Lebesgue point of g. Since

ous that for fixed x >0, ye Rand s € (—%, %), the functions ¢ () =¢~*

o0

4xvyt
/ 2 2xy2 3 dl=2arctanz,
J [x*+ ( —)=1[x*+ (y +1)°] X

proceeding as in the previous cases, one can show that |aj(x,y) — %(arctan %) g(y)| = 0 as
x — 0, hence lim, ga;(x, y) = g(y). Consequently we have lim, ga;(x, y) = g(y) for almost
every y and the lemma is proved. O

We set

H; oq(RY) =1{f € H'(RY) | £ is odd with respect to x; } = { f € H*(R") | f = Af},

H; oRY)={f € H*(R") | f is odd with respect to x; } = { f € H*(R") | f = Af},

where, as before, Af is the antisymmetric part of f in the x; direction. For f € Hf Odd(RN ) we
1 ~ ~ 1
define Ns(f) = (B s(f, ))? and for f € H{ 44(RY) we define Ny(f) = (B s (f, £))7.

Theorem 3.6. N is a norm on H} Odd(RN ), continuous with respect to the usual H* norm, and
Ny is a norm on Hf Odd(RN), continuous with respect to the H* norm.

Endowed with these norms, H i odd (RM) and H f’ odd (RM) are pre-Hilbert spaces.

Proof. It is clear that EN, s and By s are complex-symmetric bilinear forms on H* (RM) (re-
spectively on HS(RM)) and that EN,s(f, f) =20 and By (f, f) = 0 for any f (thus, in
particular, Ny and N, are well defined). Suppose, for instance, that f € Hig,odd(RN ) and
§N,S(f, f) = 0. This implies that for almost every £ € RV~! we have f(—~, &N = —f(-, £
ae, (|- >+ F (&) e L*(R) and
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o0

/ (> — 1€ -

1§12 +1

0/ Fe.€) 2+§2 dg1|d

For such &’ we must have

o0

f E 5 d& =0 foralmostevery 1 € (/|&'|? 4 1, 00)
i

0

and using Lemma 3.5 we infer that f(-, &Y=0ae. onR,so fR(Slz + 'S If(él JENPPdE =0
Consequently

I £1% = / f(sf + €)' | &, €] dEr dg' =0,

RN-1 R

i.e. f =0 a.e. The proof is the same for f € H*(R"). Finally, the continuity of N and N, with
respect to the usual norms follows from Theorem 3.2 and Corollary 3.4. O

4. Applications

In this section we illustrate how the results in Sections 2 and 3 can be used to prove the
symmetry of minimizers in some concrete examples.

4.1. Problems involving fractional powers of the Laplace operator

Theorem 4.1. Let s € (0, 1) and assume that F, G :R — R are such that u — F(u) and u
G (u) map HS (RN) (or HS(RN)) into L' (RN). Suppose that either:
Case A. u € H*(RN) and u is a solution of the minimization problem

minimize E(u) :=/|g|2S|ﬁ(g)|2ds+/F(u(x))dx
N RN

under the constraint I (u) = / G(u(x)) dx=1#0, or

RN
Case B. u € H*(RN) and u is a solution of the minimization problem
minimize  E(u) := /(1 +1EP) [a @) de + / F(u(x))dx
RV RV

under the constraint I (u) = / G(u(x)) dx =xr#0.

RN

Then, after a translation in RN | u is radially symmetric.
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Proof. Let us prove first that u is symmetric with respect to x;. Making a translation in the
x1 direction if necessary, we may assume that I{X1<0} Gux))dx = f{x1>0} Gu(x)dx =%
Let u1 = Tyu and up = Thu. It follows from Theorem 3.2 that u,us € HS(RN) in case A,
respectively ujp,us € HS(RYM) in case B. It is obvious that we have fRN Gui(x)dx =
2f{x1<0} Gu(x))dx = A and [y G(uz(x))dx = 2f{x1>0} G(u(x))dx = A; hence u; and up
also satisfy the constraint. From (3.22) and (3.23) we have

16sin(sm)  , )
E(ui) + E(uz) —2E(u) = ——————N;(Au) incase A, respectively
7?2
16sin(sm) ~, .
E(u1) + E(uz) —2E(u) = ———5——N;(Au) incase B,
w2

where, as before, Au(x,x’) = %(u(xl, x"y — u(—x1, x")) is the antisymmetric part of u in the
x1 direction. If Au #£ 0, then Theorem 3.6 implies N, Sz(Au) > 0 (respectively ]VSZ(AM) > () and
we infer that E(u1) + E(uz) — 2E(u) < 0, contradicting the fact that # is a minimizer. Thus
necessarily Au = 0 and this means that u is symmetric with respect to xj.

Arguing similarly with the remaining variables x, ..., xy, we find a new origin O’ such
that u is symmetric with respect to any of the variables x1, ..., xy; in particular, u(—x) = u(x)
a.e. on RV, Now let IT be any hyperplane containing the new origin O’ and let IT, and IT_
be the halfspaces determined by I7. Since the transformation x — —x maps I1_ into I1;, we
see that [; G(u(x))dx = [ 7, Gu(x))dx = % Arguing as above we conclude that u must be
symmetric with respect to I7. This implies that u is radially symmetric with respect to the new
origin O’. O

An application of Theorem 4.1 concerns the solitary waves to the generalized Benjamin—Ono
equation

Ai+aAA, —B(—=A)TA, =0, (x,y)eR% i€eR,

where «, 8 > 0. Solitary waves are solutions of the form A(z, x, y) = u(x — ct, y). After a scale
change, a solitary wave u(x, y) satisfies the equation

U+ (=AY u=u> inR>

The existence of solitary waves was proved in [21] by minimizing the functional

1
V(u)=§/|(—A)%u|2dx+/u2dx—2(2 )2f|g|| ()| ds+/u dx

R? R? R?

under the constraint I (u) = 3 R U 3 dx = constant. Tt has been shown in [21] that any solu-
tion u, of the above problem also minimizes

1 1
E®) ::§[|(—A)%v|2dx—§fv3dx
R2 R?

under the constraint Q(v) = Q(ux), where Q(v) = %fRZ lu|?dx.
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It follows directly from Theorem 4.1 that, except for translation, any minimizer of these prob-
lems is radially symmetric.

Next we apply our method to a variational problem involving two unknown functions (the
vector case). Consider the functionals

E(u,v):%/(‘(—A)%u|2+|Vv|2)dx+/F(u,v)dx
RV RV

where 0 <s < 1, and
O(u,v) = / G(u,v)dx.
RN
We make the following assumptions:
Al. F, G :R? — R are C? functions satisfying F (0, 0) = 3; F(0,0) = 3 F(0,0) =0, G(0,0) =
391G (0,0) = 3G (0, 0) = 0 and the growth conditions
0 F(u,v)| < C (P~ + 197" and 3G, v)| < C (P~ + o771 if [, v)| > 1,

where i € {1, 2}, C is a positive constant, 2 < p < % and2 <g < %

A2.1f (u,v) € HSRY) x HYRY) and (u, v) = (0, 0), then either 901G (u, v) Z0or 0,G(u, v) #
0 (a manifold condition).

Theorem 4.2. Under assumptions Al and A2, any minimizer (u,v) € H*(RY) x H'RN) of
E(u, v) subject to the constraint Q(u,v) = A # 0 is radially symmetric (except for translation).

