
Plant Molecular Biology         (2025) 115:129 
https://doi.org/10.1007/s11103-025-01652-z

	
 Anete Pereira de Souza
anete@unicamp.br

1	 Center for Molecular Biology and Genetic Engineering 
(CBMEG), University of Campinas (UNICAMP), Campinas, 
SP, Brazil

2	 Department of Genetics, Luiz de Queiroz College of 
Agriculture (ESALQ), University of São Paulo (USP), 
Piracicaba, SP, Brazil

3	 Advanced Center of Sugarcane Research and Development, 
Agronomic Institute of Campinas (IAC), Ribeirão Preto, SP, 
Brazil

4	 Faculty of Agricultural and Veterinary Sciences (FCAV), 
Universidade Estadual Paulista (UNESP), Jaboticabal, SP, 
Brazil

5	 Plant Biotechnology Laboratory, Centre for Agricultural 
Sciences, Federal University of São Carlos (CCA-UFSCar), 
Araras, SP, Brazil

6	 Instituto de Ciência e Tecnologia (ICT), Universidade 
Federal de São Paulo (UNIFESP), São José dos Campos, SP, 
Brazil

7	 Department of Plant Biology, Institute of Biology, University 
of Campinas (UNICAMP), Campinas, SP, Brazil

Abstract
Sugarcane holds significant economic importance in sugar and biofuel production. Despite extensive research, under-
standing highly quantitative traits remains challenging due to its complex genomic landscape. We conducted a multiomic 
investigation to elucidate the genetic architecture and molecular mechanisms governing sugarcane sucrose accumulation. 
Using a biparental cross and a genetically diverse collection of sugarcane genotypes, we evaluated the soluble solids (Brix) 
and sucrose content (POL) across various years. Both populations were genotyped using a genotyping-by-sequencing 
approach. Genotype‒phenotype associations were established using a combination of traditional linear mixed-effect mod-
els and machine learning algorithms. Furthermore, we conducted an RNA sequencing experiment on genotypes exhibiting 
distinct Brix and POL profiles across different developmental stages. Differentially expressed genes (DEGs) potentially 
associated with variations in sucrose accumulation were identified. All findings were integrated through gene coexpression 
network analyses. Strong correlations among the evaluated characteristics were observed, with estimates of modest to high 
heritabilities. By leveraging a broad set of single-nucleotide polymorphisms (SNPs) identified for both populations, we 
identified several SNPs potentially linked to phenotypic variance. Our examination of genes close to these markers facili-
tated the association of such SNPs with DEGs for contrasting sucrose levels. Through the integration of these results with 
a gene coexpression network, we delineated a set of genes potentially involved in the regulatory mechanisms of sucrose 
accumulation. Our findings constitute a significant resource for biotechnology and plant breeding initiatives. Furthermore, 
our genotype‒phenotype association models hold promise for application in genomic selection, offering valuable insights 
into the molecular underpinnings governing sucrose accumulation in sugarcane.

Key message
Our multiomic investigation of sugarcane reveals significant genetic markers and regulatory genes linked to sucrose accu-
mulation, providing valuable resources for biotechnology and plant breeding to enhance sugar production.

Keywords  Gene coexpression networks · GWAS · Genotyping-by-sequencing · Machine learning · RNA-Seq · 
Saccharum spp.
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Introduction

Sugarcane holds significant importance in the global 
economy, particularly in terms of biofuel and sugar pro-
duction (FAOSTAT 2023). Due to its remarkable capacity 
for sugar storage, sugarcane is the primary global source 
of sugar (Mirajkar et al. 2019). With the continual rise in 
sugar demand, there is a pressing need for the development 
of more productive varieties. Central to sugarcane breeding 
programs is the maximization of yield, measured in terms of 
sugar production per area (Cursi et al. 2022). This optimiza-
tion encompasses resistance to abiotic and biotic stressors 
and several secondary traits, facilitating sugarcane cultiva-
tion across diverse environmental conditions.

Despite notable advancements in sugarcane varieties, the 
process of cultivar generation through breeding can last up 
to 12 years (De Morais et al. 2015). Sugarcane breeding typ-
ically involves three main stages: (i) creating genetic vari-
ability through controlled crosses; (ii) preliminary selection 
across numerous experiments with limited replicates; and 
(iii) advanced selection, with an adequate number of repli-
cates and environments to enable precise selection (Gazaffi 
et al. 2015). Given the extensive time and costs associated 
with field evaluations, the integration of molecular-assisted 
technologies holds promise for accelerating breeding prog-
ress and increasing genetic gains, particularly regarding 
sucrose content, an aspect where sugarcane breeding prog-
ress remains slow (Chen et al. 2019). However, the intri-
cate genomic complexity of sugarcane poses a challenge 
in understanding the genetic architecture underlying sugar 
accumulation and consequently hinders the development of 
effective molecular breeding efforts.

Modern sugarcane cultivars are derived from crosses 
between Saccharum officinarum (2n = 8x = 80, x = 10) 
(D'Hont et al. 1998) and Saccharum spontaneum (from 
2n = 5x = 40 to 16x = 128, x = 8) (Panje and Babu 1960), fol-
lowed by several backcrosses with S. officinarum to increase 
sucrose content (Cuadrado et al. 2004). While S. sponta-
neum, a wild sugarcane species, exhibits high stress resis-
tance, it has a low sucrose content and abundant biomass 
(Mirajkar et al. 2019). Wild sugarcane can store approxi-
mately 2% of its fresh weight as sucrose, whereas the theo-
retical storage capacity of cultivated sugarcane can reach 
27% (Bull and Glasziou 1963). Understanding the genetic 
mechanisms associated with these contrasting sugar accu-
mulation profiles is challenging because of factors such as 
varying ploidy levels, frequent aneuploidies, and substantial 
cytogenetic complexity (Aono et al. 2021).

The quantitative trait loci (QTLs) associated with sugar-
related traits exhibit a highly complex genetic architecture 
(Ming et al. 2002; Costa et al. 2016; Balsalobre et al. 2017), 
and there is limited information regarding the extent, effect, 

and genomic regions associated with phenotypic variability. 
This polygenic action encompasses diverse metabolic path-
ways and biological processes, particularly during the matu-
ration phase, which dictates sucrose accumulation in mature 
sugarcane (Datir and Joshi 2016). Sucrose synthesis occurs 
primarily in sugarcane leaves. The sucrose is then trans-
ported through the phloem and stored in culms (Sachdeva 
et al. 2011). Its metabolism is regulated by diverse sucrose-
synthesizing and hydrolyzing enzymes, including sucrose 
synthase, sucrose phosphate synthase, and invertases (Datir 
and Joshi 2016).

In addition to sucrose metabolism, other metabolic path-
ways, such as photosynthesis and carbon partitioning, influ-
ence sucrose accumulation rates in sugarcane (Sachdeva et 
al. 2011). Genes associated with stress responses also play 
significant roles in the efficiency of this mechanism, with 
notable implications for the regulatory actions of jasmonic 
acid, abscisic acid, ethylene, and gibberellin (Papini-Terzi 
et al. 2009). Despite extensive research on the complex 
mechanisms underlying sucrose accumulation, the molecu-
lar basis for maintaining high sucrose levels in sugarcane 
culms remains poorly understood, with many genes, path-
ways, and regulatory networks still to be elucidated (Wang 
et al. 2019; Hosaka et al. 2021; Martins et al. 2024).

Therefore, integrative methodologies hold great prom-
ise for unraveling the mechanisms underlying sucrose 
accumulation and for highlighting key regulatory elements 
involved in this process. Beyond the use of non-conven-
tional approaches in quantitative genetics and statistical 
genomics to address the genetic complexity of sugarcane 
and facilitate genotype–phenotype association studies, the 
functional investigation of genes and biological processes 
linked to these associations is crucial for advancing biotech-
nology and molecular breeding. This is particularly relevant 
given that direct modification of genes involved in sucrose 
metabolism and transport has so far not yielded satisfactory 
outcomes (Qin et al. 2021).

Our study investigated the complex genetic architecture 
underlying sucrose accumulation in sugarcane. By integrat-
ing diverse omics datasets from multiple genotypes, we not 
only identified potential genotype–phenotype associations 
but also examined the molecular mechanisms underly-
ing genes located in these regions. To address the genetic 
complexity of sugarcane, we employed a combination of 
approaches, including linear mixed-effects models, machine 
learning algorithms, gene coexpression network analyses, 
and differential gene expression comparisons. Together, 
these methodologies helped highlight candidate mecha-
nisms and regulatory factors that potentially contribute to 
this complex trait.
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Material and methods

Plant material

Two distinct sugarcane populations were utilized in this 
study to investigate genotype‒phenotype associations. The 
first population (Pop1) comprised a panel of 97 diverse sug-
arcane accessions (Supplementary Table S1), and the sec-
ond population (Pop2) consisted of 219 progeny genotypes 
derived from a cross between the elite clone IACSP953018 
(female parent) and the commercial variety IACSP933046 
(male parent). Both populations were developed by the 
Sugarcane Breeding Program at the Agronomic Institute 
of Campinas (IAC) in Ribeirão Preto, São Paulo, Bra-
zil (4°52′34″ W, 21°12′50″ S) following the experimental 
design described in Supplementary Material Sect.  1.1.

