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Abstract

Sugarcane holds significant economic importance in sugar and biofuel production. Despite extensive research, under-
standing highly quantitative traits remains challenging due to its complex genomic landscape. We conducted a multiomic
investigation to elucidate the genetic architecture and molecular mechanisms governing sugarcane sucrose accumulation.
Using a biparental cross and a genetically diverse collection of sugarcane genotypes, we evaluated the soluble solids (Brix)
and sucrose content (POL) across various years. Both populations were genotyped using a genotyping-by-sequencing
approach. Genotype—phenotype associations were established using a combination of traditional linear mixed-effect mod-
els and machine learning algorithms. Furthermore, we conducted an RNA sequencing experiment on genotypes exhibiting
distinct Brix and POL profiles across different developmental stages. Differentially expressed genes (DEGs) potentially
associated with variations in sucrose accumulation were identified. All findings were integrated through gene coexpression
network analyses. Strong correlations among the evaluated characteristics were observed, with estimates of modest to high
heritabilities. By leveraging a broad set of single-nucleotide polymorphisms (SNPs) identified for both populations, we
identified several SNPs potentially linked to phenotypic variance. Our examination of genes close to these markers facili-
tated the association of such SNPs with DEGs for contrasting sucrose levels. Through the integration of these results with
a gene coexpression network, we delineated a set of genes potentially involved in the regulatory mechanisms of sucrose
accumulation. Our findings constitute a significant resource for biotechnology and plant breeding initiatives. Furthermore,
our genotype—phenotype association models hold promise for application in genomic selection, offering valuable insights
into the molecular underpinnings governing sucrose accumulation in sugarcane.

Key message
Our multiomic investigation of sugarcane reveals significant genetic markers and regulatory genes linked to sucrose accu-
mulation, providing valuable resources for biotechnology and plant breeding to enhance sugar production.
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Introduction

Sugarcane holds significant importance in the global
economy, particularly in terms of biofuel and sugar pro-
duction (FAOSTAT 2023). Due to its remarkable capacity
for sugar storage, sugarcane is the primary global source
of sugar (Mirajkar et al. 2019). With the continual rise in
sugar demand, there is a pressing need for the development
of more productive varieties. Central to sugarcane breeding
programs is the maximization of yield, measured in terms of
sugar production per area (Cursi et al. 2022). This optimiza-
tion encompasses resistance to abiotic and biotic stressors
and several secondary traits, facilitating sugarcane cultiva-
tion across diverse environmental conditions.

Despite notable advancements in sugarcane varieties, the
process of cultivar generation through breeding can last up
to 12 years (De Morais et al. 2015). Sugarcane breeding typ-
ically involves three main stages: (i) creating genetic vari-
ability through controlled crosses; (ii) preliminary selection
across numerous experiments with limited replicates; and
(iii) advanced selection, with an adequate number of repli-
cates and environments to enable precise selection (Gazaffi
et al. 2015). Given the extensive time and costs associated
with field evaluations, the integration of molecular-assisted
technologies holds promise for accelerating breeding prog-
ress and increasing genetic gains, particularly regarding
sucrose content, an aspect where sugarcane breeding prog-
ress remains slow (Chen et al. 2019). However, the intri-
cate genomic complexity of sugarcane poses a challenge
in understanding the genetic architecture underlying sugar
accumulation and consequently hinders the development of
effective molecular breeding efforts.

Modern sugarcane cultivars are derived from crosses
between Saccharum officinarum (2n=8x=80, x=10)
(D'Hont et al. 1998) and Saccharum spontaneum (from
2n=>5x=40 to 16x=128, x=8) (Panje and Babu 1960), fol-
lowed by several backcrosses with S. officinarum to increase
sucrose content (Cuadrado et al. 2004). While S. sponta-
neum, a wild sugarcane species, exhibits high stress resis-
tance, it has a low sucrose content and abundant biomass
(Mirajkar et al. 2019). Wild sugarcane can store approxi-
mately 2% of its fresh weight as sucrose, whereas the theo-
retical storage capacity of cultivated sugarcane can reach
27% (Bull and Glasziou 1963). Understanding the genetic
mechanisms associated with these contrasting sugar accu-
mulation profiles is challenging because of factors such as
varying ploidy levels, frequent aneuploidies, and substantial
cytogenetic complexity (Aono et al. 2021).

The quantitative trait loci (QTLs) associated with sugar-
related traits exhibit a highly complex genetic architecture
(Ming et al. 2002; Costa et al. 2016; Balsalobre et al. 2017),
and there is limited information regarding the extent, effect,
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and genomic regions associated with phenotypic variability.
This polygenic action encompasses diverse metabolic path-
ways and biological processes, particularly during the matu-
ration phase, which dictates sucrose accumulation in mature
sugarcane (Datir and Joshi 2016). Sucrose synthesis occurs
primarily in sugarcane leaves. The sucrose is then trans-
ported through the phloem and stored in culms (Sachdeva
et al. 2011). Its metabolism is regulated by diverse sucrose-
synthesizing and hydrolyzing enzymes, including sucrose
synthase, sucrose phosphate synthase, and invertases (Datir
and Joshi 2016).

In addition to sucrose metabolism, other metabolic path-
ways, such as photosynthesis and carbon partitioning, influ-
ence sucrose accumulation rates in sugarcane (Sachdeva et
al. 2011). Genes associated with stress responses also play
significant roles in the efficiency of this mechanism, with
notable implications for the regulatory actions of jasmonic
acid, abscisic acid, ethylene, and gibberellin (Papini-Terzi
et al. 2009). Despite extensive research on the complex
mechanisms underlying sucrose accumulation, the molecu-
lar basis for maintaining high sucrose levels in sugarcane
culms remains poorly understood, with many genes, path-
ways, and regulatory networks still to be elucidated (Wang
et al. 2019; Hosaka et al. 2021; Martins et al. 2024).

Therefore, integrative methodologies hold great prom-
ise for unraveling the mechanisms underlying sucrose
accumulation and for highlighting key regulatory elements
involved in this process. Beyond the use of non-conven-
tional approaches in quantitative genetics and statistical
genomics to address the genetic complexity of sugarcane
and facilitate genotype—phenotype association studies, the
functional investigation of genes and biological processes
linked to these associations is crucial for advancing biotech-
nology and molecular breeding. This is particularly relevant
given that direct modification of genes involved in sucrose
metabolism and transport has so far not yielded satisfactory
outcomes (Qin et al. 2021).

Our study investigated the complex genetic architecture
underlying sucrose accumulation in sugarcane. By integrat-
ing diverse omics datasets from multiple genotypes, we not
only identified potential genotype—phenotype associations
but also examined the molecular mechanisms underly-
ing genes located in these regions. To address the genetic
complexity of sugarcane, we employed a combination of
approaches, including linear mixed-effects models, machine
learning algorithms, gene coexpression network analyses,
and differential gene expression comparisons. Together,
these methodologies helped highlight candidate mecha-
nisms and regulatory factors that potentially contribute to
this complex trait.
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Material and methods
Plant material

Two distinct sugarcane populations were utilized in this
study to investigate genotype—phenotype associations. The
first population (Pop1) comprised a panel of 97 diverse sug-
arcane accessions (Supplementary Table S1), and the sec-
ond population (Pop2) consisted of 219 progeny genotypes
derived from a cross between the elite clone IACSP953018
(female parent) and the commercial variety IACSP933046
(male parent). Both populations were developed by the
Sugarcane Breeding Program at the Agronomic Institute
of Campinas (IAC) in Ribeirdo Preto, Sdo Paulo, Bra-
zil (4°52'34" W, 21°12'50" S) following the experimental
design described in Supplementary Material Sect. 1.1.

Furthermore, three cultivars were selected for an RNA
sequencing (RNA-Seq) experiment based on their divergent
sugar content profiles. These genotypes were planted with
three replicates in a field at the Federal University of Sao
Carlos in Araras, Sdo Paulo, Brazil (47°23'5" W, 22°18'41"
S). Specifically, the selected genotypes included (i) IN84-
58, a representative of S. spontaneum with low soluble
solids content (Brix); (ii) the SP80-3280 hybrid, character-
ized by high Brix measurements; and (iii) the hybrid R570,
which also exhibits high Brix measurements.

Phenotyping

The genotypes from Popl and Pop2 were phenotyped for
Brix and sucrose content (POL) following the methods
described in Consecana (2006). For Pop1, evaluations were
conducted in ratoon cane in 2014 and 2015, with 1-year
intervals between harvests (Coutinho et al. 2022). For Pop2,
evaluations were conducted in plant cane in 2012 and in
ratoon cane in 2013 and 2014. Each trait in each sugar-
cane population and replication was modeled using a linear
mixed-effects model, as described in Supplementary Mate-
rial Sect. 1.2.

To facilitate direct comparisons of estimates between
populations, best linear unbiased predictors (BLUPs) were
rescaled to the range of 0—1. Multivariate and descriptive
analyses were performed using R statistical software v4.1.2
(R Core Team 2013). To assess phenotypic similarities
between genotypes, we conducted complete linkage hierar-
chical clustering analysis based on Euclidean distances.

Genotyping
The populations were genotyped using a genotyping-by-

sequencing (GBS) approach following the methodologies
outlined by Elshire et al. (2011) and Poland et al. (2012).