Proof. First we prove that after a translation, (u, v) is symmetric with respect to x;. In fact, after
possibly a translation in the x; direction we may assume that

A
Gu,v)dx = / G(u,v)dx:z. “.1)
{x1 <0} {x1>0}

We put u; = Tu, up = Tou, v = T1v and v = Trv. By Theorem 3.2, the pairs (u1, v1) and
(uz,v2) belong to HS(RY) x H'(RY) and in view of (4.1) they also satisfy the constraint
O(uy,v1) = Q(uz, v2) = A. Moreover, defining W (¢) = [pu €] |9(€)> d& and using (3.22)
we see that

1 1
E(i,vi)+ E(uy,v2) —2E(u,v) = §(2n)N

1 8sin(sm)
= — (27{)1\] TBN’S(AM’ AM) é 0.

(W) + Wuz) —2W(w))

We conclude that (1, v1) and (u2, v2) are also minimizers and we must have By ;(Au, Au) =0.
Theorem 3.6 implies that Au = 0, that is u is symmetric with respect to xy,i.e. u =uj| = u».
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Since (u, v) and (u1, v1) = (1, v1) are minimizers, they satisfy the Euler-Lagrange equations

(=A)*u+ 01 F(u,v)+adG(u,v) =0, 42)
—Av+ 0 Fu,v)+adGu,v) =0, ’
respectively
{(—A)Su+31F(u,v1)+ﬂ81G(u,v1)=0, 4.3)
—Avy + 0 F(u,vy) + 3G, vy) =0. ’

From (4.2), Al, the elliptic regularity for the Laplacian and its fractional powers and the usual
boot-strap argument we get u € HZRY)NL®RN) and v € HZRY)NL®(RY). Of course that
the same conclusion holds for (u, v1). Notice that the L? elliptic regularity for fractional powers

of the Laplacian and for 1 < p < oo follows from the fact that the multiplier m(§) = (iilélli)l
satisfies the estimate |Dm (£)| < % and from the theorem of Mihlin—-Hormander.

We recall the following well-known result.

Unique Continuation Principle. Assume that ® € H*(RN | R™) solves the linear system
—A®P+AX)P(x)=0 inRY, 4.4

where A(x) is an m x m matrix whose elements belong to L (RN). If ® = 0 in some open set
o CRY, then ®=0in RV,

A proof for the Unique Continuation Principle is given in [13, Chapter VIII] in the scalar case
and in the appendix of [18] in the vector case. Notice that the Unique Continuation Principle
is essentially a local result. Although it is stated for functions @ € H 2(RN ), it is also valid for
functions @ € WP (RV) with p > 2 because W]i’cp RM) c HI%)C (RV). This observation will be
useful later.

Now let us come back to the proof of Theorem 4.2.

If (u1,v1) = (0,0), since G(0,0) =0 we have A = Q(uy,v;) =0, a contradiction. Thus
(u1,v1) # (0,0) and it follows from A2 that there exists (x1,x’) € (—o00,0) x RV~! such that
901G (uy,v1)(x1,x")#£0o0r 3,G(uy, v1)(x1, x") #0. Since v = vy for x| < 0, we infer from (4.2)
and (4.3) that « = B. Moreover, using the regularity of u, v, vy we get 02 F (4, v) — 02 F (u, v1) =
b(x)(w(x) — v1(x)) and G (u, v) — 3G, v1) = c(x)(v(x) — v1(x)) where b, c € L2 (RM).
Let w(x) = v(x) — vi(x). Using the second components of (4.2) and (4.3) and the fact that
o = fB, we see that w satisfies the linear equation —Aw(x) + a(x)w(x) = 0 in RV, where
a=b+ace L®R"N). Since w vanishes on a half-space, by the Unique Continuation Prin-
ciple we conclude that w vanishes everywhere, and this implies v = v; in RY. Thus we have
shown that (u, v) is symmetric with respect to xi.

Repeating this argument with the variables x», ..., xy, we find a new origin O’ such that
(u, v) is symmetric with respect to xp,...,xy. Then as in the proof of Theorem 4.1 we show
that (u, v) is symmetric with respect to any hyperplane IT containing O’, consequently (u, v) is
radially symmetric with respect to the new origin O’. 0O

Remark 4.3. Symmetrization inequalities for functions in the space H'!/2(R") have been proved
in [3]. Therefore if s = %, the function F in Theorem 4.2 satisfies the cooperative condition
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812 2 F(u,v) <0 (see [5]), G has a special form and it is known in advance that the components u,
v of the minimizer are nonnegative, then using symmetrization one can conclude that there exists
a radially symmetric minimizer.

Remark 4.4. In the case F'(u, v) = u? +v2, G(u,v)= u?v, by using symmetrization and Riesz’
inequality it has been proved in [3] that there exists a radially symmetric minimizer. The fact that
F and G are homogeneous plays a crucial role in their proof.

As an example of application for Theorem 4.2, we consider the Hamiltonian system

ou _ 0
At axy
ov 0
= E(—Av + 02 F (u, v)).

(=)"2u + 8, F (u, v)),
4.5)

The generalized multidimensional Benjamin—Ono equation

u d

il ((=8)"u+ g(w) (4.6)

with g(u) = u? and the generalized multidimensional Korteweg—de Vries equation

®_o9 A 47
E_E(_ U+f(U)) 4.7

have been considered in [21] and in [4], respectively; in these papers, references giving the phys-
ical motivation for the above equations can also be found. System (4.5) can be considered a
Hamiltonian coupling between (4.6) and (4.7).

Formally, the system (4.5) has the following conserved quantities:

1
E(u,v):§/|(—A)l/4u|2+|Vv|2dx+/F(u,v)dx and

RV RV

Q. v) = % /(u2+v2)dx.

RN

If we minimize E (u, v) subject to the constraint Q (u, v) = A, where A > 0, then according to [9]

the set S; containing the elements of H > (RV) x H'(R") where the minimum is achieved is
invariant and orbitally stable with respect to (4.5). Since any element (¢, V) € S, satisfies the
Euler—Lagrange system

{ (=)' 4+ 81 F (6, ¥) + =0,
=AY + 0 F (@@, ¥)+cy =0,
we see that (¢, ) gives rise to a travelling wave solution of (4.5) of the form (u (¢, x), v(¢, x)) =

(p(x1 — ct,x), Y (x1 —ct,x")), x' € R¥N~1. As a consequence of Theorem 4.2, the elements
(¢, ¥) obtained in this way are radially symmetric (after a translation).
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4.2. Minimizers of the generalized Choquard functional

In this paragraph we consider the problem of minimizing the generalized Choquard functional

E(u):—/|Vu| dx—// u(x) | (u(y))dxdy—l—/H(u(x))dx (4.8)

RN RN RN

subject to the constraint Q (1) = fRN G(u(x))dx = constant # 0.
It is worth to note that the complex version of E,

Ew =~ /|Vu| dx—//Fl |u(x)| le ———— Fi(|u()|*) dxdy

RN RN

+ / H1(|u(x)|2) dx

RN

is the Hamiltonian for the generalized Hartree equation

2
iu,+Au+4< %@)F{(W)mum—2H{(|u(x)|2)u(x)=o, 4.9)
N

and é(u) = fRN |u?(x)| dx is a conserved quantity for this evolution equation. The critical points
of E 4+ w0 give rise to standing waves for (4.9). As far as minimization is concerned, using an
argument of T. Cazenave and P.-L. Lions (see the proof of Theorem II.1 in [9, p. 555]), we may
restrict ourselves to the real functionals E'(u#) and Q(u).