Furthermore, three cultivars were selected for an RNA 
sequencing (RNA-Seq) experiment based on their divergent 
sugar content profiles. These genotypes were planted with 
three replicates in a field at the Federal University of São 
Carlos in Araras, São Paulo, Brazil (47°23′5″ W, 22°18′41″ 
S). Specifically, the selected genotypes included (i) IN84-
58, a representative of S. spontaneum with low soluble 
solids content (Brix); (ii) the SP80-3280 hybrid, character-
ized by high Brix measurements; and (iii) the hybrid R570, 
which also exhibits high Brix measurements.

Phenotyping

The genotypes from Pop1 and Pop2 were phenotyped for 
Brix and sucrose content (POL) following the methods 
described in Consecana (2006). For Pop1, evaluations were 
conducted in ratoon cane in 2014 and 2015, with 1-year 
intervals between harvests (Coutinho et al. 2022). For Pop2, 
evaluations were conducted in plant cane in 2012 and in 
ratoon cane in 2013 and 2014. Each trait in each sugar-
cane population and replication was modeled using a linear 
mixed-effects model, as described in Supplementary Mate-
rial Sect. 1.2.

To facilitate direct comparisons of estimates between 
populations, best linear unbiased predictors (BLUPs) were 
rescaled to the range of 0–1. Multivariate and descriptive 
analyses were performed using R statistical software v4.1.2 
(R Core Team 2013). To assess phenotypic similarities 
between genotypes, we conducted complete linkage hierar-
chical clustering analysis based on Euclidean distances.

Genotyping

The populations were genotyped using a genotyping-by-
sequencing (GBS) approach following the methodologies 
outlined by Elshire et al. (2011) and Poland et al. (2012). 

Due to financial constraints, only a subset of the phenotyped 
individuals was genotyped. A total of 94 individuals from 
Pop1 and 182 individuals from Pop2, consisting of 180 prog-
eny genotypes and their respective parents, were genotyped. 
In Pop1, genotyping was accomplished utilizing a combina-
tion of the restriction enzymes PstI and MseI, as described 
by Pimenta et al. (2021). In Pop2, only the enzyme PstI was 
employed, following the methodology described by Aono 
et al. (2020). Sequencing procedures were performed using 
the Illumina platform, with the NextSeq 500 platform uti-
lized for Pop1 and a combination of the GAIIx and NextSeq 
500 platforms for Pop2. Single nucleotide polymorphism 
(SNP) calling was performed utilizing the TASSEL-GBS 
pipeline (Glaubitz et al. 2014), as detailed in Supplementary 
Material Sect.  1.3.

RNA sequencing bioinformatics analysis

The culm samples were collected from the + 1 internode of 
the selected genotypes at development times of 6, 8, 10, and 
12 months. Although sucrose is synthesized in the leaves, it 
is ultimately transported and stored in the culms. Since the 
molecular mechanisms regulating sucrose accumulation in 
culms remain incompletely understood (Wang et al. 2019; 
Hosaka et al. 2021; Martins et al. 2024), we focused our 
analyses on this tissue. Furthermore, as sucrose accumula-
tion has been proposed to be controlled by genes induced 
during culm maturation (Thirugnanasambandam et al. 
2017), we investigated genes located near genotype–phe-
notype associations alongside those showing differential 
expression in the culms of genotypes contrasting in sugar 
content.

We employed three biological replicates and three tech-
nical replicates. RNA-Seq libraries were prepared and 
sequencing was performed on the HiSeq 2500 Illumina 
platform following the protocol described by Hosaka et al. 
(2021). The bioinformatics methods used for transcriptome 
assembly and gene expression estimation are detailed in 
Supplementary Material Sect.  1.4.

Genotype–phenotype associations

To identify associations between SNPs and the phenotypic 
values of Brix and POL, we employed different approaches: 
a genome-wide association study (GWAS) through lin-
ear mixed-effects models using the R package ASReml-R 
v4.1.0 (Butler et al. 2009), followed by estimates of link-
age disequilibrium (LD) and machine learning with feature 
selection (FS) techniques (Aono et al. 2022), as detailed in 
Supplementary Material Sect. 1.5.

Because the genomic reference used in our study was 
fragmented, it was not possible to investigate LD patterns 
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matrix derived from a calculated topological overlap matrix. 
Finally, average-linkage hierarchical clustering was applied 
to the dissimilarity matrix, and adaptive branch pruning was 
performed to identify modules of coexpressed genes.

GO module enrichment analysis was performed using the 
R package topGO v2.46.0 (Alexa and Rahnenführer 2009) 
with an FDR-adjusted p value cutoff of 0.05.

Multiomics analyses

To integrate the findings from various analyses, we con-
ducted a comprehensive investigation using a gene coex-
pression network model. Initially, we examined each 
network module based on the following criteria: (i) the 
number of genes associated with GWAS/LD results, (ii) the 
number of genes associated with FS results, and (iii) the 
number of DEGs identified in intersection contrasts.

Based on these criteria, we selected groups of coex-
pressed genes and constructed specific gene coexpression 
networks for the IN84-58, SP80-3280, and R570 genotypes 
using the highest reciprocal rank (HRR) approach (Mutwil 
et al. 2010). We utilized gene expression estimates orga-
nized in TPMs for genes within these groups and generated 
a Pearson correlation coefficient matrix. Subsequently, we 
constructed the network by considering the 30 strongest 
absolute correlations (minimum R Pearson correlation 
of 0.7) and modeling a graph using the R package igraph 
v1.3.5 (Csardi and Nepusz 2006). Furthermore, we evalu-
ated the network architecture using different centrality 
measures for each gene, including degree, Kleinberg’s hub 
score, and betweenness.

Results

Phenotyping and genotyping

Brix and POL were analyzed through linear mixed effects 
models to comprehensively assess variance components 
and estimate the genetic contributions of the evaluated 
phenotypes (Supplementary Table S2). Notably, substan-
tial correlations were detected between these traits in both 
populations studied, with Pearson correlation coefficients of 
0.95 for the 97 sugarcane accessions (Pop1) and 0.9 for the 
219 progeny genotypes resulting from the biparental cross 
(Pop2). Upon employing BLUP estimates (Supplementary 
Table S3), the correlation coefficient in Pop1 decreased to 
approximately 0.9, but in Pop2, it increased to approxi-
mately 0.93 (Fig. 1a and b). This divergence in correlations 
highlights potential environmental influences that may have 
been captured by the preceding correlation analyses.

based on physical genome proximity. Therefore, we exam-
ined correlations between the GWAS-identified SNPs and 
the remaining SNPs to gain insights into additional associa-
tions that might not have been detected by GWAS alone, 
following the strategy proposed by Aono et al. (2025). To 
further extend the scope of our analysis, we employed FS, 
which allowed us to capture associations not detected under 
the stringent Bonferroni-adjusted threshold (p < 0.05). Since 
GWAS models are prone to false negatives due to their con-
servative nature and reliance on linear assumptions, FS pro-
vided a complementary approach by revealing associations 
that extend beyond these limitations.

To elucidate the potential functional implications of the 
identified markers, we associated all SNPs identified in 
association with Brix or POL measures with potential gene 
sequences retrieved from the assembled transcriptome. Spe-
cifically, we conducted an alignment of all assembled tran-
scripts with the sugarcane genome sequence of the cultivar 
SP70-1143 using the BLASTn v2.11.0 + tool (Altschul et al. 
1990). For each SNP-associated scaffold, we considered a 
maximum of 5 alignments, applying an E-value cutoff of 
1e−6.

Based on the alignments obtained, we performed gene 
ontology (GO) enrichment analyses using the R pack-
age topGO v2.46.0 (Alexa and Rahnenführer 2009). We 
established a false discovery rate (FDR)-adjusted p value 
threshold of 0.05 to determine the significance of GO term 
enrichment. All enriched GO categories were summarized 
using the Revigo tool (Supek et al. 2011).