Due to financial constraints, only a subset of the phenotyped
individuals was genotyped. A total of 94 individuals from
Pop1 and 182 individuals from Pop2, consisting of 180 prog-
eny genotypes and their respective parents, were genotyped.
In Pop1, genotyping was accomplished utilizing a combina-
tion of the restriction enzymes Pst/ and Msel, as described
by Pimenta et al. (2021). In Pop2, only the enzyme Pst/ was
employed, following the methodology described by Aono
et al. (2020). Sequencing procedures were performed using
the Illumina platform, with the NextSeq 500 platform uti-
lized for Pop1l and a combination of the GAIIx and NextSeq
500 platforms for Pop2. Single nucleotide polymorphism
(SNP) calling was performed utilizing the TASSEL-GBS
pipeline (Glaubitz et al. 2014), as detailed in Supplementary
Material Sect. 1.3.

RNA sequencing bioinformatics analysis

The culm samples were collected from the+ 1 internode of
the selected genotypes at development times of 6, 8, 10, and
12 months. Although sucrose is synthesized in the leaves, it
is ultimately transported and stored in the culms. Since the
molecular mechanisms regulating sucrose accumulation in
culms remain incompletely understood (Wang et al. 2019;
Hosaka et al. 2021; Martins et al. 2024), we focused our
analyses on this tissue. Furthermore, as sucrose accumula-
tion has been proposed to be controlled by genes induced
during culm maturation (Thirugnanasambandam et al.
2017), we investigated genes located near genotype—phe-
notype associations alongside those showing differential
expression in the culms of genotypes contrasting in sugar
content.

We employed three biological replicates and three tech-
nical replicates. RNA-Seq libraries were prepared and
sequencing was performed on the HiSeq 2500 Illumina
platform following the protocol described by Hosaka et al.
(2021). The bioinformatics methods used for transcriptome
assembly and gene expression estimation are detailed in
Supplementary Material Sect. 1.4.

Genotype-phenotype associations

To identify associations between SNPs and the phenotypic
values of Brix and POL, we employed different approaches:
a genome-wide association study (GWAS) through lin-
ear mixed-effects models using the R package ASReml-R
v4.1.0 (Butler et al. 2009), followed by estimates of link-
age disequilibrium (LD) and machine learning with feature
selection (FS) techniques (Aono et al. 2022), as detailed in
Supplementary Material Sect. 1.5.

Because the genomic reference used in our study was
fragmented, it was not possible to investigate LD patterns
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based on physical genome proximity. Therefore, we exam-
ined correlations between the GWAS-identified SNPs and
the remaining SNPs to gain insights into additional associa-
tions that might not have been detected by GWAS alone,
following the strategy proposed by Aono et al. (2025). To
further extend the scope of our analysis, we employed FS,
which allowed us to capture associations not detected under
the stringent Bonferroni-adjusted threshold (p<0.05). Since
GWAS models are prone to false negatives due to their con-
servative nature and reliance on linear assumptions, FS pro-
vided a complementary approach by revealing associations
that extend beyond these limitations.

To elucidate the potential functional implications of the
identified markers, we associated all SNPs identified in
association with Brix or POL measures with potential gene
sequences retrieved from the assembled transcriptome. Spe-
cifically, we conducted an alignment of all assembled tran-
scripts with the sugarcane genome sequence of the cultivar
SP70-1143 using the BLASTn v2.11.0+tool (Altschul et al.
1990). For each SNP-associated scaffold, we considered a
maximum of 5 alignments, applying an E-value cutoff of
le—6.

Based on the alignments obtained, we performed gene
ontology (GO) enrichment analyses using the R pack-
age topGO v2.46.0 (Alexa and Rahnenfiihrer 2009). We
established a false discovery rate (FDR)-adjusted p value
threshold of 0.05 to determine the significance of GO term
enrichment. All enriched GO categories were summarized
using the Revigo tool (Supek et al. 2011).

Differential gene expression and coexpression
networks

The identification of differentially expressed genes (DEGs)
was conducted using the filtered gene set and the R package
DESeq2 v1.34.0 (Love et al. 2014), as described in Sup-
plementary Material Sect. 1.6 GO enrichment analysis was
conducted using the R package topGO v2.46.0 (Alexa and
Rahnenfiihrer 2009), with an FDR-adjusted p value cutoff
0f 0.05. All enriched GO categories were summarized using
the Revigo tool (Supek et al. 2011).

Using gene expression estimates organized in transcripts
per million (TPM), we constructed a gene coexpression net-
work employing the weighted gene coexpression network
analysis (WGCNA) method implemented in the R package
WGCNA v1.72.1 (Langfelder and Horvath 2008). Initially,
we determined the soft power parameter () by selecting the
value that resulted in a minimum R? of 0.8 and maximum
mean connectivity, ensuring that the network approximated
a scale-free topology. Subsequently, based on Pearson corre-
lation coefficients and the estimated 3, we computed an adja-
cency matrix, which was then used to define a dissimilarity
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matrix derived from a calculated topological overlap matrix.
Finally, average-linkage hierarchical clustering was applied
to the dissimilarity matrix, and adaptive branch pruning was
performed to identify modules of coexpressed genes.

GO module enrichment analysis was performed using the
R package topGO v2.46.0 (Alexa and Rahnenfiihrer 2009)
with an FDR-adjusted p value cutoff of 0.05.

Multiomics analyses

To integrate the findings from various analyses, we con-
ducted a comprehensive investigation using a gene coex-
pression network model. Initially, we examined each
network module based on the following criteria: (i) the
number of genes associated with GWAS/LD results, (ii) the
number of genes associated with FS results, and (iii) the
number of DEGs identified in intersection contrasts.

Based on these criteria, we selected groups of coex-
pressed genes and constructed specific gene coexpression
networks for the IN84-58, SP80-3280, and R570 genotypes
using the highest reciprocal rank (HRR) approach (Mutwil
et al. 2010). We utilized gene expression estimates orga-
nized in TPMs for genes within these groups and generated
a Pearson correlation coefficient matrix. Subsequently, we
constructed the network by considering the 30 strongest
absolute correlations (minimum R Pearson correlation
of 0.7) and modeling a graph using the R package igraph
v1.3.5 (Csardi and Nepusz 2006). Furthermore, we evalu-
ated the network architecture using different centrality
measures for each gene, including degree, Kleinberg’s hub
score, and betweenness.

Results
Phenotyping and genotyping

Brix and POL were analyzed through linear mixed effects
models to comprehensively assess variance components
and estimate the genetic contributions of the evaluated
phenotypes (Supplementary Table S2). Notably, substan-
tial correlations were detected between these traits in both
populations studied, with Pearson correlation coefficients of
0.95 for the 97 sugarcane accessions (Popl) and 0.9 for the
219 progeny genotypes resulting from the biparental cross
(Pop2). Upon employing BLUP estimates (Supplementary
Table S3), the correlation coefficient in Popl decreased to
approximately 0.9, but in Pop2, it increased to approxi-
mately 0.93 (Fig. 1a and b). This divergence in correlations
highlights potential environmental influences that may have
been captured by the preceding correlation analyses.
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Fig. 1 Distribution of genotypic data and best linear unbiased predic-
tions (BLUPs) for soluble solids content (Brix) and sucrose content
(POL) in two evaluated populations: Popl, consisting of a panel of
97 sugarcane accessions; and Pop2, comprising 219 progeny geno-
types derived from a biparental cross. Scatter plots illustrating asso-
ciations between Brix and POL are depicted for Popl (a) and Pop2
(b), along with dendrograms illustrating clustering profiles for each

Estimates of broad-sense heritability using variance ratios
were greater in Popl, with values ranging from approxi-
mately 0.89 for Brix in experimental unit 2 to approximately
0.97 for POL in experimental unit 3. Heritability estimates
obtained through Cullis” method (Cullis et al. 2006) were
consistent with the values observed for the ratios, differing
by approximately 1%. In contrast, Pop2 exhibited lower
estimates (~0.36 for Brix and~0.37 for POL). The higher
estimates in Popl can be attributed to the more pronounced
phenotypic variation among individuals in the panel, as
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population. Additionally, uniform manifold approximation and pro-
jection (UMAP) analyses are presented for Popl (¢) and Pop2 (d)
based on SNP data. Individuals are colored according to a hierarchical
clustering analysis of the phenotypic measures. Genomic relationship
matrices are provided for Pop1 (e) and Pop2 (f), indicating the genetic
relationships within each population

Popl includes commercial sugarcane cultivars from Bra-
zilian breeding programs as well as S. spontaneum and S.
robustum accessions, representing traditional energy cane
clones. Remarkably, the highest estimates of genetic effects
for Brix and POL were observed for IACCTC059552, a
modern sugarcane hybrid, and the lowest were recorded for
IACBIO275, an energy cane clone (Supplementary Table
S3).

The genetic differences observed in the populations
and models were found to be statistically significant

@ Springer
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(Supplementary Table S2). In the biparental population
(Pop2), clear evidence of heterosis was observed, with a
significant proportion of progeny genotypes exhibiting esti-
mates larger than those of the most productive parent (21
individuals for Brix and 26 for POL). There were no signifi-
cant interactions detected between genetic and year effects,
as indicated by the analyses of deviance based on likelihood
ratio tests (all p values>0.5; Supplementary Table S2).