In the case N =3, F(u) = G(u) = u? and H (u) =0, the problem of minimizing E (u#) sub-
ject to Q(u) = A has been studied in [15], where the existence, the radial symmetry and the
uniqueness of the minimizer have been proved. The symmetry was proved by using a sharp in-
equality for spherical rearrangements. This can still be used in our case if we know that the
minimizer is nonnegative and if we assume that F is increasing on [0, co) (because the equal-
ity F(u*) = (F(u))* is needed). Using the results in Sections 2 and 3, we will show the radial
symmetry of minimizers in dimension N > 3 under more general assumptions on F, G and H.

We begin by studying some properties of the nonlocal term appearing in (4.8).

Lemma 4.5. Let N > 3 and let F : R — R be a function of class C? satisfying F(0) = F'(0) =0
and

|F'(0)| <Clx|” for|x|>1

where C > 0 is a constant and o < ﬁ. Then the singular integral operator

I(p)(x) = /| = 59(y)dy
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and the functional

M(p) = // sv(x) | 5 F(p(y)dxdy

RN RN

have the following properties:

G) Iis continuousfrom LPRNY 10 LIRN) if 1 < p <q < 00 and % = % — %
(i) If 1 < p1 < & < pa < oo, then I is continuous from LP'(RN) N LP2(RN) to L*RY) N
CO(RM).
(i) If1<r < 1312 <r<2andp e L""(RN)N L2 RN), then

_ 4
1(¢)(§>=ﬁ mzq)@) in S'(RY).

[N

(iv) M is well defined and differentiable on H LRNY and
F(u(y))
! !
M (u).<p=2/< / mdy)F (u(x))go(x)dx.
RN RN
(v) Foranyu € H'(RM) we have

1
N2 (N 1y

1 —
M(u):CN/@“:(M)(f)}zdé, where cy =

Proof. (i) follows directly from Theorem 1 in [23, pp. 119-120].

(ii) We write (= as a1(x) + az(x), where a1 (x) = [v=s X{jx|>1) and ax (x) = ‘N — = X{lx <1}
Then we have I(¢) = aj * ¢ + ap * ¢. It is obvious that a; € L4(RN) for q € (N72’ oo] and
ar € L1(RV) for q € [1, %). Let pj and p), be the conjugate exponents of p; and p>. Then

Pl > 5 and p) < 125, so that ag € LP1(RV) and ay € LP>(RY). We infer that I (¢) is con-
tlnuous and by Young’s inequality we get

1@~ < lall, pp - M@l +llazll - l@llze-

(iv) First we consider the bilinear form

ron=| [ v |N L JOdxdy.

RN RV
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2
Notice that P is well defined and continuous on Ll\%_% RN) x LN_J]XZ (RM). Indeed, it follows
2N 2N
from (i) that  is well defined and continuous from L~¥+2 (RV) to L¥-2 (RV) and we have

1P, w>\—’ /I«pxx)w(x)dx

Hl(fp)H 2 IVl 2y S Anllell v IVl 2y

=2

Without loss of generality we may assume that o > 2 From the assumptions on F we have
|F(u)| < Clul? if |u] <1 and |Fu)| < Clu|'t® 1f |u| > 1. It is well known that H!'(RM)
is continuously embedded in LP(RN) for pE [2, e 2] and then it is standard (see, e.g. [26,

Appendix Al) that u — F(u) is continuously differentiable from H'(RY) to L4(RN) for
2N

g € [max(l, 5 +U) m] In particular, u — F(u) is continuously differentiable from
H'RY) to LV RY) (because 125 < 2 < 2Ny Since M(u) = P(F(u), F(u)),

(iv) follows.
(>iii) and (v). Let K(x) = o 1v . Then K € &’ (RV) and it follows from Theorem 4.1 in [24,

N
p. 160] or from Lemma 1 in [23, p. 117] that K(é) = F?Z 2z 5 ﬁ From Lemma 1 in [23, p. 117]
-

we have

1 J— | —
P(sﬁ,lﬂ)=W/I(cp)(é)llf(é)dé?:w/@W(E)w(é)dé (4.10)
RN N

whenever ¢, 7 € S(RY). We claim that (4.10) holds for any ¢, ¢ € L' (RV) N L"2(RV) with

1< < ]352 < rp < 2. This assertion implies both (iii) and (v).

Now let us prove the claim. Since (4.10) holds on S x S, the bilinear form P is continuous
2N
on L¥42 Ry x L iz (RV) and L (RV) N L2 (RY) is continuously embedded into L ¥+2 (RV),
all we have to do is to show that the bilinear form

1 PR b S
Pi(p.y) = f EPEOTE e
RN

is continuous on (L (RN) N L2(RN)) x (L' (RN) N L"2(RN)); then the claim follows by den-
sity of S in L'/ (RV) N L"2(RN).
Let r{, r2 be the conjugate exponents of ry, r» and let g1, g» be such that + - = é, re-

spectively - 7 + q—z =1 Leth(§) = |§—|X{|s|<1} and by(§) = m)({|g|>]}. We have 2 q1 < N and

g2 > N,sothat by € L7 (R") and b, € L9 (R"). Since the Fourier transform maps continuously
L (RN) into L"1(RN) and L2 (RY) into L2(RY), we have:

1 =
1P1<qo,w>|<‘ / @a(s>w<s>ds’+’
{1&1<1} {I&]>1}

161812 - b1 912 + 123l 2 - 1620 1 2
A e e e A N o e e

|€|2<p(s>w<s>ds

NN
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SCN,ri.r) (el Wl + el 1 ilLm).

This proves the continuity of P; and our claim. Thus the proof of Lemma 4.5 is complete. O

Theorem 4.6. Let N >3 and let F, G, H:R — R be C? functions satisfying the following as-
sumptions:

(a) F(0)= F’'(0) =0 and there exist o < ﬁ and C > 0 such that
[F'@)| < Clul” if lu] > 1
(b) There exist o1 € [1, N+2) and C1 > 0 such that
|G’ (w)| < Cilul™ and |H'(w)| < Cilul®  foranyu €R.

Moreover, if 01 < 2 then we assume that o1 > max(%, 1).
(¢c) Foranye >0, G'#0o0n (—¢,0) and on (0, ¢).

Then any minimizer u € H'(RN) of the functional E given by (4.8) subject to the constraint
Q(u) = A # 0 is radially symmetric (after a translation in RV).

Proof. First of all, notice that the functionals E and Q are well defined and of class C!
on H'(RM). Let u € H'(RY) be a minimizer. We will show that, except for translation, u is
symmetric with respect to x1. The same proof is valid for any other direction in RY and the
radial symmetry of u follows as in the proof of Theorem 4.1.

After a translation in the x; direction we may suppose that

G (u(x)) dx = / Gu())dx = =

{x1 <0} {x1>0}
As before, we define u; = Tiu and uy = Tou. We know that u, ur € Hl(RN). In view of as-

sumption (a), it is obvious that F(u) € L'(RY) and we have T|(F (1)) = F(u1), To(F (1)) =
F(uz), Q(u1) = Q(uz) = A. Defining W (p) = fRN ﬁ@(‘g‘)ﬁdé, from Lemma 4.5(v) we get

E(uy) + E(u2) — 2E(u) = —[M(uy) + M(uz) — 2M (u) ]
=—cn[W(T1(Fw)) + W(T2(F () —2W (F(w))]. (4.11)

Recall that by (2.38) we have for any ¢ € C° (RM),

00 2
&1 ,
W(T¢) + W(The) —2W(p) = / / 9&1,8)—>——=d& | d&'. (4.12)
nRNl 1€l , &/12 + &

To show that this identity also holds for F (u) we need the following lemma.
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Lemma 4.7. Let N > 3 and let r1, rp be such that 1 <r; < N+2 < ry < 2. The bilinear form

]

1 o0
R(p,¥) = — , 5 dni d&’
w= | fo/ ss>|§|2+§2 s - O/w(ms>|§|2 i ds

RN-1
is continuous on (L' (RM) N L2(RN)) x (L"T(RN) N L2(RM)).