Differential gene expression and coexpression 
networks

The identification of differentially expressed genes (DEGs) 
was conducted using the filtered gene set and the R package 
DESeq2 v1.34.0 (Love et al. 2014), as described in Sup-
plementary Material Sect. 1.6 GO enrichment analysis was 
conducted using the R package topGO v2.46.0 (Alexa and 
Rahnenführer 2009), with an FDR-adjusted p value cutoff 
of 0.05. All enriched GO categories were summarized using 
the Revigo tool (Supek et al. 2011).

Using gene expression estimates organized in transcripts 
per million (TPM), we constructed a gene coexpression net-
work employing the weighted gene coexpression network 
analysis (WGCNA) method implemented in the R package 
WGCNA v1.72.1 (Langfelder and Horvath 2008). Initially, 
we determined the soft power parameter (β) by selecting the 
value that resulted in a minimum R2 of 0.8 and maximum 
mean connectivity, ensuring that the network approximated 
a scale-free topology. Subsequently, based on Pearson corre-
lation coefficients and the estimated β, we computed an adja-
cency matrix, which was then used to define a dissimilarity 
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Pop1 includes commercial sugarcane cultivars from Bra-
zilian breeding programs as well as S. spontaneum and S. 
robustum accessions, representing traditional energy cane 
clones. Remarkably, the highest estimates of genetic effects 
for Brix and POL were observed for IACCTC059552, a 
modern sugarcane hybrid, and the lowest were recorded for 
IACBIO275, an energy cane clone (Supplementary Table 
S3).

The genetic differences observed in the populations 
and models were found to be statistically significant 

Estimates of broad-sense heritability using variance ratios 
were greater in Pop1, with values ranging from approxi-
mately 0.89 for Brix in experimental unit 2 to approximately 
0.97 for POL in experimental unit 3. Heritability estimates 
obtained through Cullis’ method (Cullis et al. 2006) were 
consistent with the values observed for the ratios, differing 
by approximately 1%. In contrast, Pop2 exhibited lower 
estimates (~ 0.36 for Brix and ~ 0.37 for POL). The higher 
estimates in Pop1 can be attributed to the more pronounced 
phenotypic variation among individuals in the panel, as 

Fig. 1  Distribution of genotypic data and best linear unbiased predic-
tions (BLUPs) for soluble solids content (Brix) and sucrose content 
(POL) in two evaluated populations: Pop1, consisting of a panel of 
97 sugarcane accessions; and Pop2, comprising 219 progeny geno-
types derived from a biparental cross. Scatter plots illustrating asso-
ciations between Brix and POL are depicted for Pop1 (a) and Pop2 
(b), along with dendrograms illustrating clustering profiles for each 

population. Additionally, uniform manifold approximation and pro-
jection (UMAP) analyses are presented for Pop1 (c) and Pop2 (d) 
based on SNP data. Individuals are colored according to a hierarchical 
clustering analysis of the phenotypic measures. Genomic relationship 
matrices are provided for Pop1 (e) and Pop2 (f), indicating the genetic 
relationships within each population
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To minimize redundancy and streamline the dataset, the 
transcripts assembled per allele in each species were com-
bined, and CD-HIT software was utilized. This process 
resulted in the generation of 138,774 transcripts for S. spon-
taneum and 201,646 transcripts for S. officinarum (Supple-
mentary Fig. S1a). Subsequently, by combining these two 
transcriptomes and applying CD-HIT, a final comprehensive 
transcriptome comprising 291,959 transcripts was obtained 
(Supplementary Fig. S1a). This integrated approach not 
only established a comprehensive transcriptome reference 
for both species but also facilitated the determination of the 
origin of each gene, enabling further evolutionary infer-
ences to be made.

The transcriptome assembly strategy generated tran-
scripts with sizes ranging from 99 to 16,513 base pairs, with 
291,615 transcripts (~ 99.88%) presenting sizes greater than 
200 nucleotides (the transcript N50 length was 1765  bp). 
A comparison of these transcripts with the Eukaryota and 
Viridiplantae databases using BUSCO software revealed 
that 99.6% (86.3% of duplicated associations) and 99.7% 
(83.5% of duplicated associations) of the sequences were 
complete, respectively. Due to the use of allele-specific 
genome references for assembly, we expected a high per-
centage of duplications to be observed. Additionally, the 
use of well-assembled and annotated genomic references 
for transcriptome assembly, combined with successive tran-
script clustering using CD-HIT, resulted in a low proportion 
of fragmented sequences.

We identified a set of 46,098 genes by selecting those 
with at least three samples presenting 10 counts per million 
(CPMs), and these genes were subsequently used for further 
analyses (Supplementary Fig. S1b). Gene annotations were 
obtained through comparisons with the UniProt database 
(UniProt Consortium 2019), resulting in successful align-
ment of all genes with UniProt proteins. This facilitated 
the retrieval of diverse annotations for functional analyses. 
Specifically, 37,196 genes (~ 80.69%) were found to cor-
respond to GO terms. Analysis of the gene expression data 
using principal component analysis (PCA) revealed a dis-
tinct dispersion pattern across samples, effectively separat-
ing the genotypes (Fig. 2). Notably, the IN84-58 genotype, 
representing S. spontaneum, exhibited more pronounced 
differences than the other genotypes.

Genotype–phenotype associations

In our study aimed at identifying genotype‒phenotype asso-
ciations, we initially employed a linear mixed-effects model 
to conduct the GWAS analysis (Table 1). Consistent with 
our expectations, the analysis revealed a greater number 
of associations in Pop1 than in Pop2, which was attributed 
to the greater genetic variability observed within Pop1. 

(Supplementary Table S2). In the biparental population 
(Pop2), clear evidence of heterosis was observed, with a 
significant proportion of progeny genotypes exhibiting esti-
mates larger than those of the most productive parent (21 
individuals for Brix and 26 for POL). There were no signifi-
cant interactions detected between genetic and year effects, 
as indicated by the analyses of deviance based on likelihood 
ratio tests (all p values > 0.5; Supplementary Table S2).

The sequencing of the GBS libraries generated a substan-
tial amount of data, with 863,889,004 reads for Pop1 and 
1,103,163,250 reads for Pop2. Subsequent analysis using 
the TASSEL pipeline identified 874,597 and 137,757 SNPs 
for Pop1 and Pop2, respectively. To ensure data reliability, 
rigorous filtering criteria were applied, resulting in a final 
set of 16,166 SNPs for Pop1 and 2,178 SNPs for Pop2 (Sup-
plementary Tables S4 and S5).

Uniform manifold approximation and projection 
(UMAP) analyses (Fig. 1c and d) did not reveal any distinct 
patterns correlating genotypes with phenotypes, suggesting 
challenges in elucidating the genetic architecture underly-
ing the observed traits. In Pop2, the absence of genotypic 
clusters was consistent with expectations due to the crossing 
nature of the genotypes. Conversely, in Pop1, a discernible 
pattern emerged, possibly indicating a subgroup of individ-
uals with closer genetic relatedness, although this pattern 
did not correspond to any observed associations with sugar-
related phenotypes. Similar patterns were also observed in 
the genomic relationship matrices (Fig.  1e and f), further 
supporting the existence of a distinct subgroup within Pop1.

Transcriptome assembly and gene expression 
estimates

The RNA-Seq experiment generated a substantial dataset 
consisting of 1,240,508,982 paired-end sequencing reads, 
each with a length of 100 base pairs. The mean number of 
reads per sample was 11,486,194.28 (Supplementary Table 
S6). Following stringent filtering procedures, 1,046,816,212 
paired-end sequencing reads were retained, accounting for 
approximately 84.39% of the initial reads.

Subsequently, the filtered reads were independently 
aligned to each allele of the S. spontaneum and S. offici-
narum genomes (Supplementary Fig. S1a). This indepen-
dent mapping approach allowed for gene assembly at the 
allele level, enabling distinct assemblies for each species’ 
allele. The transcript quantities assembled for each allele of 
S. spontaneum were as follows: (A) 53,826, (B) 53,524, (C) 
52,249, and (D) 52,569 (Supplementary Fig. S1a). For S. 
officinarum, the quantities were (A) 55,272, (B) 53,563, (C) 
53,809, (D) 50,945, (E) 49,668, (F) 46,037, (G) 44,220, and 
(H) 39,048 (Supplementary Fig. S1a).
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due to the use of a fragmented genomic reference, poten-
tial associations were subsequently recovered through LD 
analysis. In Pop2, the Q–Q and Manhattan plots for Brix 
(Supplementary Fig. S4) and POL (Supplementary Fig. S5) 
showed that the two SNP associations detected for these 
traits exhibited similar behavior to other SNPs, suggesting 
additional associations. To further explore these signals, we 
applied machine learning approaches.