The sequencing of the GBS libraries generated a substan-
tial amount of data, with 863,889,004 reads for Popl and
1,103,163,250 reads for Pop2. Subsequent analysis using
the TASSEL pipeline identified 874,597 and 137,757 SNPs
for Popl and Pop2, respectively. To ensure data reliability,
rigorous filtering criteria were applied, resulting in a final
set of 16,166 SNPs for Pop1 and 2,178 SNPs for Pop2 (Sup-
plementary Tables S4 and S5).

Uniform manifold approximation and projection
(UMAP) analyses (Fig. 1c and d) did not reveal any distinct
patterns correlating genotypes with phenotypes, suggesting
challenges in elucidating the genetic architecture underly-
ing the observed traits. In Pop2, the absence of genotypic
clusters was consistent with expectations due to the crossing
nature of the genotypes. Conversely, in Popl, a discernible
pattern emerged, possibly indicating a subgroup of individ-
uals with closer genetic relatedness, although this pattern
did not correspond to any observed associations with sugar-
related phenotypes. Similar patterns were also observed in
the genomic relationship matrices (Fig. le and f), further
supporting the existence of a distinct subgroup within Popl.

Transcriptome assembly and gene expression
estimates

The RNA-Seq experiment generated a substantial dataset
consisting of 1,240,508,982 paired-end sequencing reads,
each with a length of 100 base pairs. The mean number of
reads per sample was 11,486,194.28 (Supplementary Table
S6). Following stringent filtering procedures, 1,046,816,212
paired-end sequencing reads were retained, accounting for
approximately 84.39% of the initial reads.

Subsequently, the filtered reads were independently
aligned to each allele of the S. spontaneum and S. offici-
narum genomes (Supplementary Fig. Sla). This indepen-
dent mapping approach allowed for gene assembly at the
allele level, enabling distinct assemblies for each species’
allele. The transcript quantities assembled for each allele of
S. spontaneum were as follows: (A) 53,826, (B) 53,524, (C)
52,249, and (D) 52,569 (Supplementary Fig. Sla). For S.
officinarum, the quantities were (A) 55,272, (B) 53,563, (C)
53,809, (D) 50,945, (E) 49,668, (F) 46,037, (G) 44,220, and
(H) 39,048 (Supplementary Fig. S1a).
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To minimize redundancy and streamline the dataset, the
transcripts assembled per allele in each species were com-
bined, and CD-HIT software was utilized. This process
resulted in the generation of 138,774 transcripts for S. spon-
taneum and 201,646 transcripts for S. officinarum (Supple-
mentary Fig. Sla). Subsequently, by combining these two
transcriptomes and applying CD-HIT, a final comprehensive
transcriptome comprising 291,959 transcripts was obtained
(Supplementary Fig. Sla). This integrated approach not
only established a comprehensive transcriptome reference
for both species but also facilitated the determination of the
origin of each gene, enabling further evolutionary infer-
ences to be made.

The transcriptome assembly strategy generated tran-
scripts with sizes ranging from 99 to 16,513 base pairs, with
291,615 transcripts (~99.88%) presenting sizes greater than
200 nucleotides (the transcript N50 length was 1765 bp).
A comparison of these transcripts with the Eukaryota and
Viridiplantae databases using BUSCO software revealed
that 99.6% (86.3% of duplicated associations) and 99.7%
(83.5% of duplicated associations) of the sequences were
complete, respectively. Due to the use of allele-specific
genome references for assembly, we expected a high per-
centage of duplications to be observed. Additionally, the
use of well-assembled and annotated genomic references
for transcriptome assembly, combined with successive tran-
script clustering using CD-HIT, resulted in a low proportion
of fragmented sequences.

We identified a set of 46,098 genes by selecting those
with at least three samples presenting 10 counts per million
(CPMs), and these genes were subsequently used for further
analyses (Supplementary Fig. S1b). Gene annotations were
obtained through comparisons with the UniProt database
(UniProt Consortium 2019), resulting in successful align-
ment of all genes with UniProt proteins. This facilitated
the retrieval of diverse annotations for functional analyses.
Specifically, 37,196 genes (~80.69%) were found to cor-
respond to GO terms. Analysis of the gene expression data
using principal component analysis (PCA) revealed a dis-
tinct dispersion pattern across samples, effectively separat-
ing the genotypes (Fig. 2). Notably, the IN84-58 genotype,
representing S. spontaneum, exhibited more pronounced
differences than the other genotypes.

Genotype-phenotype associations

In our study aimed at identifying genotype—phenotype asso-
ciations, we initially employed a linear mixed-effects model
to conduct the GWAS analysis (Table 1). Consistent with
our expectations, the analysis revealed a greater number
of associations in Popl than in Pop2, which was attributed
to the greater genetic variability observed within Popl.
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Fig. 2 Principal component analysis (PCA) showing gene expression patterns across developmental time points (6, 8, 10, and 12 months old) for

the IN84-58, SP80-3280, and R570 genotypes

Specifically, in Popl, we identified 7 SNPs significantly
associated with Brix measures and 6 SNPs significantly
associated with POL. Notably, 5 SNPs exhibited simultane-
ous associations with both phenotypes, which aligns with
the anticipated outcome due to the pronounced correlation
between Brix and POL (Fig. 1a). Conversely, fewer associa-
tions were observed in Pop2, with only 1 SNP associated
with Brix and another 1 associated with POL. Subsequent
examination of the allelic proportion profiles of these SNPs
in comparison to the phenotypic measurements revealed a
consistent distribution pattern (Fig. 3a and b), supporting
the validity of the observed associations.

Quantile—quantile (Q—Q) and Manhattan plots revealed
clearer outliers in Popl for both Brix (Supplementary Fig.
S2) and POL (Supplementary Fig. S3). Although patterns of
LD could not be directly visualized in the Manhattan plots

due to the use of a fragmented genomic reference, poten-
tial associations were subsequently recovered through LD
analysis. In Pop2, the Q—Q and Manhattan plots for Brix
(Supplementary Fig. S4) and POL (Supplementary Fig. S5)
showed that the two SNP associations detected for these
traits exhibited similar behavior to other SNPs, suggesting
additional associations. To further explore these signals, we
applied machine learning approaches.

Among the 10 SNPs identified, we retrieved annotations
for only 4 SNPs (Supplementary Table S7). Among these
SNPs, 2 were simultaneously associated with the Brix and
POL traits in Pop1: an SNP at position 210 on scaffold16204
and an SNP at position 111 on scaffold32047. These SNPs
corresponded to 5 genes annotated for anion transporters
(gene 32017, gene 34208, gene 34382, gene 38431, and
gene 39421) and 5 genes annotated for the protein FAR1
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Table 1 Genome-wide associa- Population  Trait SNP P value FDR Bonferroni
tion study (GWAS) results for Popl Brix _scaffold16204[sizc3850 210 2.88E—09 4.66E—05 4.66E—05
soluble solids content (Brix) and AT
sucrose content (POL) across two - .
distinct populations: Popl, com- scc/allfold15773|s1ze3862_73_ 8.18E—08 0.0006490370472 0.001322046039
prising a panel of 97 sugarcane
accessions; and Pop2, consist- gfold838968\size239_40_ 1.20E—07 0.0006490370472 0.001947111141
ing of 219 progeny genotypes
derived from a cross between the scaffold15773|size3862 75 1.67E-07 0.000673431525 0.0026937261
elite clone IACSP953018 (female C/T
parent) and the commercial vari- scaffold112357|size2063 183  5.35E—07 0.00172989985  0.00864949925
ety ITACSP933046 (male parent) 5 C/A
scaffold32047|size2236 111 1.80E—06 0.004842866611 0.02905719966
_G/T
scaffold103083]size2070_196  2.83E—06 0.006542895698 0.04580026989
3 GIT
POL scaffold16204[size3850_210 1.16E-09 1.88E—05 1.88E—-05
AT
scaffold838968|size239 40 2.32E—08 0.000187183688 0.0003743673761
G/A
scaffold15773|size3862 73 1.18E—-07 0.0005698556482 0.00190506238
C/A
scaffold15773|size3862 75 1.41E-07 0.0005698556482 0.002279422593
C/T
scaffold32047|size2236 111 2.19E-06 0.007079909011 0.03539954505
_G/T
Adjusted p values were calcu- scaffold56428[siz¢2092 185  2.81E—06 0.007208389401 0.04544528141
lated using both Bonferroni and 8 A/G
false discovery rate (FDR) cor- -, Brix scaffold625903[size288 43 1.42E-05 0.008841259904 0.03098643235
rections. SNPs with Bonferroni- CIA
adjusted p values<0.05 were
y b POL scaffold5479|size4842_156_ 2.10E—05 0.03007418539  0.04568349979

deemed to be significantly

associated T

(gene 11104, gene 4861, gene 5373, gene 6529, and
gene 8883). Another SNP associated with POL in Popl
was located at position 1858 on scaffold56428 and anno-
tated for 2 genes encoding serine/threonine-protein kinases
(gene 34982 and gene 43850). The final annotated SNP
was found in Pop2. It was located at position 156 on scaf-
fold5479 and was associated with 2 genes encoding pen-
tatricopeptide repeat-containing proteins (gene 32532 and
gene 51857).