Proof. Consider ¢, ¥ € L' (RY)NL™(RN). Then @, ¥ € L1 (RV) N L2(RV), where /| and r,
are the conjugate exponents of r; and r,. Using Holder’s inequality and the change of variable

& =t|&'|,we getfor§’ #0andi =1,2,
00 L
d
El) <O/(|s Pt gDy 5‘)

[o¢]

&
Ofw(gl’g)w e

\(/!w(sl,

e (o g oo| " d

— g /(1+z2)n /go(sl,s) &
0 0

—cE (f\«»@l,sw ng> . 4.13)

A similar estimate holds for 1. Let ¢; be the conjugate exponent of , l.e. gi = 22},-' Us-
ing (4.13), Holder’s inequality and the estimate ¢ ||L,i/ < Aillell Ly we have

1 o0
— d , d d
/ EO/@ s>|g|2+52 - /wm@'élz mdg’

Bgn-1(0,1)
00 1 00 L
5 2-2rp ri R i ri ,
<C / € /}cp@l £n| ey /|w(m,5)\ tam )" ae
Ban-10,1) 0 0
1 !
, SN g
<2 / " de / /\w(é &N diy e’
Bgn-1(0,1) Bpn-1(0,1) 0
o0 |
~ ’ 5]
x( / flw(m,é’)l" dmdS')
Ben—1(0,1) 0
242 / 1e3n) / ﬁ
< ClAl( / & N dé) ol I llLn 4.14)

Bpn-1(0,1)



578 O. Lopes, M. Maris / Journal of Functional Analysis 254 (2008) 535-592

and

1 o

Ter1 @ ) ! ) d d

/ |$,|/<P(§1 é)lé |2+$1 /¢(m ~’3)Iét |2 nidg’
{1§'1>1} 0

<C3 ] e </|¢>(E s>|’2da> (/|w<ms>|2dm> dg’

{1§"1>1}

2 , ue) % OOA INT ’ i
<c2( / &) ds) //|go<sl,s)|2dslds

SN
SN

{1g’1>1} {lg'1>1} O
L/
2
x( /|1/f(n1,€)l2dmd§>
{lg'|>1} O
2,2 , 223 é
<G Ay / 1§ 2 d§ lellzr2 I llipr. 4.15)
{I&"|>1}

q1(2 3ry)

: 2N 4 1 r
Since 1 < ry < 55 < ra < 2, a direct computation shows that IBRN_1(0,1) &'l v d& and

N+2
q2(2=3rp)

f{|5/|>1}|5/| n d&’ are finite. From (4.14) and (4.15) we have

|R(@, )| < K (llgllen 1l + el vile)

and Lemma 4.7 is proved. O

Let r; and r, be as in Lemma 4.7. Since the maps ¢ = T1¢ and ¢ — Tr¢ are obviously
continuous from L (RY) N L"2(RN) into itself and we have shown in the proof of Lemma 4.5

that the bilinear form Py (¢, ) = /RN e <p($)1/f (&) dé& is continuous on this space, it follows that

the left-hand side of (4.12) is contlnuous on L"'(RV) N L2(RY). By Lemma 4.7, the right-hand
side of (4.12) also defines a continuous functional on L™ (RY) N L2 (RY). Since (4.12) is valid
for any ¢ € C° (RY), by density we infer that (4.12) holds for any ¢ € L™ (RN) n L"2(RY).
Recall that u € H'(RV) and by the Sobolev embedding and assumption (a) we have F(u) €
L9RN) for any g € [max(1, %), WIYHU)]; hence (4.12) is valid for F (u).

Since u is a minimizer, we must have E(u1) + E(u3) — 2E ) > 0. From (4.11) and (4.12)
we infer that necessarily

/IEI

RN-1

[Far)e.er S an) a <o (4.16)
J e+ 8

Contrary to our previous examples, (4.16) does not imply directly AF (u) = 0. To see this,
consider a function ¥ € CZ°(0, oo) such that supp(y) C [1, 00), ¥ # 0 and fooo lJiT@lf(t) dt =0.
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(Such a function exists: for example, take two nonnegative functions v, ¥; € CZ°(1, 00)
with disjoint supports and put ; = (1 — 7)o — 7¢1. There is some t € (0, 1) such that
fooo li > (t)dt = 0.) Extend ¥ to an odd function defined on R. Take & € C2°(RV~!) such
that o % 0 and supp(e) C RV=1\ B(0, 1) and put f (&1, &) = a(&’ )w(| ). Then f € C2(RY)
(hence f e S) f # 0 and f is odd with respect to the first varlable However, we have
fo f(§1 ,ED d&; =0 for any &’ # 0 and consequently

00 2
N/ O/ /|s|2 g% =

To show that u is symmetric with respect to x|, we argue as follows: since u and 1| minimize
E under the constraint Q = A, these functions satisfy the Euler-Lagrange equations E'(u) +
aQ'(u) =0, respectively E'(u1) + BQ’(u;) = 0 for some constants o and B, that is

& \2+52

1

—Au—21(Fw)F'(u) + H' (u) + «G'u) =0 inR", 4.17)
—Auy =21 (F(u))F'(uy) + H'(uy) + BG'(u1) =0 inRY. (4.18)

We will show in the next lemma that # and u; are smooth functions. Then we prove that
I(F(u))(x) =1(F(u1))(x) in the half-space {x; < 0}. Together with assumption (c), this implies
that o = B in (4.17)—(4.18). Then we will be able to apply the Unique Continuation Principle to
prove that u = uy.

Lemma 4.8. Let u € H'(RN) be a solution of (4.17), where F, G, H € C*(R) satisfy the as-
sumptions (a) and (b) in Theorem 4.6. Then u € W3’p(RN) for any p € [2,00). In particular,
u € C2(RN) and D*u are continuous and bounded on RY ifa e NV, || < 2.

Proof. The proof relies on a classical boot-strap argument We show first that u € L(R"Y). By
the Sobolev embedding we have u € L9 (RM) for q € [2, o 2] We will improve this estimate by
an inductive argument to get the desired conclusion.

We consider only the case N > 4, the proof in the case N = 3 being similar. Assume that
u € LY(RY) for any g € [2, B], where B > 525 It is clear that G'(u), H'(u) € LY(RY) for

q € [max(1, 2 o =), f]] and F(u) € L1(RN) for q € [1 ]. We distinguish two cases:

’ 1+(7
Case A. If £ 1+U > &, then I(F(u)) € LY(RY) for any g € (%5, 0o]. We have F'(u) x{jui<1) €
L1(RN) for q € [2,00], hence I(F(u))F'(u)x{u<1y € LIRY) for g € (1,00] if N = 4,
respectively for g € [1,00] if N > 5 and F/(u)x{‘u|>1} e L1(RY) for q €1, g], hence
L(FW)F' () xu>1y € L4RN) if g € [1, g]. Consequently 7 (F (u))F'(u) € L4(RN) for g €
(1, g] if N = 4, respectively for g € [1, g] if N > 5. Notice that g > % and the sec-
ond part of assumption (b) imply g > U% Using Eq. (4.17) we infer that Au € LY(R") for
2 B ﬁ ; _ —in( B B ;
q € [max(1, —) mm(—, q#F1ift N=4. Let g3 = mm(a—l, =). Notice that g3 < B8 be-

cause o1 > 1 and Au € LBRN). If g3 > % > 2, then u € LB(RYN), hence u € W>#(RY)
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and by the Sobolev embedding we get u € L®°@RN). If q3 = %, then u € Wz’%(RN), con-
sequently u € L4(RY) for any ¢ € [2, 00) and repeating the above proof with 8 > B8 we find

ue L®RV).If g3 < %, then necessarily g3 = ’3 (recall that > % > N because we are
in Case A). By the Sobolev embedding we get u e LPRN), Where E = i - % = ‘;—1 — %,
thus E — % = "'ﬂ_l — % < W < 0 by (b). Repeating the prev10us arguments

with B replaced by 81, we find that either u € L*°(RY) or u € LF2(RV), where > > B; and
L L < @=DIV=2=2 "and so on. After a finite number of steps we get u € L(RV).