Among the 10 SNPs identified, we retrieved annotations 
for only 4 SNPs (Supplementary Table S7). Among these 
SNPs, 2 were simultaneously associated with the Brix and 
POL traits in Pop1: an SNP at position 210 on scaffold16204 
and an SNP at position 111 on scaffold32047. These SNPs 
corresponded to 5 genes annotated for anion transporters 
(gene_32017, gene_34208, gene_34382, gene_38431, and 
gene_39421) and 5 genes annotated for the protein FAR1 

Specifically, in Pop1, we identified 7 SNPs significantly 
associated with Brix measures and 6 SNPs significantly 
associated with POL. Notably, 5 SNPs exhibited simultane-
ous associations with both phenotypes, which aligns with 
the anticipated outcome due to the pronounced correlation 
between Brix and POL (Fig. 1a). Conversely, fewer associa-
tions were observed in Pop2, with only 1 SNP associated 
with Brix and another 1 associated with POL. Subsequent 
examination of the allelic proportion profiles of these SNPs 
in comparison to the phenotypic measurements revealed a 
consistent distribution pattern (Fig.  3a and b), supporting 
the validity of the observed associations.

Quantile–quantile (Q–Q) and Manhattan plots revealed 
clearer outliers in Pop1 for both Brix (Supplementary Fig. 
S2) and POL (Supplementary Fig. S3). Although patterns of 
LD could not be directly visualized in the Manhattan plots 

Fig. 2  Principal component analysis (PCA) showing gene expression patterns across developmental time points (6, 8, 10, and 12 months old) for 
the IN84-58, SP80-3280, and R570 genotypes
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function category, and all of these terms were associated 
with 9 genes. These results indicate the potential role of 
these genes in the genetic regulation associated with differ-
ences in Brix and POL measurements.

Given that the genomic reference used lacked chromo-
some-level assembly, we implemented an alternative strat-
egy to identify LD associations with the markers identified 
through GWAS, as illustrated in Supplementary Fig. S6. 
Utilizing pairwise Pearson correlations among allelic pro-
portions, we identified 71 additional markers (Fig. 3c and 
d; Supplementary Table S9). Notably, only one marker was 
detected for Pop2, and this marker was specifically associ-
ated with the POL phenotypic trait. Conversely, the remain-
ing 70 markers were correlated with GWAS-defined SNPs 
within Pop1. Of particular interest, 68 out of the 70 associa-
tions in Pop1 were associated with a single SNP (position 
210 on scaffold16204), which was organized into smaller 
clusters across different scaffolds. For instance, SNPs 
located at positions 1216, 1265, 1268, 1270, 1271, and 1272 
on scaffold 24,635 exhibited correlations of approximately 
0.8 with GWAS-defined SNPs. Similarly, SNPs located at 
positions 157, 166, 169, 173, and 199 on scaffold 562,126 
displayed correlations of approximately -0.8 with GWAS-
defined SNPs. Such patterns suggest the presence of a 

(gene_11104, gene_4861, gene_5373, gene_6529, and 
gene_8883). Another SNP associated with POL in Pop1 
was located at position 1858 on scaffold56428 and anno-
tated for 2 genes encoding serine/threonine-protein kinases 
(gene_34982 and gene_43850). The final annotated SNP 
was found in Pop2. It was located at position 156 on scaf-
fold5479 and was associated with 2 genes encoding pen-
tatricopeptide repeat-containing proteins (gene_32532 and 
gene_51857).

Of these 14 genes identified, 8 were exclusively found 
in S. officinarum (gene_32017, gene_34208, gene_38431, 
gene_39421, gene_11104, gene_4861, gene_5373, and 
gene_32532), 3 were found in both species (gene_34382, 
gene_6529, and gene_43850), and 3 were exclusively 
found in S. spontaneum (gene_8883, gene_51857, and 
gene_34982). Notably, most of the genes found in regions 
associated with contrasting sugar accumulation profiles are 
from the S. officinarum genome.

Regarding the GO terms associated with these GWAS-
identified markers, we recovered a total of 27 GO terms 
(Supplementary Table S8). The most prominent GO terms 
were “regulation of transcription, DNA-templated” in the 
biological process category, “nucleus” in the cellular com-
ponent category, and “zinc ion binding” in the molecular 

Population Trait SNP P value FDR Bonferroni
Pop1 Brix scaffold16204|size3850_210

_A/T
2.88E − 09 4.66E − 05 4.66E − 05

scaffold15773|size3862_73_
C/A

8.18E − 08 0.0006490370472 0.001322046039

scaffold838968|size239_40_
G/A

1.20E − 07 0.0006490370472 0.001947111141

scaffold15773|size3862_75_
C/T

1.67E − 07 0.000673431525 0.0026937261

scaffold112357|size2063_183
5_C/A

5.35E − 07 0.00172989985 0.00864949925

scaffold32047|size2236_111
_G/T

1.80E − 06 0.004842866611 0.02905719966

scaffold103083|size2070_196
3_G/T

2.83E − 06 0.006542895698 0.04580026989

POL scaffold16204|size3850_210
_A/T

1.16E − 09 1.88E − 05 1.88E − 05

scaffold838968|size239_40_
G/A

2.32E − 08 0.000187183688 0.0003743673761

scaffold15773|size3862_73_
C/A

1.18E − -07 0.0005698556482 0.00190506238

scaffold15773|size3862_75_
C/T

1.41E − 07 0.0005698556482 0.002279422593

scaffold32047|size2236_111
_G/T

2.19E − 06 0.007079909011 0.03539954505

scaffold56428|size2092_185
8_A/G

2.81E − 06 0.007208389401 0.04544528141

Pop2 Brix scaffold625903|size288_43_
C/A

1.42E − 05 0.008841259904 0.03098643235

POL scaffold5479|size4842_156_
C/T

2.10E − 05 0.03007418539 0.04568349979

Table 1  Genome-wide associa-
tion study (GWAS) results for 
soluble solids content (Brix) and 
sucrose content (POL) across two 
distinct populations: Pop1, com-
prising a panel of 97 sugarcane 
accessions; and Pop2, consist-
ing of 219 progeny genotypes 
derived from a cross between the 
elite clone IACSP953018 (female 
parent) and the commercial vari-
ety IACSP933046 (male parent)

Adjusted p values were calcu-
lated using both Bonferroni and 
false discovery rate (FDR) cor-
rections. SNPs with Bonferroni-
adjusted p values ≤ 0.05 were 
deemed to be significantly 
associated
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Fig. 3  Allelic proportions of single nucleotide polymorphisms (SNPs) 
identified through a genome-wide association study (GWAS) related 
to soluble solids content (Brix) and sucrose content (POL) in two 
populations: Pop1, comprising a panel of 97 sugarcane accessions (a); 
and Pop2, consisting of 219 progeny genotypes derived from a cross 
between the elite clone IACSP953018 (female parent) and the com-
mercial variety IACSP933046 (male parent) (b). Linkage disequilib-

rium (LD) networks for Pop1 (c) and Pop2 (d) constructed based on 
the associations of SNPs identified through GWAS with the remain-
ing markers in the dataset. SNPs were selected using feature selection 
(FS) techniques, including gradient tree boosting (GTB), L1-based FS 
employing linear support vector regression (SVM), and Pearson cor-
relations (with a p value threshold of 0.05), in Pop1 (e) and Pop2 (f)
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regulation of glucose-mediated signaling pathways, embry-
onic development, the negative regulation of DNA-tem-
plated transcription, and the positive regulation of abscisic 
acid-activated signaling pathways.

Moreover, by employing the established FS techniques, 
we successfully identified potential genotype‒phenotype 
associations (Supplementary Table S11; Fig. 3e and f), as 
illustrated in Supplementary Fig. S6. By applying a consen-
sus approach involving the selection of markers identified 
by all three evaluated algorithms, we identified a total of 
67 and 83 markers associated with the Brix and POL traits, 
respectively, in Pop1, with 15 overlapping SNPs. In Pop2, 
we identified a total of 82 markers associated with both the 
Brix and POL phenotypes, with an intersection of 31 SNPs. 
While no overlapping SNPs were observed between the 
populations, there were evident intersections among the FS 
methods for both phenotypic traits (Table 2).

We observed overlaps between findings from FS and 
GWAS coupled with LD analysis, as illustrated in Supple-
mentary Fig. S6. For Brix in Pop1, we identified two SNPs 
by both approaches: one located in scaffold15773 at posi-
tion 73, and one in scaffold112357 at position 1835. In 
Pop2, the markers identified by GWAS were also identified 
through FS. Remarkably, we further detected two additional 
markers situated within the same scaffolds identified by 
GWAS but not highlighted by LD tests. We speculate that 
these associations went unnoticed previously due to the rig-
orous parameters applied in our investigation. These SNPs 
were associated with both Brix and POL traits in Pop1, with 
one located in scaffold838968 at position 30 (identified at 
position 40 by GWAS) and one in scaffold15773 at position 
3490 (reported at positions 73 and 75 by GWAS). These 
findings underscore the complementary nature of the meth-
odologies employed in our study, reinforcing the validity of 
our results.