Of these 14 genes identified, 8 were exclusively found
in S. officinarum (gene 32017, gene 34208, gene 38431,
gene 39421, gene 11104, gene 4861, gene 5373, and
gene 32532), 3 were found in both species (gene 34382,
gene 6529, and gene 43850), and 3 were exclusively
found in S. spontaneum (gene 8883, gene 51857, and
gene 34982). Notably, most of the genes found in regions
associated with contrasting sugar accumulation profiles are
from the S. officinarum genome.

Regarding the GO terms associated with these GWAS-
identified markers, we recovered a total of 27 GO terms
(Supplementary Table S8). The most prominent GO terms
were “regulation of transcription, DNA-templated” in the
biological process category, “nucleus” in the cellular com-
ponent category, and “zinc ion binding” in the molecular
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function category, and all of these terms were associated
with 9 genes. These results indicate the potential role of
these genes in the genetic regulation associated with differ-
ences in Brix and POL measurements.

Given that the genomic reference used lacked chromo-
some-level assembly, we implemented an alternative strat-
egy to identify LD associations with the markers identified
through GWAS, as illustrated in Supplementary Fig. S6.
Utilizing pairwise Pearson correlations among allelic pro-
portions, we identified 71 additional markers (Fig. 3¢ and
d; Supplementary Table S9). Notably, only one marker was
detected for Pop2, and this marker was specifically associ-
ated with the POL phenotypic trait. Conversely, the remain-
ing 70 markers were correlated with GWAS-defined SNPs
within Pop1. Of particular interest, 68 out of the 70 associa-
tions in Popl were associated with a single SNP (position
210 on scaffold16204), which was organized into smaller
clusters across different scaffolds. For instance, SNPs
located at positions 1216, 1265, 1268, 1270, 1271, and 1272
on scaffold 24,635 exhibited correlations of approximately
0.8 with GWAS-defined SNPs. Similarly, SNPs located at
positions 157, 166, 169, 173, and 199 on scaffold 562,126
displayed correlations of approximately -0.8 with GWAS-
defined SNPs. Such patterns suggest the presence of a
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Fig. 3 Allelic proportions of single nucleotide polymorphisms (SNPs)
identified through a genome-wide association study (GWAS) related
to soluble solids content (Brix) and sucrose content (POL) in two
populations: Popl, comprising a panel of 97 sugarcane accessions (a);
and Pop2, consisting of 219 progeny genotypes derived from a cross
between the elite clone IACSP953018 (female parent) and the com-
mercial variety IACSP933046 (male parent) (b). Linkage disequilib-
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rium (LD) networks for Popl (¢) and Pop2 (d) constructed based on
the associations of SNPs identified through GWAS with the remain-
ing markers in the dataset. SNPs were selected using feature selection
(FS) techniques, including gradient tree boosting (GTB), L1-based FS
employing linear support vector regression (SVM), and Pearson cor-
relations (with a p value threshold of 0.05), in Pop1 (e) and Pop2 (f)
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coherent cluster of markers within the same QTL region,
which may not have been adequately captured due to limita-
tions in the genomic reference utilized.

We identified 75 additional genes associated with the
LD markers (Supplementary Table S7). Interestingly, we
observed no overlap between the genes identified through
GWAS and LD analysis. However, we found annotations
related to members of the kinase family in both sets of
genes. Additionally, our analysis revealed novel annota-
tions for various genes, including those encoding the E3
ubiquitin-protein ligase, the photosynthetic NDH subunit of
subcomplex B3, the cleavage stimulation factor, and sev-
eral transcription factors, such as MYB36, MYB87, RAX1,
RAX2, and RAX3.

Through an evaluation of the GO terms associated with
the genes surrounding the LD-associated markers, we
identified a total of 197 terms (Supplementary Table S8).
Prominent among the cellular components was the nucleus,
which was associated with 28 genes. The most conspicuous
molecular function was ATP binding, which was linked to
17 genes, and the prominent biological process was embryo
sac development, which was correlated with 15 genes. Fur-
thermore, several other noteworthy terms emerged, such
as gene silencing by RNA, the cellular response to glucose
stimulus, the regulation of glucose-mediated signaling path-
way, the regulation of gene expression, carbohydrate trans-
port, and the cellulose catabolic process.

By conducting an enrichment analysis combining GO
terms associated with the GWAS and LD results, we iden-
tified 16 enriched biological process terms and 8 enriched
molecular function terms (Supplementary Table S10).
Our analysis highlighted regulatory processes such as the

Table 2 Single nucleotide polymorphisms (SNPs) associated with sol-
uble solids content (Brix) and sucrose content (POL) were identified
through the following feature selection strategies: gradient tree boost-
ing (GTB), L1-based FS employing linear support vector regression
(SVM), and Pearson correlation (with a p value threshold of 0.05)

Population Trait Brix POL Intersec-
tion (Brix
and POL)

Popl GTB 193 193 25

SVR 6362 6307 5632
Pearson 1716 6899 1280

Intersection (GTB, SVR, 67 83 15
and pearson)

Pop2 GTB 176 176 50
SVR 837 851 662
Pearson 307 289 205

Intersection (GTB, SVR, 82 82 31
and pearson)

The populations employed were Popl, consisting of a panel of 97 sug-
arcane accessions, and Pop2, consisting of 219 progeny genotypes
derived from a cross between the elite clone IACSP953018 (female
parent) and the commercial variety IACSP933046 (male parent)
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regulation of glucose-mediated signaling pathways, embry-
onic development, the negative regulation of DNA-tem-
plated transcription, and the positive regulation of abscisic
acid-activated signaling pathways.

Moreover, by employing the established FS techniques,
we successfully identified potential genotype—phenotype
associations (Supplementary Table S11; Fig. 3¢ and f), as
illustrated in Supplementary Fig. S6. By applying a consen-
sus approach involving the selection of markers identified
by all three evaluated algorithms, we identified a total of
67 and 83 markers associated with the Brix and POL traits,
respectively, in Popl, with 15 overlapping SNPs. In Pop2,
we identified a total of 82 markers associated with both the
Brix and POL phenotypes, with an intersection of 31 SNPs.
While no overlapping SNPs were observed between the
populations, there were evident intersections among the FS
methods for both phenotypic traits (Table 2).

We observed overlaps between findings from FS and
GWAS coupled with LD analysis, as illustrated in Supple-
mentary Fig. S6. For Brix in Popl, we identified two SNPs
by both approaches: one located in scaffold15773 at posi-
tion 73, and one in scaffold112357 at position 1835. In
Pop2, the markers identified by GWAS were also identified
through FS. Remarkably, we further detected two additional
markers situated within the same scaffolds identified by
GWAS but not highlighted by LD tests. We speculate that
these associations went unnoticed previously due to the rig-
orous parameters applied in our investigation. These SNPs
were associated with both Brix and POL traits in Pop1, with
one located in scaffold838968 at position 30 (identified at
position 40 by GWAS) and one in scaffold15773 at position
3490 (reported at positions 73 and 75 by GWAS). These
findings underscore the complementary nature of the meth-
odologies employed in our study, reinforcing the validity of
our results.

From the 238 SNPs identified using FS, we recovered
441 genes (Supplementary Table S7). Notably, when com-
paring these findings with those of GWAS and LD analyses,
we observed that only two genes, namely, gene 32532 and
gene 51857, were shared. Remarkably, these genes both
encode pentatricopeptide repeat-containing proteins and
were found to be associated with a SNP (position 156 on
scaffold5479) identified by both methodologies.

With respect to GO terms, we identified 632 terms asso-
ciated with the analyzed genes (Supplementary Table S8).
The predominant GO term for the cellular component cat-
egory was 'nucleus', which was associated with 168 genes.
For the molecular function category, 'ATP binding' was the
most prominent term and was linked to 89 genes. In terms of
biological processes, 'protein transport' was associated with
30 genes. The second most prevalent biological process was
'regulation of transcription, DNA-templated', which was
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associated with 27 genes. This finding, in conjunction with
the prevalence of ATP binding functions, aligns well with
the findings from GWAS and LD analyses.

Furthermore, our analysis revealed insights into carbohy-
drate-related biological processes. We observed associations
with carbohydrate homeostasis (3 genes), the carbohydrate
metabolic process (2 genes), and carbohydrate transport (2
genes). This underscores the potential of our approach to
identify genes involved in the broader mechanisms of sugar
production and storage in sugarcane.

By conducting an enrichment analysis of these genes,
we identified 34 GO terms enriched for molecular func-
tions and 39 terms for biological processes (Supplementary
Table S10). Among the enriched biological processes, the
negative regulation of the transforming growth factor beta
receptor signaling pathway, glutathione catabolic process,
endoplasmic reticulum membrane fusion, and regulation of
phosphate transport were the most significantly enriched
processes.

Differential expression analyses

To identify DEGs between IN84-58 (the S. spontaneum-
representative genotype) and the hybrids SP80-3280 and
R570, we developed a gene expression model incorporating
development time and genotype as factors. We then com-
pared gene expression levels across genotypes. Our analysis
revealed a total of 19,511 DEGs (8630 upregulated in IN84-
58 and 10,881 upregulated in SP80-3280) and 20,869 DEGs
(9338 upregulated in IN84-58 and 11,531 upregulated in
R570) when comparing IN84-58 with SP80-3280 (Supple-
mentary Table S12) and R570 (Supplementary Table S13),
respectively. Although the differences were not pronounced,
the majority of DEGs were downregulated in IN84-58.