B B

Case B. If % < g/, we may suppose that HU N . By Lemma 4.5(i), I (F (1)) € LY(R") for
q € (y= 2,(]L — —) 1. As in Case A we get I(F(u))F (u) € LYRN) for g € [1, (”2" -
2)71, g # 1 if N = 4. By (a), (b) and the fact that B > 225 we have (1+2<’ - 21> 01.
Since G'(u), H'(u) € LY(RN) for g € [max(1, = £, using (4.17) we get Au € LY(RY) for

’ o1
g € [max(l, %)s gsl, g # 1 if N =4, where g4 = mm(:il, (% — 2)71). If g4 > ¥ then, as
above, we obtain u € L®(R"). Otherwise by the Sobolev embedding we find u € LA(RN),

where L = % — %, thus % — % < max(("‘_l)z(%_z)_“, J(NI_VZ)_4) < 0. Then we restart the

Bi
process with B; instead of 8. Continuing in this way, after a finite number of steps we obtain

u e L®RN).

We have proved that u € LY(RY) for any g € [2,00]. Thus F(u) € L'(RY) N L®°RYN),
I(F(u)) € LYRY) for g € (55,00, F'(u) € L*RY) N L>°(RN), hence I(Fu))F'(u) €
L2RN) N L>®RN). Clearly G’ (1), H' (1) € LY(R") for ¢ € [max(l, 2) oo]. Using (4.17) we
have Au € L2RN) N L®RY), thus u € WP (RV) for any p € [2, 00). In particular, 37‘2 are
continuous and bounded on RY . Differentiating (4.17) with respect to x; we get

ou "
—A<T> ZI(F( )— )F( ) = 21 (F ) F" (u )

Xi Xi

" du " du : N
+ G (u)— +aH" (u)— =0 inR".
ax,' ax,-
It follows that —A( 3“ ) € L2(RY) N L=®(RY). Since obviously 2 e L2RN) N L®RY), we
get g)’:_ e W2P(RY), which implies u € W37 (RY) for any p € [2, oo). O

It follows from Lemma 4.8 that F (1) € C2(RV) and F (1) € W2P(RN) for p € [1, 00]. Using
Lemma 4.5(i) and (ii), it is easy to check that I (F(u)) € C%2(RY) and I (F (1)) € W=P(RN) for
pE (%, oo]. In particular, I(F(u)) € S’(RV) and Lemma 4.5(iii) implies F (I (F (u)))(&) =

dn IEIZF(M)(E) where dy = (N " Setting U =1(F(u)) we have —AU =dnF(u).

Next we show that 40, x') = 5% I(F(u))(O x') =0 for any x’ € RV~!. From (4.16)
we infer that fo ]—'(A(F(u)))(él,é) d& = 0 for almost every & € RN~ I that is

2% F(u)(1.8")

l&’ |2+s2
déy =0ae. & e RV7!, or equivalently

& |2+s2
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f 6§ F(I(Fw))(&,£)dé =0 for almost every & e RV 1. (4.19)

If %I(F(u)) and .F(%I(F(u))) are in L' (RV), by the Fourier inversion theorem (4.19) is
equivalent to %I (F(m))(0,x") = 0 as desired.

Since we do not know whether (,x I[(F(u)) € L'"(RN) and F( di I(F(u))) € L"(RN), we ar-

n2x2
gue as follows: we take an arbitrary test function ¥ € S(R¥~!) and we put ¢, (x]) = L=~ 2 ;! .

N2
&

Clearly, g, (x1) = ng1(nx1), |lgallL1(r) = 1 and @, (§1) = e 2:2. On one hand, we have, by using
Lebesgue’s Dominated Convergence Theorem,

0
nl_i)rgo/‘Pn(xl)l//(x/)[EI(F(M))}(XLX/) dx
RN '
. / 0 Y1 / ’
. /q)l(yl)w(x>[8—1(F(u>)}(—,x)dm dx
n—00 X1 n
RN

9
= / 1/f(x’)a—x1 (1(Fw)))(0,x")dx’. (4.20)

RN—l
On the other hand, we have
f on(x) VY (x )[ (F(u))](m,x/) dx
RN

a /
= <ﬁ(l(F(u>)), P (XY (x )>S/’S

<;<aill(m))> (go,l(xl)w<x’>)>

S8

_ 1 idnél ——
- (271)1\1/ 2 Fu)$)e 2»121#( £ d& d&'. (4.21)

RN

Since F(u) € L>(RN), for almost every & € RV~! we have Fu)(, &) e L*(R). For any
such &’, arguing as in (4.13) we get

éuz

/ d& \/
R

3
e P

&1
£+

C —
L F) (1,8 d& < el — |F@ 8 2wy
/|2
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where C does not depend on &’. Moreover, the Cauchy—Schwarz inequality gives

/ Cly (=&l E)I
&2

RN-1 RN-1

FEER N\ e
L ) gt <o [ L ) @ ], < o

By the Dominated Convergence Theorem, we have for almost any &’ € RV~!
/ 2 = 2@(51’5/)6_;_%2d51*/%Fw\)(él,é’)délzo as n — oo.
y St J g1

Thus we may use Fubini’s theorem, then the Dominated Convergence Theorem on R¥~! to
obtain

&1
[HE

RN

L Fw) &1, &)e” znzw £')dg, dg’

2n2d d
- [ ve s>/§2+|5|2 (1,80 > dey dg’

RN-1

— / Y(—£)-0dE' =0 asn— oo. 4.22)

RN-1

From (4.20)~(4.22) we infer that [py_ w(x’)%(I(F(u)))(O, x")dx’ = 0. Since ¥ € SRV~
was arbitrary, we have %(I(F(u)))(o, ) =01in S’(R¥~1), hence 3371(1(1?(”)))(0, x’) =0 for
any x’ € RV~ because aixl(I(F(u))) is a continuous function.