From the 238 SNPs identified using FS, we recovered 
441 genes (Supplementary Table S7). Notably, when com-
paring these findings with those of GWAS and LD analyses, 
we observed that only two genes, namely, gene_32532 and 
gene_51857, were shared. Remarkably, these genes both 
encode pentatricopeptide repeat-containing proteins and 
were found to be associated with a SNP (position 156 on 
scaffold5479) identified by both methodologies.

With respect to GO terms, we identified 632 terms asso-
ciated with the analyzed genes (Supplementary Table S8). 
The predominant GO term for the cellular component cat-
egory was 'nucleus', which was associated with 168 genes. 
For the molecular function category, 'ATP binding' was the 
most prominent term and was linked to 89 genes. In terms of 
biological processes, 'protein transport' was associated with 
30 genes. The second most prevalent biological process was 
'regulation of transcription, DNA-templated', which was 

coherent cluster of markers within the same QTL region, 
which may not have been adequately captured due to limita-
tions in the genomic reference utilized.

We identified 75 additional genes associated with the 
LD markers (Supplementary Table S7). Interestingly, we 
observed no overlap between the genes identified through 
GWAS and LD analysis. However, we found annotations 
related to members of the kinase family in both sets of 
genes. Additionally, our analysis revealed novel annota-
tions for various genes, including those encoding the E3 
ubiquitin-protein ligase, the photosynthetic NDH subunit of 
subcomplex B3, the cleavage stimulation factor, and sev-
eral transcription factors, such as MYB36, MYB87, RAX1, 
RAX2, and RAX3.

Through an evaluation of the GO terms associated with 
the genes surrounding the LD-associated markers, we 
identified a total of 197 terms (Supplementary Table S8). 
Prominent among the cellular components was the nucleus, 
which was associated with 28 genes. The most conspicuous 
molecular function was ATP binding, which was linked to 
17 genes, and the prominent biological process was embryo 
sac development, which was correlated with 15 genes. Fur-
thermore, several other noteworthy terms emerged, such 
as gene silencing by RNA, the cellular response to glucose 
stimulus, the regulation of glucose-mediated signaling path-
way, the regulation of gene expression, carbohydrate trans-
port, and the cellulose catabolic process.

By conducting an enrichment analysis combining GO 
terms associated with the GWAS and LD results, we iden-
tified 16 enriched biological process terms and 8 enriched 
molecular function terms (Supplementary Table S10). 
Our analysis highlighted regulatory processes such as the 

Table 2  Single nucleotide polymorphisms (SNPs) associated with sol-
uble solids content (Brix) and sucrose content (POL) were identified 
through the following feature selection strategies: gradient tree boost-
ing (GTB), L1-based FS employing linear support vector regression 
(SVM), and Pearson correlation (with a p value threshold of 0.05)
Population Trait Brix POL Intersec-

tion (Brix 
and POL)

Pop1 GTB 193 193 25
SVR 6362 6307 5632
Pearson 1716 6899 1280
Intersection (GTB, SVR, 
and pearson)

67 83 15

Pop2 GTB 176 176 50
SVR 837 851 662
Pearson 307 289 205
Intersection (GTB, SVR, 
and pearson)

82 82 31

The populations employed were Pop1, consisting of a panel of 97 sug-
arcane accessions, and Pop2, consisting of 219 progeny genotypes 
derived from a cross between the elite clone IACSP953018 (female 
parent) and the commercial variety IACSP933046 (male parent)
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To potentially identify DEGs associated with variations 
in sugar accumulation profiles, we conducted a comparative 
analysis of the developmental times of the SP80-3280 and 
R570 genotypes. Specifically, we examined gene expres-
sion patterns between 6 and 8  months, 8 and 10  months, 
and 10 and 12  months for both the SP80-3280 (Supple-
mentary Table S14) and R570 (Supplementary Table S15) 
genotypes. This comparison aimed to elucidate alterations 
in sugarcane development possibly linked to processes 
involved in the interplay between growth and sugar accu-
mulation processes. Our observations revealed distinct pro-
files between the two genotypes. SP80-3280 exhibited more 
pronounced differences toward the later stages of develop-
ment (10–12 months), and R570 displayed greater dispari-
ties during the earlier stages (6–8 months) (Table 3). We did 
not perform detailed evaluations of each pairwise compari-
son, as the primary objective of this study was to highlight 
genes associated with sucrose accumulation regardless of 
developmental stage or genotype.

The total numbers of DEGs identified across developmen-
tal time comparisons were 5559 for SP80-3280 and 4936 
for R570 (Fig. 4a). To refine these sets, we intersected them 
with the DEGs detected in comparisons between IN84-58 
and both SP80-3280 and R570. This approach allowed us to 
isolate cultivar-specific developmental expression changes 
and remove expression patterns common to the wild species, 
thereby refining the set toward genes potentially involved in 
sugar accumulation. The intersections yielded 2649 DEGs 
for SP80-3280 and 2468 for R570 (Fig. 4a).

To further refine the DEG candidates for investigation 
alongside the genotype–phenotype associations, we inter-
sected these two sets, resulting in a final set of 853 DEGs 
(Supplementary Table S16). This strategy focused on genes 
that consistently differed across developmental stages and 
distinguished both cultivars from IN84-58. Visualization of 
the expression patterns of these genes via a heatmap illus-
trates their contrasting profiles (Fig. 4b).

Our investigation revealed associations between genes 
identified as DEGs and findings from the other approaches 
employed (GWAS, LD and FS). Specifically, gene_34382, 
annotated as an anion transporter, was linked to a SNP 
identified through a GWAS for Brix and POL traits in 
Pop1, located at position 210 on scaffold16204. Addition-
ally, gene_71279 and gene_86546, both associated with the 
transcription factors MYB36, MYB87, RAX1, RAX2, and 
RAX3, were correlated with LD associations according to 
GWAS results at position 53 on scaffold196356. Further-
more, gene_10640 (encoding Flavanone 3-dioxygenase 2, 
Gibberellin 3-beta-dioxygenase 1, and Jasmonate-induced 
oxygenase), gene_33300 (encoding Flavanone 3-dioxygen-
ase 2 and Jasmonate-induced oxygenase), and gene_52053 
(encoding Flavanone 3-dioxygenase 2, Jasmonate-induced 

associated with 27 genes. This finding, in conjunction with 
the prevalence of ATP binding functions, aligns well with 
the findings from GWAS and LD analyses.

Furthermore, our analysis revealed insights into carbohy-
drate-related biological processes. We observed associations 
with carbohydrate homeostasis (3 genes), the carbohydrate 
metabolic process (2 genes), and carbohydrate transport (2 
genes). This underscores the potential of our approach to 
identify genes involved in the broader mechanisms of sugar 
production and storage in sugarcane.

By conducting an enrichment analysis of these genes, 
we identified 34 GO terms enriched for molecular func-
tions and 39 terms for biological processes (Supplementary 
Table S10). Among the enriched biological processes, the 
negative regulation of the transforming growth factor beta 
receptor signaling pathway, glutathione catabolic process, 
endoplasmic reticulum membrane fusion, and regulation of 
phosphate transport were the most significantly enriched 
processes.

Differential expression analyses

To identify DEGs between IN84-58 (the S. spontaneum-
representative genotype) and the hybrids SP80-3280 and 
R570, we developed a gene expression model incorporating 
development time and genotype as factors. We then com-
pared gene expression levels across genotypes. Our analysis 
revealed a total of 19,511 DEGs (8630 upregulated in IN84-
58 and 10,881 upregulated in SP80-3280) and 20,869 DEGs 
(9338 upregulated in IN84-58 and 11,531 upregulated in 
R570) when comparing IN84-58 with SP80-3280 (Supple-
mentary Table S12) and R570 (Supplementary Table S13), 
respectively. Although the differences were not pronounced, 
the majority of DEGs were downregulated in IN84-58.

Table  3  Differentially expressed genes (DEGs) identified through 
comparisons of development times between the SP80-3280 and R570 
genotypes
Condition 1 Condition 2 Num-

ber of 
DEGs

Upregu-
lated in 
condi-
tion 1

Down-
regulated 
in condi-
tion 1

SP80-3280 
(6 months old)

SP80-3280 
(8 months old)

985 593 392

SP80-3280 
(8 months old)

SP80-3280 
(10 months old)

465 89 376

SP80-3280 
(10 months old)

SP80-3280 
(12 months old)

4746 1157 3589

R570 (6 months 
old)

R570 (8 months 
old)

2250 569 1681

R570 (8 months 
old)

R570 (10 months 
old)

2070 122 1948

R570 (10 months 
old)

R570 (12 months 
old)

1174 753 421
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DEGs and with gene_50226, which is a gene linked to an 
LD result (a SNP at position 300 on scaffold413444).