Table 3 Differentially expressed genes (DEGs) identified through
comparisons of development times between the SP80-3280 and R570
genotypes

Condition 1 Condition 2 Num- Upregu- Down-
berof latedin  regulated
DEGs condi- in condi-

tion 1 tion 1

SP80-3280 SP80-3280 985 593 392

(6 months old) (8 months old)

SP80-3280 SP80-3280 465 89 376

(8 months old) (10 months old)

SP80-3280 SP80-3280 4746 1157 3589

(10 months old) (12 months old)

R570 (6 months R570 (8 months 2250 569 1681

old) old)

R570 (8 months  R570 (10 months 2070 122 1948

old) old)

R570 (10 months R570 (12 months 1174 753 421

old) old)

To potentially identify DEGs associated with variations
in sugar accumulation profiles, we conducted a comparative
analysis of the developmental times of the SP80-3280 and
R570 genotypes. Specifically, we examined gene expres-
sion patterns between 6 and 8 months, 8 and 10 months,
and 10 and 12 months for both the SP80-3280 (Supple-
mentary Table S14) and R570 (Supplementary Table S15)
genotypes. This comparison aimed to elucidate alterations
in sugarcane development possibly linked to processes
involved in the interplay between growth and sugar accu-
mulation processes. Our observations revealed distinct pro-
files between the two genotypes. SP80-3280 exhibited more
pronounced differences toward the later stages of develop-
ment (10—12 months), and R570 displayed greater dispari-
ties during the earlier stages (6—8 months) (Table 3). We did
not perform detailed evaluations of each pairwise compari-
son, as the primary objective of this study was to highlight
genes associated with sucrose accumulation regardless of
developmental stage or genotype.

The total numbers of DEGs identified across developmen-
tal time comparisons were 5559 for SP80-3280 and 4936
for R570 (Fig. 4a). To refine these sets, we intersected them
with the DEGs detected in comparisons between IN84-58
and both SP80-3280 and R570. This approach allowed us to
isolate cultivar-specific developmental expression changes
and remove expression patterns common to the wild species,
thereby refining the set toward genes potentially involved in
sugar accumulation. The intersections yielded 2649 DEGs
for SP80-3280 and 2468 for R570 (Fig. 4a).

To further refine the DEG candidates for investigation
alongside the genotype—phenotype associations, we inter-
sected these two sets, resulting in a final set of 853 DEGs
(Supplementary Table S16). This strategy focused on genes
that consistently differed across developmental stages and
distinguished both cultivars from IN84-58. Visualization of
the expression patterns of these genes via a heatmap illus-
trates their contrasting profiles (Fig. 4b).

Our investigation revealed associations between genes
identified as DEGs and findings from the other approaches
employed (GWAS, LD and FS). Specifically, gene 34382,
annotated as an anion transporter, was linked to a SNP
identified through a GWAS for Brix and POL traits in
Popl, located at position 210 on scaffold16204. Addition-
ally, gene 71279 and gene 86546, both associated with the
transcription factors MYB36, MYB87, RAX1, RAX2, and
RAX3, were correlated with LD associations according to
GWAS results at position 53 on scaffold196356. Further-
more, gene 10640 (encoding Flavanone 3-dioxygenase 2,
Gibberellin 3-beta-dioxygenase 1, and Jasmonate-induced
oxygenase), gene 33300 (encoding Flavanone 3-dioxygen-
ase 2 and Jasmonate-induced oxygenase), and gene 52053
(encoding Flavanone 3-dioxygenase 2, Jasmonate-induced
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a. Differential Expression Analyses

R570 (Time Contrasts)

SP80-3280 (Time Contrasts)

2,250 DEGs 2,070 DEGs 1,174 DEGs 985 DEGs 465 DEGs 4,746 DEGs
M M M K o' ”o
Y Y 19,511 DEGs
20,869 DEGs 4,936 DEGs IN84-58 x SP80-3280

5,559 DEGs
IN84-58 x R570) A
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0to1TPM

Fig. 4 a Identification of differentially expressed genes (DEGs)
through intergenotype comparisons. b Heatmap illustrating the
expression profiles of the final set of 853 DEGs selected for analysis.
While differential expression analyses were conducted using raw read

oxygenase, and Leucoanthocyanidin dioxygenase) were
associated with the SNP at position 50 on scaffold108823
according to the FS approach.

In addition, although not directly linked to the same
set of genes, we identified shared annotations between the
DEGs and the genotype—phenotype associations. Notably,
the FAR1 protein exhibited associations with gene 8664,
a DEG identified in our study, and with gene 11104,
gene 4861, gene 5373, gene 6529, and gene 8883, all
of which were linked to a SNP associated with Brix and
POL traits (located at position 111 on scaffold32047)
according to the GWAS. Similarly, the E3 ubiquitin-protein
ligase showed associations with several DEGs, includ-
ing gene 96766, gene 99723, gene 112869, gene 25927,
gene 31683, gene 76160, and gene 99050, all of which
were associated with a SNP detected within the LD set.
Furthermore, beta-glucosidase was associated with various
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counts, expression levels are displayed as transcripts per kilobase mil-
lion (TPM) to facilitate clearer visualization and comparison of gene
expression patterns

DEGs and with gene 50226, which is a gene linked to an
LD result (a SNP at position 300 on scaffold413444).

Furthermore, we identified 48 enriched biological pro-
cess GO terms (Supplementary Table S17). These terms
encompass various biological functions, such as defense
response (e.g., ethylene-activated signaling pathway,
defense response to fungus, response to heat, and response
to jasmonic acid), plant development (e.g., gibberellin bio-
synthetic process and cell wall macromolecule catabolic
process), and regulatory processes (e.g., regulation of
DNA-templated transcription and induction of programmed
cell death). Moreover, we identified 36 distinct enriched
molecular function GO terms. Notably, these terms included
UDP-glucose 4-epimerase activity and 9-cis-epoxycarot-
enoid dioxygenase activity. These molecular functions play
pivotal roles in processes associated with sucrose accumula-
tion and plant metabolism.
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Gene coexpression networks and multiomics
analyses

To comprehensively integrate our findings, we constructed
a gene coexpression network employing RNA-Seq gene
expression estimates and the WGCNA methodology. Utiliz-
ing Pearson correlation coefficients, we computed a gene
expression correlation matrix, subsequently fitting the net-
work into a scale-free topology with a B power of 6, yielding
an R? value of~0.808 and a mean connectivity of~992.082.
By employing hierarchical clustering, we delineated 250
distinct modules within the network (Supplementary Table
S18), ranging from a minimum of 50 genes in group 249
to a maximum of 1345 genes in group 0. The average gene
count per module was approximately 184.40, with a median
of 128.5 and a standard deviation of approximately 177.33.

The main principle underlying a gene co-expression
network is the concept of guilt-by-association (Langfelder
and Horvath 2008), where genes with similar expression
patterns are likely to share biological functions. Accord-
ingly, each module defined by WGCNA represents a set of
genes that not only have co-expressed profiles but are also
functionally related. Identifying modules that are simul-
taneously associated with genotype—phenotype relation-
ships and DEGs is therefore a powerful strategy. It allows
the definition of a more cohesive and reliable set of genes
potentially involved in shaping the phenotype, while also
leveraging network analyses to prioritize key genes based
on their contribution to the overall co-expression structure
of the module.

In our investigation, each network group was analyzed
for the presence of genes associated with GWAS/LD, FS,
or DEGs (Supplementary Table S19). Our findings revealed
that 64 groups harbored at least one gene associated with
GWAS/LD, 155 groups harbored at least one gene associ-
ated with FS, and 146 groups harbored at least one DEG.
Notably, 32 groups were concurrently associated with all
three approaches. By focusing on these 32 groups and
computing the median number of genes per group associ-
ated with GWAS/LD, FS, and DEGs, we identified 1, 3,
and 8 genes, respectively. We identified and focused our
subsequent analysis on groups meeting or surpassing these
thresholds, leading to the selection of 8 groups (labeled 0,
2,9,12,15, 18, 36, and 63) for in-depth investigation (4939
genes).

We performed a GO enrichment evaluation of each of
these groups (Supplementary Table S20). Only group 0
presented one biological process term (photosynthesis,
light harvesting in photosystem (I) enriched according
to the established criteria (an FDR-adjusted p value cut-
off of 0.05). In relation to molecular function GO terms,
group 0 presented three enriched terms (metal ion binding,

DNA-binding transcription factor activity, and chlorophyll
binding), and group 12 presented two enriched terms (narin-
genin 3-dioxygenase activity and ATP binding).

Using less stringent criteria (nonadjusted p value of
0.01), we identified additional significant terms associ-
ated with sucrose metabolism and related processes. In
group 0, the sucrose biosynthetic process (p=0.00765)
and sucrose-phosphate synthase activity (p=0.00961)
were enriched. In group 12, terms related to the response
to sucrose (p=0.00072) and sucrose transport (p=0.0045)
were significantly enriched. Similarly, in group 15, terms
related to carbohydrate transport (p=0.00436), carbohy-
drate binding (p=0.00174), and sucrose alpha-glucosidase
activity (p=0.0094) were significantly enriched. In group
18, sucrose transport (p=0.00165) and sucrose alpha-glu-
cosidase activity (p=0.00607) were enriched. Addition-
ally, in group 36, sucrose 1F-fructosyltransferase activity
(»p=0.00041) was enriched, and in group 63, carbohydrate
metabolic processes (p=0.00258) were enriched.