We know that F(u1) is symmetric with respect to x| and a simple change of variables shows
that the function U; := I (F(u1)) is also symmetric with respect to x;. Clearly U; also be-
longs to CZ(RY) and satisfies —AU; = —A(I(F(u1))) = dy F(uy). By symmetry we have
%(O,x’) =0 for any x’ € R¥~!. Since u(x1, x") = u(x1, x’) if x; <0, we have proved that
the functions U and U are both solutions of the problem

—AW =dnF(u) in {(x1,x) eRY | x; <0},

N
WECZ(RN)OWZ,P(RN) forp> m, (423)

ow
—(0,x)=0 for any x’ € RV 1.
3)61

It is not hard to see that the solution of (4.23) is unique. Consequently, U (x1, x") = Uy (x, x') if
x1 < 0. From (4.17) and (4.18) it is obvious that (u, U) and (u1, U1) solve the systems

{ —Au —2UF'(u) + H'(w) +aG' ) =0, . pN (4.24)

—AU —dyFu) =0
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respectively

—Auy —2U1F'(u)) + H' (uy) + BG'(u1) =0, . N
{—AUl—dNF(ul)zo in RY. (4.25)
We cannot have u = 0 in the half-space {x; < 0} because this would imply » = Q(u) =
Q(u1) = 0. Since u is continuous, necessarily u((—oo,0) x R¥~1) = u((—o0,0) x R¥N~1)
contains an interval of the form (—eg, 0) or (0, ¢) for some ¢ > 0. Now assumption (c), (4.24),
(4.25) and the fact that (u, U) = (u1, U;) on (—o0, 0) x RV—1 imply that o = g in (4.24)—(4.25).
As a consequence, we see that (v —u1, U — Uy) solves a linear system whose coefficients belong
to L (RM). Since (u, U) = (u1, Uy) for x; <0 and (u, U), (u1,U;) € W=P(RN ,R?) if p >2
and p > % by using the Unique Continuation Principle we infer that u = u; (and U = Uy)
in RY, that is u is symmetric with respect to x1.

Similarly we show that u is symmetric with respect to any other hyperplane IT which has
the property that f 7. Gux))dx = f m. G (u(x))dx, where I1_ and [T, are the two half-spaces
determined by I7. As in the proof of Theorem 4.1 it follows that after a translation, u is radially
symmetric. The proof of Theorem 4.6 is complete. O

4.3. Standing waves for the Davey-Stewartson equation

We consider the Davey—Stewartson system

iuy+Au=f |u|2 U — Uvy,,
e (e =ewe R’ (4.26)
Av = (|u| )X1
which can be written as
iug=—Au+ f(jul*)u+ Ri(jul*)u, 4.27)

where R; is the Riesz transform defined by m = % (&). Let F1(t) = fo f(r)dr. Itis easy to
check that

~ 1 1 1
E(u):§/|Vu|2dx+§/F1(|M|2)dx—Z/|Rl(|“|2)|2dx
R3 R3 R3

is a Hamiltonian for (4.27) and é(u) ng lu(x)|?dx is a conserved quantity for the same equa-
tion. The standing waves for (4.27) are precisely the critical points of E+ a)Q As in the previous
example, when we minimize E (u) sub]ect to Q(u) = constant, we may restrict ourselves to real

functions u and to the real version of E s
1 2 1 2)12
E(u):E |Vul?dx + F(u)dx—Z |R (u?)|” dx.
R3 R3 R3

We will consider a more general functional than @, namely Q(u) = fR3 Gu)dx. If
G(u) = u?, in order to guarantee the boundedness from below of the functional E on the set
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of functions satisfying Q(u) = A, the function F'(u) is required to behave as a|u|” for u large,
with @ > 0 and y > 4. In the case F(u) = alu|”, the Cauchy problem for the evolution equa-
tion (4.27) has been analysed in [12]. The global existence of solutions was proved in the case
a > 0 and y > 4, while in the case y = 4 the global existence was proved if a is sufficiently
large.

Still in the case of pure power F(u) = alul¥, with a > 0 and y > 4, the existence of min-
imizers of E subject to the constraint Q(u) = ng |u|>dx = A can be proved by using the
Concentration—Compactness Principle (see [17]) if A is large enough (this assumption is needed
to prevent vanishing).

In [10] the existence of ground states related to the problem (4.26) has been studied. However,
our method cannot be used to prove the symmetry of these ground states because the nonlocal
term appears in the constraint.

It is well known that R; is a linear continuous map from LP(R3) to LP(R?) for 1 < p < o0
(see [23]). If u? € L2(R3), then R; (u?) € L*>(R?) and by Plancherel’s theorem we get

1 —— 1 TN
/|R1(u2)|2dx= (27[)3/|R1(u2)(§)|2d$=m l%|u2(5)|2d§. (4.28)

R3 R3 R3

We have the following symmetry result.
Theorem 4.9. Let u € H' (R?) be a solution of the minimization problem
1 1
minimize  E(u) = > f IVu|?dx + / F(u)dx — 3 / IR (u2)|2dx
R3 R3 R3

subjectto  Q(u) = / G(u(x)) dx=1#0

R3
under the following assumptions:

(@) F,G:R— Rare C? functions, F(0) = F'(0) =0, G(0) = G’(0) = 0 and there exist C > 0,
o < 5 such that

|F'(w)| <Clul” and |G'(w)| < Clul” for|u| > 1.
(b) Forany s >0, G' #0 on (—¢,0) and on (0, &).

Then, after a translation, u is radially symmetric in the variables (x3, x3) (i.e. u is axially
symmetric).

Proof. Making a translation in the x; direction if necessary, we may assume that

/G(u(x))dx: / G(u(x))dx:i.

2
{x2<0} {x2>0}
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As before, we define 11 and u» by

u(xy, —x2,x3) ifx; <0,
u(xy, x2,x3)  ifxp >20.

u(xy, x2,x3)  ifxy <0,

. uzx(x1,x2,x3) =
u(xy, —xz,x3) ifxp >0, 2(x1, %2, %3) {

uy(xy, x2,x3) = {
It is obvious that Q(u1) = Q(u2) = A. Moreover, using (4.28) we get

1 1
E(u1) + E(uz) — 2E(u) = 4(271)3[ |s|2| u3(®)| ds+f |§|2’ ud(®)| de

| §|2| W2 ()| ds} (4.29)

R3

Recall that by (2.40) and (2.41) we have the equality

512 Tooe) |2 512 T v |2 512 (2
/@|Tlfp(€)| d§+/@|T2§0(§)\ d%‘—Z/@’(p(Eﬂ de
RN RN RN
2
dg’ (4.30)

2 o]

—§f5/<55)5 dt,
T LRI T g

RN-1

for any ¢ € C§°(RN), where j € {2, ..., N}. It is obvious that the left-hand side of (4.30) de-
fines a continuous functional on L?(RV). By the next lemma, it follows that the right-hand
side of (4.30) also defines a continuous functional on L2(R"). Then the density of CZ° (RM)
in LZ(R") implies that (4.30) holds for any ¢ € L%(RV).

Lemma 4.10. Let j € {2, ..., N}. The bilinear form

S1 (e, = , , d
1, f|§|f¢<sls> S /Iﬂ(mé) Dz ds

RN—]
is continuous on L*(RN) x LZ(RY).