Furthermore, we identified 48 enriched biological pro-
cess GO terms (Supplementary Table S17). These terms 
encompass various biological functions, such as defense 
response (e.g., ethylene-activated signaling pathway, 
defense response to fungus, response to heat, and response 
to jasmonic acid), plant development (e.g., gibberellin bio-
synthetic process and cell wall macromolecule catabolic 
process), and regulatory processes (e.g., regulation of 
DNA-templated transcription and induction of programmed 
cell death). Moreover, we identified 36 distinct enriched 
molecular function GO terms. Notably, these terms included 
UDP-glucose 4-epimerase activity and 9-cis-epoxycarot-
enoid dioxygenase activity. These molecular functions play 
pivotal roles in processes associated with sucrose accumula-
tion and plant metabolism.

oxygenase, and Leucoanthocyanidin dioxygenase) were 
associated with the SNP at position 50 on scaffold108823 
according to the FS approach.

In addition, although not directly linked to the same 
set of genes, we identified shared annotations between the 
DEGs and the genotype–phenotype associations. Notably, 
the FAR1 protein exhibited associations with gene_8664, 
a DEG identified in our study, and with gene_11104, 
gene_4861, gene_5373, gene_6529, and gene_8883, all 
of which were linked to a SNP associated with Brix and 
POL traits (located at position 111 on scaffold32047) 
according to the GWAS. Similarly, the E3 ubiquitin-protein 
ligase showed associations with several DEGs, includ-
ing gene_96766, gene_99723, gene_112869, gene_25927, 
gene_31683, gene_76160, and gene_99050, all of which 
were associated with a SNP detected within the LD set. 
Furthermore, beta-glucosidase was associated with various 

Fig.  4  a Identification of differentially expressed genes (DEGs) 
through intergenotype comparisons. b Heatmap illustrating the 
expression profiles of the final set of 853 DEGs selected for analysis. 
While differential expression analyses were conducted using raw read 

counts, expression levels are displayed as transcripts per kilobase mil-
lion (TPM) to facilitate clearer visualization and comparison of gene 
expression patterns
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DNA-binding transcription factor activity, and chlorophyll 
binding), and group 12 presented two enriched terms (narin-
genin 3-dioxygenase activity and ATP binding).

Using less stringent criteria (nonadjusted p value of 
0.01), we identified additional significant terms associ-
ated with sucrose metabolism and related processes. In 
group 0, the sucrose biosynthetic process (p = 0.00765) 
and sucrose-phosphate synthase activity (p = 0.00961) 
were enriched. In group 12, terms related to the response 
to sucrose (p = 0.00072) and sucrose transport (p = 0.0045) 
were significantly enriched. Similarly, in group 15, terms 
related to carbohydrate transport (p = 0.00436), carbohy-
drate binding (p = 0.00174), and sucrose alpha-glucosidase 
activity (p = 0.0094) were significantly enriched. In group 
18, sucrose transport (p = 0.00165) and sucrose alpha-glu-
cosidase activity (p = 0.00607) were enriched. Addition-
ally, in group 36, sucrose 1F-fructosyltransferase activity 
(p = 0.00041) was enriched, and in group 63, carbohydrate 
metabolic processes (p = 0.00258) were enriched.

These findings suggest that, in comparison to other net-
work modules, individual groups within the identified clus-
ters do not exhibit distinct or pronounced specific roles. 
This lack of specificity arises from the broad impact of their 
functions across plant metabolism, as many processes per-
formed by these groups are also integral to other modules. 
However, when all genes within these groups were aggre-
gated and a comprehensive enrichment analysis was con-
ducted (Supplementary Table S21), the enrichment of more 
biological processes emerged. These enriched processes 
included the regulation of DNA-templated transcription and 
positive regulation of the salicylic acid-mediated signaling 
pathway. These findings imply that the collective action of 
genes within these groups may exert influence over a range 
of processes executed by the selected network clusters.

Finally, by leveraging the genes identified within these 8 
groups and employing the HRR approach, we constructed 
three distinct gene coexpression networks: (i) a network tai-
lored to the expression data of the hybrid R570 (Fig. 5a); 
(ii) a network for the hybrid SP80-3280 (Fig. 5b); and (iii) 
a network specific to the IN84-58 genotype (Fig. 5c). Con-
sidering a total of 4939 genes, network (i) comprised 2051 
genes and 5078 edges (with 55 genes having more than 25 
connections), network (ii) comprised 2370 genes and 5467 
edges (with 53 genes having more than 25 connections), and 
network (iii) comprised 2791 genes and 7963 edges (with 
112 genes having more than 25 connections). The reduction 
in gene count is attributed to the HRR methodology, which 
selectively retains the most robust associations.

This disparity underscores the distinct structural char-
acteristics of the networks, with network (iii) exhibiting a 
more condensed architecture than networks (i) and (ii). This 
discrepancy potentially signifies the distinct manners in 

Gene coexpression networks and multiomics 
analyses

To comprehensively integrate our findings, we constructed 
a gene coexpression network employing RNA-Seq gene 
expression estimates and the WGCNA methodology. Utiliz-
ing Pearson correlation coefficients, we computed a gene 
expression correlation matrix, subsequently fitting the net-
work into a scale-free topology with a β power of 6, yielding 
an R2 value of ~ 0.808 and a mean connectivity of ~ 992.082. 
By employing hierarchical clustering, we delineated 250 
distinct modules within the network (Supplementary Table 
S18), ranging from a minimum of 50 genes in group 249 
to a maximum of 1345 genes in group 0. The average gene 
count per module was approximately 184.40, with a median 
of 128.5 and a standard deviation of approximately 177.33.

The main principle underlying a gene co-expression 
network is the concept of guilt-by-association (Langfelder 
and Horvath  2008), where genes with similar expression 
patterns are likely to share biological functions. Accord-
ingly, each module defined by WGCNA represents a set of 
genes that not only have co-expressed profiles but are also 
functionally related. Identifying modules that are simul-
taneously associated with genotype–phenotype relation-
ships and DEGs is therefore a powerful strategy. It allows 
the definition of a more cohesive and reliable set of genes 
potentially involved in shaping the phenotype, while also 
leveraging network analyses to prioritize key genes based 
on their contribution to the overall co-expression structure 
of the module.

In our investigation, each network group was analyzed 
for the presence of genes associated with GWAS/LD, FS, 
or DEGs (Supplementary Table S19). Our findings revealed 
that 64 groups harbored at least one gene associated with 
GWAS/LD, 155 groups harbored at least one gene associ-
ated with FS, and 146 groups harbored at least one DEG. 
Notably, 32 groups were concurrently associated with all 
three approaches. By focusing on these 32 groups and 
computing the median number of genes per group associ-
ated with GWAS/LD, FS, and DEGs, we identified 1, 3, 
and 8 genes, respectively. We identified and focused our 
subsequent analysis on groups meeting or surpassing these 
thresholds, leading to the selection of 8 groups (labeled 0, 
2, 9, 12, 15, 18, 36, and 63) for in-depth investigation (4939 
genes).

We performed a GO enrichment evaluation of each of 
these groups (Supplementary Table S20). Only group 0 
presented one biological process term (photosynthesis, 
light harvesting in photosystem (I) enriched according 
to the established criteria (an FDR-adjusted p value cut-
off of 0.05). In relation to molecular function GO terms, 
group 0 presented three enriched terms (metal ion binding, 
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S23), and the network for IN84-58 (Supplementary Table 
S24) revealed notable disparities in the distribution of gene 
connections and the identification of pivotal genes driving 
network structure (Table 4). This observation underscores 
the distinct regulatory pathways that may lead to the activa-
tion of common biological processes in different genotypes.

Discussion

Strategies for dealing with sugarcane genetic 
complexity

In our study, we employed various innovative strategies to 
overcome the genomic intricacies of sugarcane in order to 

which the biological functions correlated with these genes 
are coordinated in each genotype (Fig. 5d), including car-
bohydrate metabolic processes, carbohydrate transport, and 
regulation of carbohydrate metabolism. These processes 
hold significant relevance in the investigation of sucrose 
accumulation in sugarcane.