These findings suggest that, in comparison to other net-
work modules, individual groups within the identified clus-
ters do not exhibit distinct or pronounced specific roles.
This lack of specificity arises from the broad impact of their
functions across plant metabolism, as many processes per-
formed by these groups are also integral to other modules.
However, when all genes within these groups were aggre-
gated and a comprehensive enrichment analysis was con-
ducted (Supplementary Table S21), the enrichment of more
biological processes emerged. These enriched processes
included the regulation of DN A-templated transcription and
positive regulation of the salicylic acid-mediated signaling
pathway. These findings imply that the collective action of
genes within these groups may exert influence over a range
of processes executed by the selected network clusters.

Finally, by leveraging the genes identified within these 8
groups and employing the HRR approach, we constructed
three distinct gene coexpression networks: (i) a network tai-
lored to the expression data of the hybrid R570 (Fig. 5a);
(i1) a network for the hybrid SP80-3280 (Fig. 5b); and (iii)
a network specific to the IN84-58 genotype (Fig. 5¢). Con-
sidering a total of 4939 genes, network (i) comprised 2051
genes and 5078 edges (with 55 genes having more than 25
connections), network (ii) comprised 2370 genes and 5467
edges (with 53 genes having more than 25 connections), and
network (iii) comprised 2791 genes and 7963 edges (with
112 genes having more than 25 connections). The reduction
in gene count is attributed to the HRR methodology, which
selectively retains the most robust associations.

This disparity underscores the distinct structural char-
acteristics of the networks, with network (iii) exhibiting a
more condensed architecture than networks (i) and (ii). This
discrepancy potentially signifies the distinct manners in
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Fig. 5 Specific gene coexpression networks modeled using subgroups
selected from the original network constructed with the entire set of
genes, separated according to (a) sugarcane hybrid R70, (b) hybrid

which the biological functions correlated with these genes
are coordinated in each genotype (Fig. 5d), including car-
bohydrate metabolic processes, carbohydrate transport, and
regulation of carbohydrate metabolism. These processes
hold significant relevance in the investigation of sucrose
accumulation in sugarcane.

Furthermore, given the broad spectrum of biological
processes associated with these genes (Fig. 5d) and their
potential relevance to sugar accumulation in sugarcane, we
examined the gene interactions within each network using
centrality measures to pinpoint key genes orchestrating
these mechanisms. For each network, we assessed centrality
measures, including degree, hub score, and betweenness. A
comparison of the network for R570 (Supplementary Table
S22), the network for SP80-3280 (Supplementary Table
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SP80-3280, and (c) IN84-58, a representative genotype of S. sponta-
neum. d Gene Ontology (GO) categories associated with biological
processes within these selected groups

S23), and the network for IN84-58 (Supplementary Table
S24) revealed notable disparities in the distribution of gene
connections and the identification of pivotal genes driving
network structure (Table 4). This observation underscores
the distinct regulatory pathways that may lead to the activa-
tion of common biological processes in different genotypes.

Discussion

Strategies for dealing with sugarcane genetic
complexity

In our study, we employed various innovative strategies to
overcome the genomic intricacies of sugarcane in order to
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Table 4 Centrality evaluations for  Network Statistic Degree Kleinberg’s Hub Betweenness
specific gene coexpression net- Score
works modeled using the highest R570 Minimum 1 0 0
reciprocal rank (HRR) approach .
and the genotypes R570, SP80- Maximym 61 1 ~176,011.76
3280, and IN84-58 Mean 4.061 0.0255393 5349.1
Median 2 0.0043837 395.2
Standard 6.063621 0.06725531 14,058.07
deviation
Top 3 Nonannotated gene Bifunctional aspar-  Nonannotated gene
(value of 61); bifunc-  tokinase/homoserine (value of~176,011.76);
tional aspartokinase/ dehydrogenase 1 nonannotated gene
homoserine dehydro-  (value of 1); GEL (value of~161,517.31);
genase 1 (value of 50); complex sub- and protein transla-
and zinc finger FYVE  unit OPTI (value tion factor SUI1(value
domain-containing 0f~0.97); and of~145,158.23)
protein 26 (value of 50) nonannotated gene
(value of~0.95)
SP80-3280 Minimum 1 0 0
Maximum 62 1 ~184,912.91
Mean 4.614 0.062281 4,841.1
Median 2 0.022610 526.8
Standard 6.294851 0.09964838 12,779.9
deviation
Top 3 Large ribosomal Senescence Transcription factor
subunit protein eL18 associated gene 20 ~ BTF3/basic transcrip-
(value of 62); tran- (value of 1); Large  tion factor 3 (value
scription factor BTF3/  ribosomal subunit 0f~184,912.91); large
basic transcription fac- protein eL18 (value ribosomal subunit
tor 3 (value of 55); and 0f~0.99); and protein eL 18 (value
Calcium/calmodulin-  nonannotated gene  of~166,457.51); and Cal-
regulated receptor-like  (value of~0.94) cium/calmodulin-regu-
kinase 1 (value of 46) lated receptor-like kinase
1 (value of~113,026.88)
IN84-58 Minimum 1 0 0
Maximum 51 1 ~171,446.33
Mean 5.706 0.060052 5033.2
Median 3 0.024053 644.1
Standard 7.503239 0.09622554 11,460.91
deviation
Top 3 Adagio protein (value ~ Acyl-coenzyme Kinetochore-associated

of 51); glutathione

S-transferase (value of
49); and nonannotated

gene (value of 48)

A thioesterase 13
(value of 1); cinnam-
oyl-CoA reductase 1
(value 0f~0.97); and
auxin response fac-
tor (value of~0.90)

protein KNL-2 (value
of~171,446.33);
formin-like protein
(value 0f~90,953.78);
and protein Weak
Chloroplast Movement
Under Blue Light (value
of~85,236.03)

investigate the molecular basis of the most relevant trait of
this crop. One of the primary obstacles encountered when
investigating sugarcane polymorphisms are aneuploidies,
which manifest as variable numbers of alleles per chromo-
some and distinct genomic regions harboring different allele
copy numbers within the same chromosome (Zhang et al.
2018; Aono et al. 2021).

Traditionally, addressing such complexity has involved
either simplifying SNP markers by assuming fixed ploidy
(Fickett et al. 2019; Yang et al. 2020; Pimenta et al. 2021;

Wang et al. 2023a; Zhang et al. 2023) or estimating specific
ploidy levels for individual markers (Balsalobre et al. 2017;
Batista et al. 2022). However, in our study, rather than disre-
garding allele variations, we opted to represent SNPs not as
dosages but as allele proportions. This approach allowed us
to retain a significant number of markers that would other-
wise have been discarded due to the low statistical power of
the dosage estimation process (Aono et al. 2020).

In recent years, there have been notable advancements
in sugarcane genomics, with the emergence of several
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genomic references, including those tailored for allele
specificity (Zhang et al. 2018; Bao et al. 2024; Healey et
al. 2024). Although these resources have significantly
enhanced sugarcane genomic studies, accurately aligning
short sequencing reads to these references and inferring
correct allele dosages remains a challenge. The sugarcane
genome is characterized by a high degree of duplication,
leading to a substantial proportion of reads being mapped
in duplicate across its genome. The conventional approach
to address this issue involves excluding duplicate mapped
reads, which, unfortunately, results in a significant reduc-
tion in the number of generated SNPs (Gardiner et al. 2016).

However, Aono et al. (2020) demonstrated that this
reduction can be circumvented by utilizing a sugarcane
methyl-filtered reference (Grativol et al. 2014), which is
compatible with the GBS approach employed. Thus, we
chose to utilize this reference for SNP calling, thereby over-
coming the reduction in SNP numbers observed with other
genomic references. Furthermore, to indirectly associate
our findings with the genomic references of S. officinarum
and S. spontaneum, we conducted comparative alignments
between RNA-Seq-based assembled genes and the methyl-
filtered genome scaffolds. By employing this strategy, we
not only increased the number of markers but also enhanced
the likelihood of identifying associations with QTL regions.

Our approach to addressing the complexity of sugarcane
genetics diverged from traditional QTL mapping methods
based on linkage analyses. Instead, we employed marker—
trait association tests in Pop2. The current methodologies
available for handling polyploid species via linkage analysis
do not adequately address the nuances of sugarcane genetics
(Mollinari et al. 2020). The construction of linkage maps
in sugarcane typically yields numerous unsaturated link-
age groups characterized by substantial intermarker dis-
tances (Costa et al. 2016; Balsalobre et al. 2017; Yang et
al. 2018; You et al. 2019; Wang et al. 2022b, 2023a). As a
consequence, many markers are excluded from the analy-
sis, thereby limiting the pool of SNPs available for QTL
identification. Moreover, we leveraged machine learn-
ing approaches to enhance the reliability of our findings.
Through the integration of data from two distinct popula-
tions and the utilization of diverse methodological strate-
gies, we strengthened the robustness of our inferences.