Proof. Asin (4.13) we have

1

(7 :
1<f|a(sl,s’>|2dsl> ,
g3\

o0

&
9 ) d <
O/so(sl e s‘

where K = ( foooﬁ dr)?. Consequently
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1 s 1

%-2 o0 R 2
sl <k [ o lz(/"ﬂ(‘fl £ dsl) (/!w<n1,s’>|2dm> d’
RN-1 0
<K? / (f!a@l,s/nzdsl) (/W(nl,s’nzdm) dg’
RN-1 ‘0
<K (f/w(a,s)l d$1d§> < f /l%(m,sﬁlzdmds/)
RN-1 RN-1 0
gKl||§0||L2(RN)||¢||L2(RN)- d

Since u?, u%, u% € L*>(R?) (recall that H'(R?) ¢ L2(R3) N L°(RY)), by exchanging the roles
of x1 and x; and using (4.29) and (4.30) we find

E(uy) + E(uz) —2E(u)

4(277)3 / /El +%—3

where Ayp = 3(p(x1,x2,X3) — @(x1, —x2, X3)).
Since u is a minimizer, we must have E (1) + E(u2) — 2E (1) > 0, consequently the integral
in the right-hand side of (4.31) must be zero, which is equivalent to

2
/ A @6, &)‘g—zdsz deydes,  (431)
) P

e ¢]

— &
A 2 9 9 5 . A A
0/ 688

d& =0 ae. (£1,&) € R%. (4.32)
In particular, #1 and u; are also minimizers. However, as in the previous example, (4.32) is not
sufficient to prove that A(u?) = 0. In order to accomplish this task, we will use the Euler—
Lagrange equation of u: since # minimizes E under the constraint Q(u#) = A, there exists a
constant « such that E' (1) + « Q' (1) =0, that is

—Au+ F'(u) + R} (u?)u + oG’ (u) =0. (4.33)

Lemma 4.11. If F and G satisfy assumption (a) in Theorem 4.9 and u € H L(R3) is a solution
of (4.33), thenu € W3’f’(R3)f0r any p €[2,00). In particular, u € C2(RY).

Since R; and R12 are linear continuous mappings from L?” (R3) to L?(R3) for 1 < p < 00, the
proof of Lemma 4.11 is standard, so we omit it.
Let I (p)(x) = [gs 20) gy Using Lemma 4.5 it is easy to see that I (u?) € W2 (R3) for any

[x—y]
p € (3,00] and I (u?) is a C? function. Moreover, we have

2 —_~
F(R? (u ))(5)——%#(5) ——51 ( 2)(&),
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3
where d3 = F( ) , thus Rz(uz) = di 3—2 (u?). Equation (4.33) can be written as
X

2
—Au+F'(u) + dia—z(l (u?))u +aG'(u) =0. (4.34)
1

Arguing exactly as in the proof of Theorem 4.6, (4.32) implies that 3672 (I (@®)(x1, 0, x3) =0 for
any (xq,x3) € RZ.
Since u is also a minimizer, it satisfies the Euler—Lagrange equation

2

1
At F ) + s (1)) + 56 ) =0 (4.35)
3 0x]

The conclusion of Lemma 4.11 is obviously valid for u;. Since u; is symmetric with respect
toxp, [ (u%) is also symmetric with respect to x, and, consequently, 8872 (I (u%)) (x1,0, x3) =0 for
any (x1,x3) € R% We set U = I (u?) and Uy = I (u?). Recall that u(x1, x2, x3) = u1 (x1, X2, x3)
if xo < 0; thus U and U, are both solutions of

—AW =u? inR x (—00,0) x R,
23 2,p (3
WeC*(R)NW>P(R%) for3<p<oo (4.36)
B4
— (x1,0,x3)=0 for any (x1, x3) € R>.
0x2

It is not hard to see that the solution of (4.36) is unique. Hence we must have / W =1 (u%) in
R X (—o00, 0] x R. In the same way we obtain I(u?) = I(u%) in R x [0, 00) x R.

Now we focus our attention on u1. Making a translation in the x3 direction if necessary, we
may assume that f{x3<0} Gui(x))dx = /{x3>0} Gui(x))dx = % We define

ui(xy,x2,x3)  ifx3 <0,

wi(xq,x2,x3) = .
1(v1, %2, %3) {ul(xl,m,—xa) if x3 >0,

ui(xy, x2, —x3) ifx3 <0,

wa(xq, X2, x3) = .
2(x1, %2, %) {Ml(X1,X2,X3) ifx3 >0.

It is obvious that Q(w;1) = Q(w>) = A. Proceeding as above, we find the identity

E(wi) + E(wz) —2E(u1)

2 < g
__ 118 / fi [ ade.e. £) 2 dy| deides, 437)
3 ’ 2 2 ’ :
4 (27) i /512+€z J EL+& +&

where A3p = %(go(xl, X2, x3) — @(x1, x2, —x3)). Since u is a minimizer, it follows from (4.37)
that w; and wy are also minimizers of E under the constraint Q = A; hence w; and w, sat-
isfy the conclusion of Lemma 4.11 and I (wy), I (w2) € C2(R* N W2P(R3) for p € (3, 00].
Moreover, the integral in the right-hand side of (4.37) must be zero. As previously, this gives
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a%](u%)(x] ,x2,0) = 0 for any (x1,x2) € R%. Proceeding as above, we find I(u%) = I(w%) in

R? x (—00, 0] and I (u?) = I (w3) in R? x [0, 00).

Now let us consider the function wj. It is clear that wi(x1, —x2, —x3) = wi(x1, —Xx2, x3) =
wi(x1, X2, x3), .. w1 is symmetric with respect to x, and with respect to x3. Consider a plane I7
in R containing the line {(x,0,0) | x; € R} and let 7, and IT_ be the two half-spaces deter-
mined by I7. Since (x1, x2, x3) — (x1, —x2, —x3) maps [1; onto [1_, using the symmetry of w;
we get fn+ Gwi(x))dx = [ G(wi(x))dx = % Let 577 denote the symmetry in R? with re-
spect to 7. We define

wi(x) ifx ell_,
wi(sp(x)) ifxelly

wi(sp(x)) ifxell_,
w1 (x) ifxell,.

ri(x) = { and r(x) = {

Repeating the above arguments we obtain an integral identity analogous to (4.31) and (4.37)
which implies that r; and 7, also minimize E subject to the constraint Q = A. Furthermore,
using the fact that the integral in the right-hand side of this identity must vanish we find

3
a—l(wf)(xl ,x2,x3) =0 whenever (x1, x2, x3) € I, (4.38)
n

where 7 is the unit normal to I7. Passing to cylindrical coordinates we write

I(w]) @1, %2, 63) = I (w]) (1, 7 cos6, 7 sin6) = (x1, 1, 6),

where r = /x% +x§. Since 1 (wlz) is a C? function and (4.38) is valid for any plane I7 con-
taining {(x1,0,0) | x; € R}, (4.38) is equivalent to % =0, that is @ does not depend on 0, i.e.

I(w%)(xl ,x2,x3) = D1(x1, x% + x32) for some function @1. In other words, we have proved
that 1 (w%) is radially symmetric in the variables (x3,x3). In the same way we show that
I(w%)()q ,X2,x3) = Da(xy, x% + x32) for some function @,. Since I(u%) is continuous on R3,
I(M%) = I(w%) in the half-space {x3 < 0} and I(I/t%) = I(w%) in the half-space {x3 > 0}, we have
necessarily @; = @;, and then [ (u%) is radially symmetric in the variables (x2, x3).