Furthermore, given the broad spectrum of biological 
processes associated with these genes (Fig.  5d) and their 
potential relevance to sugar accumulation in sugarcane, we 
examined the gene interactions within each network using 
centrality measures to pinpoint key genes orchestrating 
these mechanisms. For each network, we assessed centrality 
measures, including degree, hub score, and betweenness. A 
comparison of the network for R570 (Supplementary Table 
S22), the network for SP80-3280 (Supplementary Table 

Fig. 5  Specific gene coexpression networks modeled using subgroups 
selected from the original network constructed with the entire set of 
genes, separated according to (a) sugarcane hybrid R70, (b) hybrid 

SP80-3280, and (c) IN84-58, a representative genotype of S. sponta-
neum. d Gene Ontology (GO) categories associated with biological 
processes within these selected groups
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Wang et al. 2023a; Zhang et al. 2023) or estimating specific 
ploidy levels for individual markers (Balsalobre et al. 2017; 
Batista et al. 2022). However, in our study, rather than disre-
garding allele variations, we opted to represent SNPs not as 
dosages but as allele proportions. This approach allowed us 
to retain a significant number of markers that would other-
wise have been discarded due to the low statistical power of 
the dosage estimation process (Aono et al. 2020).

In recent years, there have been notable advancements 
in sugarcane genomics, with the emergence of several 

investigate the molecular basis of the most relevant trait of 
this crop. One of the primary obstacles encountered when 
investigating sugarcane polymorphisms are aneuploidies, 
which manifest as variable numbers of alleles per chromo-
some and distinct genomic regions harboring different allele 
copy numbers within the same chromosome (Zhang et al. 
2018; Aono et al. 2021).

Traditionally, addressing such complexity has involved 
either simplifying SNP markers by assuming fixed ploidy 
(Fickett et al. 2019; Yang et al. 2020; Pimenta et al. 2021; 

Network Statistic Degree Kleinberg’s Hub 
Score

Betweenness

R570 Minimum 1 0 0
Maximum 61 1  ~ 176,011.76
Mean 4.061 0.0255393 5349.1
Median 2 0.0043837 395.2
Standard 
deviation

6.063621 0.06725531 14,058.07

Top 3 Nonannotated gene 
(value of 61); bifunc-
tional aspartokinase/
homoserine dehydro-
genase 1 (value of 50); 
and zinc finger FYVE 
domain-containing 
protein 26 (value of 50)

Bifunctional aspar-
tokinase/homoserine 
dehydrogenase 1 
(value of 1); GEL 
complex sub-
unit OPTI (value 
of ~ 0.97); and 
nonannotated gene 
(value of ~ 0.95)

Nonannotated gene 
(value of ~ 176,011.76); 
nonannotated gene 
(value of ~ 161,517.31); 
and protein transla-
tion factor SUI1(value 
of ~ 145,158.23)

SP80-3280 Minimum 1 0 0
Maximum 62 1  ~ 184,912.91
Mean 4.614 0.062281 4,841.1
Median 2 0.022610 526.8
Standard 
deviation

6.294851 0.09964838 12,779.9

Top 3 Large ribosomal 
subunit protein eL18 
(value of 62); tran-
scription factor BTF3/
basic transcription fac-
tor 3 (value of 55); and 
Calcium/calmodulin-
regulated receptor-like 
kinase 1 (value of 46)

Senescence 
associated gene 20 
(value of 1); Large 
ribosomal subunit 
protein eL18 (value 
of ~ 0.99); and 
nonannotated gene 
(value of ~ 0.94)

Transcription factor 
BTF3/basic transcrip-
tion factor 3 (value 
of ~ 184,912.91); large 
ribosomal subunit 
protein eL18 (value 
of ~ 166,457.51); and Cal-
cium/calmodulin-regu-
lated receptor-like kinase 
1 (value of ~ 113,026.88)

IN84-58 Minimum 1 0 0
Maximum 51 1  ~ 171,446.33
Mean 5.706 0.060052 5033.2
Median 3 0.024053 644.1
Standard 
deviation

7.503239 0.09622554 11,460.91

Top 3 Adagio protein (value 
of 51); glutathione 
S-transferase (value of 
49); and nonannotated 
gene (value of 48)

Acyl-coenzyme 
A thioesterase 13 
(value of 1); cinnam-
oyl-CoA reductase 1 
(value of ~ 0.97); and 
auxin response fac-
tor (value of ~ 0.90)

Kinetochore-associated 
protein KNL-2 (value 
of ~ 171,446.33); 
formin-like protein 
(value of ~ 90,953.78); 
and protein Weak 
Chloroplast Movement 
Under Blue Light (value 
of ~ 85,236.03)

Table 4  Centrality evaluations for 
specific gene coexpression net-
works modeled using the highest 
reciprocal rank (HRR) approach 
and the genotypes R570, SP80-
3280, and IN84-58
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the fundamental mechanisms of sucrose metabolism are 
widely acknowledged (Sachdeva et al. 2011; Datir and Joshi 
2016), the factors contributing to enhanced sucrose accu-
mulation remain incompletely understood. Consequently, 
integrating the findings from various omics analyses, partic-
ularly through coexpression analysis, has provided a com-
prehensive and valuable dataset.

Novel insights into sugarcane sucrose accumulation

Sugarcane is the crop with the greatest capacity for sucrose 
storage (Qin et al. 2021). Consequently, breeding programs 
for sugarcane have prioritized the development of variet-
ies with optimized sucrose storage capabilities. Variations 
in sucrose content within sugarcane varieties are attributed 
to a complex interplay of polygenic effects, diverse biologi-
cal processes and environmental effects (Khan et al. 2023). 
Previous GWASs have elucidated the association of sucrose 
accumulation with polymorphisms located near different 
genes. These genes encompass annotations mostly related 
to plant growth, development (Racedo et al. 2016; Fickett 
et al. 2019; Wang et al. 2023b), and responses to both biotic 
and abiotic stresses (Wang et al. 2023b; Zhang et al. 2023). 
In our GWAS analysis, although we found noteworthy 
similarities with previous studies, particularly regarding the 
involvement of phosphatases, kinases, and ubiquitin-like 
proteins (Fickett et al. 2019; Wang et al. 2023b; Zhang et al. 
2023), we were able to expand upon these findings.

The involvement of sucrose signaling pathways in reg-
ulating various growth and developmental processes is 
widely recognized in the literature (Papini-Terzi et al. 2009; 
Chen et al. 2019). Moreover, the intricate interplay between 
sucrose and plant hormones, such as abscisic acid, salicylic 
acid, jasmonic acid, and ethylene, underscores the multifac-
eted nature of the association between sucrose and stress 
responses. Sucrose serves as an energy source to cope with 
stress, and at different levels, it plays pivotal roles in regu-
lating the expression of stress-responsive genes (Khan et al. 
2023).

Our investigation, supported by the literature, under-
scores the synergistic mechanism wherein sucrose levels 
impact stress response and growth dynamics. Notably, for 
Pop1, we identified GWAS-associated SNPs surrounding 
genes annotated for anion transporters, FAR1 proteins, and 
serine/threonine-protein kinases. These genes play pivotal 
roles in balancing growth and stress responses (Zheng et al. 
2010; Ramesh et al. 2015; Liu et al. 2019; Jiang et al. 2022) 
and have potential implications for carbohydrate synthesis 
(Ma et al. 2017; Luo et al. 2020; Liu et al. 2022). Further-
more, our GWAS of Pop2 revealed a gene annotated for a 
pentatricopeptide repeat-containing (PPR) protein, which 
has also been implicated in both plant development and 

genomic references, including those tailored for allele 
specificity (Zhang et al. 2018; Bao et al. 2024; Healey et 
al. 2024). Although these resources have significantly 
enhanced sugarcane genomic studies, accurately aligning 
short sequencing reads to these references and inferring 
correct allele dosages remains a challenge. The sugarcane 
genome is characterized by a high degree of duplication, 
leading to a substantial proportion of reads being mapped 
in duplicate across its genome. The conventional approach 
to address this issue involves excluding duplicate mapped 
reads, which, unfortunately, results in a significant reduc-
tion in the number of generated SNPs (Gardiner et al. 2016).

However, Aono et al. (2020) demonstrated that this 
reduction can be circumvented by utilizing a sugarcane 
methyl-filtered reference (Grativol et al. 2014), which is 
compatible with the GBS approach employed. Thus, we 
chose to utilize this reference for SNP calling, thereby over-
coming the reduction in SNP numbers observed with other 
genomic references. Furthermore, to indirectly associate 
our findings with the genomic references of S. officinarum 
and S. spontaneum, we conducted comparative alignments 
between RNA-Seq-based assembled genes and the methyl-
filtered genome scaffolds. By employing this strategy, we 
not only increased the number of markers but also enhanced 
the likelihood of identifying associations with QTL regions.