The exploration of genotype—phenotype relationships
in sugarcane, in conjunction with other omics approaches,
is still in its early stages. Only a limited number of stud-
ies have investigated these associations within a multiomic
framework (Li et al. 2023; Pimenta et al. 2023). We believe
that integrating these methodologies has significantly
improved our capacity to uncover the biological mecha-
nisms influenced by genes located near SNPs associated
with sucrose phenotypic variation in sugarcane. Although
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the fundamental mechanisms of sucrose metabolism are
widely acknowledged (Sachdeva et al. 2011; Datir and Joshi
2016), the factors contributing to enhanced sucrose accu-
mulation remain incompletely understood. Consequently,
integrating the findings from various omics analyses, partic-
ularly through coexpression analysis, has provided a com-
prehensive and valuable dataset.

Novel insights into sugarcane sucrose accumulation

Sugarcane is the crop with the greatest capacity for sucrose
storage (Qin et al. 2021). Consequently, breeding programs
for sugarcane have prioritized the development of variet-
ies with optimized sucrose storage capabilities. Variations
in sucrose content within sugarcane varieties are attributed
to a complex interplay of polygenic effects, diverse biologi-
cal processes and environmental effects (Khan et al. 2023).
Previous GWASSs have elucidated the association of sucrose
accumulation with polymorphisms located near different
genes. These genes encompass annotations mostly related
to plant growth, development (Racedo et al. 2016; Fickett
et al. 2019; Wang et al. 2023b), and responses to both biotic
and abiotic stresses (Wang et al. 2023b; Zhang et al. 2023).
In our GWAS analysis, although we found noteworthy
similarities with previous studies, particularly regarding the
involvement of phosphatases, kinases, and ubiquitin-like
proteins (Fickett et al. 2019; Wang et al. 2023b; Zhang et al.
2023), we were able to expand upon these findings.

The involvement of sucrose signaling pathways in reg-
ulating various growth and developmental processes is
widely recognized in the literature (Papini-Terzi et al. 2009;
Chen et al. 2019). Moreover, the intricate interplay between
sucrose and plant hormones, such as abscisic acid, salicylic
acid, jasmonic acid, and ethylene, underscores the multifac-
eted nature of the association between sucrose and stress
responses. Sucrose serves as an energy source to cope with
stress, and at different levels, it plays pivotal roles in regu-
lating the expression of stress-responsive genes (Khan et al.
2023).

Our investigation, supported by the literature, under-
scores the synergistic mechanism wherein sucrose levels
impact stress response and growth dynamics. Notably, for
Popl, we identified GWAS-associated SNPs surrounding
genes annotated for anion transporters, FAR1 proteins, and
serine/threonine-protein kinases. These genes play pivotal
roles in balancing growth and stress responses (Zheng et al.
2010; Ramesh et al. 2015; Liu et al. 2019; Jiang et al. 2022)
and have potential implications for carbohydrate synthesis
(Ma et al. 2017; Luo et al. 2020; Liu et al. 2022). Further-
more, our GWAS of Pop2 revealed a gene annotated for a
pentatricopeptide repeat-containing (PPR) protein, which
has also been implicated in both plant development and
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stress response pathways (Liu et al. 2017; Pimenta et al.
2023). Moreover, PPR proteins are implicated in the modu-
lation of gene expression in organelles and play crucial
roles in plant embryogenesis (Cushing et al. 2005; Yin et al.
2013), potentially accounting for the observed enrichment
of GO terms associated with embryonic development.

Although the use of the sugarcane methyl-filtered
genome reference enabled us to detect a significantly greater
number of SNPs, the assessment of LD decay patterns was
hindered by the fragmented nature of this assembly. Never-
theless, broadening the analysis to include LD associations
with GWAS-identified markers across the entire SNP set,
irrespective of their scaffold location, allowed us to retrieve
a more extensive set of genes, thereby facilitating more
comprehensive inferences.

Consistent with our GWAS findings, we also identified
additional genes associated with stress responses in the LD
associations. These include E3 ubiquitin-protein ligase (Shu
and Yang 2017), calcineurin B-like protein 10 (Su et al.
2020), RING finger protein 141 (Han et al. 2022), abscisic
acid 8'-hydroxylase 2 (Umezawa et al. 2006), DEAD-box
ATP-dependent RNA helicase 25 (Kim et al. 2008), and
peroxisomal biogenesis factor 3 (Hu et al. 2012). Notably,
several stress-responsive genes are associated with sucrose
accumulation, potentially leading to changes in carbon allo-
cation and photosynthetic activities (Verma et al. 2019; Qin
et al. 2021).

Additionally, through LD expansion, we successfully
identified key players involved in sucrose synthesis and
accumulation. Our analysis revealed genes associated with
crucial processes, including bZIP transcription factor, beta-
glucosidase, and thioredoxin-like protein genes. The bZIP
transcription factor has previously been recognized as a
negative regulator of cold and drought responses in rice (Liu
et al. 2012). It also plays a significant role in various car-
bohydrate-associated processes, highlighting the intricate
relationship between stress responses and growth dynamics.
Moreover, in addition to its involvement in starch regula-
tion in rice (Wang et al. 2013a), bZIP has been implicated
in sucrose synthesis, transport, and metabolism (Ma et al.
2019; Stein and Granot 2019), and its role has already been
investigated in sugarcane (Wang et al. 2022a).

Furthermore, the beta-glucosidase protein has been
linked to sucrose synthesis and accumulation (Khan et al.
2023), potentially exerting a negative influence on sucrose
accumulation (Qin et al. 2021). Last, thioredoxin (TRX)
proteins are associated with trehalose synthesis (Khan et al.
2023), which has been shown to impact sucrose metabo-
lism (De Oliveira et al. 2022). TRX proteins play a pivotal
role in modulating chloroplast functions to maintain equi-
librium in photosynthetic reactions through redox regula-
tion (Nikkanen and Rintaméki 2019). Consequently, these

proteins are intricately linked to carbohydrate metabolism
and responses to oxidative stress. Moreover, TRX has previ-
ously been identified as a regulator of carbon—nitrogen par-
titioning in tobacco (Ancin et al. 2021). Overexpression of
TRX leads to the accumulation of nitrogen-related metabo-
lites while decreasing carbon-related metabolites.

Even with the LD approach employed alongside GWAS
results, we did not identify a significant number of genes
directly regulating sucrose metabolism, such as sucrose-
synthesizing and hydrolyzing enzymes (Datir and Joshi
2016). The lack of further associations related to sucrose
metabolism, including sucrose synthase, sucrose phosphate
synthase, and invertases, may be attributed to various fac-
tors. First, the genes identified through GWAS and LD anal-
yses might exert an indirect influence on these processes,
triggering mechanisms that ultimately impact the efficiency
of sucrose accumulation through pathways yet to be eluci-
dated, thus warranting further investigation. This is particu-
larly noteworthy in light of previous unsuccessful endeavors
to manipulate genes directly linked to sucrose transport and
metabolism (Qin et al. 2021).

Moreover, the reduced number of individuals employed
in Popl for GWAS might have influenced our findings.
Although the sucrose content profiles of the selected indi-
viduals exhibited high variability, as evidenced by the high
heritability estimates of 0.89 and 0.9 for Brix and POL,
respectively, increasing the number of genotypes could
enhance the observed results. This expansion could facili-
tate the identification of additional associations, potentially
capturing effects with reduced impact on phenotypic vari-
ance and lower allele frequencies (Korte and Farlow 2013).

Additionally, the use of GBS has limited our ability to
sample various genomic regions for evaluation. Although
GBS has the potential to identify a significant number of
markers associated with QTLs (Elshire et al. 2011), its cov-
erage of the entire genome is incomplete. Coupled with
our employment of a fragmented genomic reference, sev-
eral regions of the sugarcane genome remained unassessed.
Therefore, the utilization of scalable and high-quality long-
read sequencing holds great promise for advancing sugar-
cane genomics, particularly for enabling proper application
of the current allele-specific genomic references (Zhang et
al. 2018; Bao et al. 2024; Healey et al. 2024).

When evaluating the enriched GO terms associated with
the GWAS and LD results, it was possible to observe molec-
ular functions and biological processes primarily pertaining
to regulatory activities, such as kinase activity, intracellular
transport, and functions related to RNA and DNA process-
ing. Specifically, certain terms are associated with sugar
metabolism and the hormone abscisic acid (ABA), which
plays a pivotal role in plant metabolism, particularly in
response to abiotic stress. Previous investigations conducted
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on sugarcane have indicated a potential overlap between
sugar and ABA-related processes. This overlap arises from
the capacity of ABA to regulate a set of genes associated
with sucrose metabolism (Papini-Terzi et al. 2009).

In addition to the findings obtained from GWAS, we
employed machine learning approaches, a strategy that
has proven effective in uncovering genotype—phenotype
associations (Aono et al. 2020; Pimenta et al. 2021, 2023).
Through this integrative approach, we present a comprehen-
sive analysis that extends beyond conventional GWAS find-
ings. This enables us to uncover a wider set of metabolic
pathways that may be associated with genes implicated in
sucrose accumulation.

Our analysis revealed an expanded repertoire of enriched
GO terms in the FS results, reflecting a diverse range of
regulatory and nonspecific processes. These include post-
translational modifications in proteins, DNA and organelle
processing, embryonic development, transport, and nutrient
responses. Notably, processes related to growth, hormone
signaling, stress responses, and lipid metabolism were also
indicated. To date, there has been no direct association
between these processes and sugar metabolism documented
in the literature. However, it is plausible that, similar to the
mechanism associated with ABA, these processes may exert
an indirect influence on this process.