Similarly, there exists k € R such that f{x;<k} Gur(x))dx = f{x;>k} Gux(x))dx = % (We
have fixed the origin in such a way that fm<0} Gui(x))dx = f{x3>0} Gui(x))dx = % and
nothing guarantees a priori that k = 0.) Arguing as above, we infer that / (u%) is radially sym-

metric with respect to the variables (x», x3 — k). Thus we have proved that there exist con-

tinuous functions 7, y defined on R x [0, c0) such that I(u%)(xl,xz,xg) = n(xy, x% —l—x%)

and I(u3)(x1,x2,%3) = y(x1,,/x3 + (x3 —k)?). Since I(u3)(x1,0,x3) = I ?)(x1,0,x3) =
I(u%)(xl ,0,x3), we get n(xy, |x3]) = y(x1, |x3 — k|) for any x1, x3 € R. In particular, if £ > 0,
for t > 0 we have n(xy,t + 2k) = y(x1,t + k) = n(x1, t); that is, for any fixed xi, the func-
tion n(xy, -) is periodic of period 2k. On the other hand, we have I(u%), I(u%) € W2P(RV) for
p € (3, o0], thus I(u%) and I(u%) tend to zero at infinity, hence n(xy,#) — 0 and y(x1,1) - 0
as x12 + 12 — oco. We infer that either k =0, or n =0 in R x [0, 00). In both cases we get n = y
on R x [0, 00) and I (u?) = I (u3) in R®. Thus we have I (u?) = I (u?}) = I (u3) on R?, and I (u?)
is radially symmetric with respect to (x2, x3).
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Since Q(u) = Q(u1) = A # 0, we cannot have u = 0 in the half-space {xy < 0}. Assump-
tion (b) implies that there exists (x1, x2, x3) € R3, x» < 0 such that G'(u(x1, x2,x3)) # 0. Since
u=u on {xz < 0} and I(u?) = 1(u2) on R3, from (4.34) and (4.35) we infer that o = B.

Leta(x) = d a 2 (I (u2))(x) = d3 o 2 (I(uz))(x) We know that a is a continuous and bounded

function on R3. The functions u and u1 both satisfy the equation —Aw + F'(w) + a(x)w +
aG'(w) =0 in R? and using the Unique Continuation Principle again we conclude that u = u;
inR3,ie. uis symmetric with respect to x;.

In the same way we prove that u is symmetric with respect to x3 (after possibly a translation).
Proceeding as in the proof of Theorem 4.1 we can show that u is symmetric with respect to any
plane containing the line {(x1, 0, 0) | x; € R}, consequently « is radially symmetric with respect
to (x2, x3) variables. 0O

Remark 4.12. (i) We have stated and proved Theorem 4.9 in dimension N = 3 only for sim-
plicity. Replacing the term fR3 IR (u?)|2(x)dx in E(u) by fRN |R1(H ))|*(x)dx and making
suitable assumptions on the function H, this result admits a straightforward generalization to R",
N >3.

(ii) We do not know whether the minimizers in Theorem 4.9 are symmetric or not with respect
to x1. Recall that by (2.42) we have

T T 2
/|g|2‘ Tip®’ §+/|Elz\ T ds - W}w(s)!

RN
8
-/ )
T

RN-1

2

ApE) 57— il d§;

439
&+ 1€ “ @

for any ¢ € CS° (RM). Clearly, the left-hand side of (4.39) is continuous on L*(RM). Proceeding
as in Lemma 4.10, it is easy to see that the right-hand side of (4.39) also defines a continuous
functional on L*(RN). Consequently, (4.39) holds for any ¢ € L2(RM). Using (4.28) and (4.39)
we have

o0 2
2 1
E(T1u)+E(Tzu)—2E(u)=;(271)1\, f I$|/ A(H (u )))(é)é|2 dg| dg'. (4.40)
RN-1 0

The right-hand side in this integral identity is always nonnegative and (4.40) does not imply the
symmetry of minimizers with respect to xi.

(iii) Let us change the sign of the nonlocal term appearing in Theorem 4.9, i.e. let us consider
the minimization problem

. 1 2 1 2\ (2
minimize E*(u)zi |Vul|“dx + F(u)dx—i—z |R1(u )| dx

R3 R3 R3

under the constraint Q(u) := / G(u(x))dx = x. 4.41)

R3
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The minimizers of this problem (when they exist) give rise to standing waves for Eq. (4.27)
where the sign of the nonlocal term R%(|u|2)u has been reversed. Clearly, the integral identities
that we have do not imply the symmetry of solutions of (4.41) with respect to x> and x3.

The symmetry of minimizers of (4.41) with respect to x; is also an open problem. As above,
in this case we have the identity

2
E(Twu) + E(Tou) —2E.(u) = — (271)3/|E|
RZ

1§12

[e’s) 2
/ D& de | dgds. @42)
0

If u is a minimizer, the right-hand side of (4.42) must vanish. As in the proof of Theorem 4.9,
this implies 33711 @?)(0, x2, x3) =0 for any (x2,x3) € RZ. Repeating the argument already used

in Theorem 4.9 we get I (u?) = I((Tyu)?) on {x; < 0} and I(u?) = I((Thu)?) on {x; > 0}.

Moreover, if A # 0 then u and u := Tyu satisfy the same Euler—Lagrange equation, namely
/ 1 82 2 !
—Aw+ F (w)———z(l(w ))w—i—otG (w) =0. (4.43)
d3 9x;

Equivalently, defining U = I(?) and U; = I(u%), we see that (4, U) and (u1, Uy) are both
solutions to the system

—Aw+ F'(w) — laz—Ww +aG' (w) =0,
dy 9x} (4.44)

—AW = w?.

Moreover, (4, U) = (u1, Uy) on {x; <0} and u, u; satisfy the conclusion of Lemma 4.11. We
do not know whether this information together with the boundary condition gTUl(O, X2,X3) =
E1L(0, x2, x3) = 0 imply that u = u;.

Remark 4.13. If N = 3, the nonlocal term in Theorem 4.9 can be written as

1 1 92 =
G on |s|2| COL e =~ | Flaa! () )o@
R3 R3
1 [ a2 5
:__/ I (u )(x)”2(x)dx———// (@)K (x — y)u?(y) dx dy,
d3 8x1
R3 R3 R3

5 232 22
where K (x) = 3—2 () = M . Since this kernel changes sign, spherical rearrangements
9x? " x| 2
1 (xq +x2+x3)2
in the variables (x3, x3) combmed with Riesz’ inequality cannot be used to prove the symmetry

of minimizers.
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5. Some open problems

We close this paper speaking about several problems for which the methods described above
(including ours) seem to fail.

First, let us come back to the two minimization problems considered in Theorem 4.1. As
before, if u# is a minimizer of any of these problems, we may assume that f{m <0} Gu)dx =

f{x1>0} G(u)dx and we set u; = Tiu and upy = Tru. Assume that s € (1, %). Then the identi-
ties (3.22) and (3.23) are still valid (see Corollary 3.4) and we get

165sin(s)

E(u1)+ E(up) —2E(u) = — ———NZ(Au) >0 in Case A,
T

respectively

16sin(s7)

E(ui)+ E(up) —2E(u) = — 5 N2(Au) >0 in Case B.
T

It is easy to see that these integral identities work in the wrong direction. Are the minimizers still
radially symmetric for s € (1, %)?
Another problem is to study the symmetry of minimizers of

/ : u(x)zu(y)zdxdy—i—/F(u(x))dx
lx — yl

1 2
Ew = [ IVul’ +
R3 R3xR3 R3

subject to the constraint

/uz(x)dx =Ar>0.

R3

In the particular case F (1) = —C|u|®/3, this problem arises in connection with the Schrodinger—
Poisson—Slater system [22]. Due to the repulsive effect of the nonlocal term, Riesz’ inequality as
well as the Reflection method work in the wrong direction.

The last problem concerns the symmetry of minimizers of

+00 +00
E(u) = / (2 (x) +u’(x))dx —y / HnGI:3

where y > 0, subject to the constraint fjoooo u?(x)dx = ) > 0. These two functionals are con-
served quantities for the Benjamin equation (see [1,2]). Symmetrization and reflection cannot be
used due to the sign of the nonlocal term. Oscillating travelling waves for this equation have been
found numerically; perhaps this is an indication that the minimizers of the problem above may
change the sign.
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