When comparing different genotypes, the observed
DEGs were implicated in a broad array of biological pro-
cesses. Thus, when comparing the IN84-58 S. spontaneum
genotype with the SP80-3280 and R570 hybrid genotypes,
subset selection was necessary to identify potential associa-
tions with sucrose accumulation profiles. Although sucrose
synthesis primarily occurs in sugarcane leaves, sucrose is
transported through the phloem to culms, where it is uti-
lized for plant growth and development or is stored (Mason
et al. 2020). When the plant reaches maturation, sugars are
directed toward storage, accompanied by the activation of
specific mechanisms, resulting in changes in accumulation
efficiency within the culms (Wang et al. 2013b).

Thus, we selected DEGs between S. spontaneum and the
hybrids only if they were also detected during contrasting
developmental stages. This decision stems from the fact that
the gene expression patterns in sugarcane tissues are sig-
nificantly influenced by the developmental stage (Wang et
al. 2013b; Chen et al. 2019). In addition to developmental
differences, there are also genotype-specific DEGs (Papini-
Terzi et al. 2009). As our focus did not include the specific
mechanisms of R570 and SP80-3280, we opted for an inter-
section between the results obtained from both compari-
sons, thereby enhancing the reliability of associating such
expression changes with sucrose accumulation.

The intersection of the DEG sets led to the identification
of 853 genes, revealing intriguing insights. Notably, these
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genes are associated with biological processes that overlap
with those identified through GWAS and FS-selected mark-
ers. Regulatory mechanisms involving protein modifica-
tions, transcription factors, responses to oxidative stress,
anion transport, and DNA/RNA processing were indicated.
Additionally, these genes play roles in the response to both
biotic and abiotic stresses, with implications for ethylene
and gibberellin regulation. Furthermore, associations with
sugar catabolism were discerned. This convergence of
mechanisms across multiple omics layers underscores the
interconnectedness of biological processes and the poten-
tial for integrated analyses to increase our comprehension
of complex traits.

As anticipated, our analysis revealed genes that exhibited
both differential expression and associations with pheno-
type—genotype relationships. Among these genes, the only
gene that overlapped with GWAS findings was annotated as
an anion transporter, reinforcing the potential involvement
of'its activity in sucrose accumulation. With respect to genes
associated with FS-selected markers, we identified one gene
encoding the transcription factor MYB36, which has been
previously implicated in plant growth and stress response
(Monje-Rueda et al. 2023). Additionally, we detected a gene
annotated for jasmonate-induced oxygenase, known for its
role in suppressing plant immunity (Caarls et al. 2017),
providing further insights into the molecular mechanisms
underlying disease susceptibility in high Brix genotypes.

Additionally, we also found common annotations between
the set of DEGs and the GWAS results. Although they do
not correspond to the same genes, it is clear that the same
biological mechanisms are associated with phenotypic vari-
ability favoring sucrose accumulation and differential gene
expression in different sugar content genotypes. The regula-
tory roles of the FARI protein, E3 ubiquitin-protein ligase,
and beta-glucosidase warrant further attention because they
are implicated in carbohydrate synthesis and potentially
influence the balance between sucrose accumulation and the
defense response (Ma et al. 2017; Shu and Yang 2017; Liu
et al. 2019; Qin et al. 2021; Khan et al. 2023).

While only a limited number of genes were consistently
identified across all approaches and datasets, there is a clear
consensus emerging regarding the biological processes and
mechanisms influenced by these selected genes. To con-
solidate our findings, we constructed a gene coexpression
network. Specifically, our analysis enabled us to delineate
eight distinct gene groups within the network comprising
DEGs as well as genes exhibiting significant associations
with SNPs linked to divergent sucrose accumulation levels,
as identified through GWAS and FS.

Based on the premise that the selected genes are corre-
lated with sucrose accumulation, we hypothesize that the
most significant differences in the impact of these genes on
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sucrose accumulation are attributable to their interactions.
Therefore, investigating these interactions might provide
valuable insights into key genes that could serve as focal
points for more extensive investigations. Thus, we con-
structed specific gene coexpression networks, differentiat-
ing between the gene expression profiles of hybrids and the
S. spontaneum genotype.

The network constructed for S. spontaneum gene expres-
sion exhibited approximately 50% more connections than
the hybrid genotype networks. This suggests that a greater
number of gene interactions are necessary for S. spontaneum
to perform the same biological processes as the hybrids. We
believe that the simpler network structure observed in the
hybrids signifies more efficient regulation of the processes
related to sucrose accumulation through gene interactions.
However, external factors, such as stressors, can easily
influence gene interactions in the hybrid networks. In con-
trast, gene communication in S. spontaneum is less suscep-
tible to disruption, consistent with the inherent resistance of
this species to different types of biotic and abiotic stresses.

While conducting a comprehensive analysis of all net-
work components could provide valuable insights into
sucrose accumulation, our study prioritized key network
elements. We achieved this by evaluating specific centrality
measures, aiming to correlate node influence with the bio-
logical implications of gene roles, thus enabling meaningful
inferences (Wang et al. 2022c). Furthermore, by compar-
ing genes with high centrality measures across the networks
modeled, we can infer differences in the regulatory mecha-
nisms governed by the gene sets within these networks.

Starting with evaluations of degree, which measures the
importance of a gene based on the number of connections
it possesses, and Kleinberg’s hub score, which incorporates
gene proximity to other network nodes into the assessment,
it becomes evident that genes exhibiting increased centrali-
ties in the hybrid networks are more closely associated with
the regulation of fundamental cellular processes crucial
for plant growth, including amino acid biosynthesis, sig-
nal transduction, gene expression regulation, and protein
synthesis. Conversely, in the S. spontaneum network, these
genes appear to be involved in a broader array of mecha-
nisms, potentially including roles in stress-response sig-
naling pathways, as indicated by glutathione S-transferase
(Vaish et al. 2020), adagio protein (Bulgakov et al. 2017),
auxin response factor (Li et al. 2016), acyl-coenzyme A
thioesterase (Kalinger et al. 2020), and cinnamoyl-CoA
reductase 1 (Park et al. 2017). These findings support our
observation regarding the association of this network archi-
tecture with the effective response of S. spontaneum to vari-
ous types of stress.

Betweenness centrality exhibited an opposite pattern.
In the networks modeled for the hybrids, genes with high

betweenness were mostly associated with protein synthesis
and gene expression regulation, including the protein trans-
lation factor SUII (Li et al. 2022), the transcription factor
BTF3 (Pruthvi et al. 2017), and the calcium/calmodulin-reg-
ulated receptor-like kinase 1 (Yuan et al. 2022). In contrast,
the network modeled for S. spontaneum had genes with high
betweenness primarily associated with cellular structure and
division, such as the kinetochore-associated protein KNL-2
(Zuo et al. 2022) and formin-like protein (Kollarova et al.
2021). A high betweenness measure indicates that a gene
permeates many gene associations, potentially facilitating
the flow of interactions within the network. This suggests
that in S. spontaneum, gene associations favor the main-
tenance of cellular architecture integrity. Conversely, in
hybrid networks, these genes are more involved in signal
transduction.

Remarkably, the observed network dynamics suggest
that gene communication within the gene set associated
with S. spontaneum is predominantly associated with plant
immunity. In contrast, in the hybrid networks, we observed
indications of a more nuanced interplay, potentially influ-
enced by external factors. These findings highlight the intri-
cate regulatory networks underlying sucrose accumulation,
revealing distinct regulatory strategies adopted by different
genotypes in response to environmental stimuli.

Conclusion

Sugar production is the primary focus of sugarcane breed-
ing, and this process is governed by complex interactions
among polygenic effects and diverse biological processes.
Unraveling the genotype—phenotype associations that signif-
icantly increases sucrose content presents a great challenge
but holds immense value for sugarcane breeding. Despite
these efforts, the development of varieties optimized for this
trait remains limited. Genetic modifications targeting genes
specific to sucrose metabolism have not yielded the desired
outcomes. Thus, comprehensive investigations spanning a
broad set of mechanisms are essential for identifying prom-
ising targets.

In our study, we adopted an integrative approach to exam-
ine sugarcane genetics. By combining GWAS, machine
learning algorithms, and differential expression analyses, we
identified key factors involved in sucrose accumulation that
warrant attention. Notably, a jasmonate-induced oxygenase
was identified as a DEG associated with significant findings
from our GWAS. The mutation observed near this gene,
known for its role in suppressing plant immunity, appears
to favor sugar accumulation. Additionally, the role of the
beta-glucosidase protein was noteworthy, with annotations
found in genes proximal to GWAS hits and DEGs. Given its
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negative impact on sucrose accumulation, this enzyme is a
promising target for biotechnological investigations.

Moreover, we integrated all genes associated with our
findings across analyses and datasets into a comprehen-
sive gene coexpression network, providing a foundation
for future genetic studies. Contrasts between specific gene
coexpression networks constructed for S. spontaneum and
sugarcane hybrids revealed differences in gene associations
linked to sugar accumulation. We hypothesize that the sim-
pler network structure observed in hybrids may indicate a
more efficient process, albeit potentially more susceptible to
external influences such as stressors. Conversely, the more
cohesive network observed in S. spontaneum may be associ-
ated with enhanced plant immunity.
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