Our approach to addressing the complexity of sugarcane 
genetics diverged from traditional QTL mapping methods 
based on linkage analyses. Instead, we employed marker‒
trait association tests in Pop2. The current methodologies 
available for handling polyploid species via linkage analysis 
do not adequately address the nuances of sugarcane genetics 
(Mollinari et al. 2020). The construction of linkage maps 
in sugarcane typically yields numerous unsaturated link-
age groups characterized by substantial intermarker dis-
tances (Costa et al. 2016; Balsalobre et al. 2017; Yang et 
al. 2018; You et al. 2019; Wang et al. 2022b, 2023a). As a 
consequence, many markers are excluded from the analy-
sis, thereby limiting the pool of SNPs available for QTL 
identification. Moreover, we leveraged machine learn-
ing approaches to enhance the reliability of our findings. 
Through the integration of data from two distinct popula-
tions and the utilization of diverse methodological strate-
gies, we strengthened the robustness of our inferences.

The exploration of genotype‒phenotype relationships 
in sugarcane, in conjunction with other omics approaches, 
is still in its early stages. Only a limited number of stud-
ies have investigated these associations within a multiomic 
framework (Li et al. 2023; Pimenta et al. 2023). We believe 
that integrating these methodologies has significantly 
improved our capacity to uncover the biological mecha-
nisms influenced by genes located near SNPs associated 
with sucrose phenotypic variation in sugarcane. Although 
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proteins are intricately linked to carbohydrate metabolism 
and responses to oxidative stress. Moreover, TRX has previ-
ously been identified as a regulator of carbon–nitrogen par-
titioning in tobacco (Ancín et al. 2021). Overexpression of 
TRX leads to the accumulation of nitrogen-related metabo-
lites while decreasing carbon-related metabolites.

Even with the LD approach employed alongside GWAS 
results, we did not identify a significant number of genes 
directly regulating sucrose metabolism, such as sucrose-
synthesizing and hydrolyzing enzymes (Datir and Joshi 
2016). The lack of further associations related to sucrose 
metabolism, including sucrose synthase, sucrose phosphate 
synthase, and invertases, may be attributed to various fac-
tors. First, the genes identified through GWAS and LD anal-
yses might exert an indirect influence on these processes, 
triggering mechanisms that ultimately impact the efficiency 
of sucrose accumulation through pathways yet to be eluci-
dated, thus warranting further investigation. This is particu-
larly noteworthy in light of previous unsuccessful endeavors 
to manipulate genes directly linked to sucrose transport and 
metabolism (Qin et al. 2021).

Moreover, the reduced number of individuals employed 
in Pop1 for GWAS might have influenced our findings. 
Although the sucrose content profiles of the selected indi-
viduals exhibited high variability, as evidenced by the high 
heritability estimates of 0.89 and 0.9 for Brix and POL, 
respectively, increasing the number of genotypes could 
enhance the observed results. This expansion could facili-
tate the identification of additional associations, potentially 
capturing effects with reduced impact on phenotypic vari-
ance and lower allele frequencies (Korte and Farlow 2013).

Additionally, the use of GBS has limited our ability to 
sample various genomic regions for evaluation. Although 
GBS has the potential to identify a significant number of 
markers associated with QTLs (Elshire et al. 2011), its cov-
erage of the entire genome is incomplete. Coupled with 
our employment of a fragmented genomic reference, sev-
eral regions of the sugarcane genome remained unassessed. 
Therefore, the utilization of scalable and high-quality long-
read sequencing holds great promise for advancing sugar-
cane genomics, particularly for enabling proper application 
of the current allele-specific genomic references (Zhang et 
al. 2018; Bao et al. 2024; Healey et al. 2024).

When evaluating the enriched GO terms associated with 
the GWAS and LD results, it was possible to observe molec-
ular functions and biological processes primarily pertaining 
to regulatory activities, such as kinase activity, intracellular 
transport, and functions related to RNA and DNA process-
ing. Specifically, certain terms are associated with sugar 
metabolism and the hormone abscisic acid (ABA), which 
plays a pivotal role in plant metabolism, particularly in 
response to abiotic stress. Previous investigations conducted 

stress response pathways (Liu et al. 2017; Pimenta et al. 
2023). Moreover, PPR proteins are implicated in the modu-
lation of gene expression in organelles and play crucial 
roles in plant embryogenesis (Cushing et al. 2005; Yin et al. 
2013), potentially accounting for the observed enrichment 
of GO terms associated with embryonic development.

Although the use of the sugarcane methyl-filtered 
genome reference enabled us to detect a significantly greater 
number of SNPs, the assessment of LD decay patterns was 
hindered by the fragmented nature of this assembly. Never-
theless, broadening the analysis to include LD associations 
with GWAS-identified markers across the entire SNP set, 
irrespective of their scaffold location, allowed us to retrieve 
a more extensive set of genes, thereby facilitating more 
comprehensive inferences.

Consistent with our GWAS findings, we also identified 
additional genes associated with stress responses in the LD 
associations. These include E3 ubiquitin-protein ligase (Shu 
and Yang 2017), calcineurin B-like protein 10 (Su et al. 
2020), RING finger protein 141 (Han et al. 2022), abscisic 
acid 8'-hydroxylase 2 (Umezawa et al. 2006), DEAD-box 
ATP-dependent RNA helicase 25 (Kim et al. 2008), and 
peroxisomal biogenesis factor 3 (Hu et al. 2012). Notably, 
several stress-responsive genes are associated with sucrose 
accumulation, potentially leading to changes in carbon allo-
cation and photosynthetic activities (Verma et al. 2019; Qin 
et al. 2021).

Additionally, through LD expansion, we successfully 
identified key players involved in sucrose synthesis and 
accumulation. Our analysis revealed genes associated with 
crucial processes, including bZIP transcription factor, beta-
glucosidase, and thioredoxin-like protein genes. The bZIP 
transcription factor has previously been recognized as a 
negative regulator of cold and drought responses in rice (Liu 
et al. 2012). It also plays a significant role in various car-
bohydrate-associated processes, highlighting the intricate 
relationship between stress responses and growth dynamics. 
Moreover, in addition to its involvement in starch regula-
tion in rice (Wang et al. 2013a), bZIP has been implicated 
in sucrose synthesis, transport, and metabolism (Ma et al. 
2019; Stein and Granot 2019), and its role has already been 
investigated in sugarcane (Wang et al. 2022a).

Furthermore, the beta-glucosidase protein has been 
linked to sucrose synthesis and accumulation (Khan et al. 
2023), potentially exerting a negative influence on sucrose 
accumulation (Qin et al. 2021). Last, thioredoxin (TRX) 
proteins are associated with trehalose synthesis (Khan et al. 
2023), which has been shown to impact sucrose metabo-
lism (De Oliveira et al. 2022). TRX proteins play a pivotal 
role in modulating chloroplast functions to maintain equi-
librium in photosynthetic reactions through redox regula-
tion (Nikkanen and Rintamäki 2019). Consequently, these 
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genes are associated with biological processes that overlap 
with those identified through GWAS and FS-selected mark-
ers. Regulatory mechanisms involving protein modifica-
tions, transcription factors, responses to oxidative stress, 
anion transport, and DNA/RNA processing were indicated. 
Additionally, these genes play roles in the response to both 
biotic and abiotic stresses, with implications for ethylene 
and gibberellin regulation. Furthermore, associations with 
sugar catabolism were discerned. This convergence of 
mechanisms across multiple omics layers underscores the 
interconnectedness of biological processes and the poten-
tial for integrated analyses to increase our comprehension 
of complex traits.

As anticipated, our analysis revealed genes that exhibited 
both differential expression and associations with pheno-
type‒genotype relationships. Among these genes, the only 
gene that overlapped with GWAS findings was annotated as 
an anion transporter, reinforcing the potential involvement 
of its activity in sucrose accumulation. With respect to genes 
associated with FS-selected markers, we identified one gene 
encoding the transcription factor MYB36, which has been 
previously implicated in plant growth and stress response 
(Monje-Rueda et al. 2023). Additionally, we detected a gene 
annotated for jasmonate-induced oxygenase, known for its 
role in suppressing plant immunity (Caarls et al. 2017), 
providing further insights into the molecular mechanisms 
underlying disease susceptibility in high Brix genotypes.

Additionally, we also found common annotations between 
the set of DEGs and the GWAS results. Although they do 
not correspond to the same genes, it is clear that the same 
biological mechanisms are associated with phenotypic vari-
ability favoring sucrose accumulation and differential gene 
expression in different sugar content genotypes. The regula-
tory roles of the FAR1 protein, E3 ubiquitin-protein ligase, 
and beta-glucosidase warrant further attention because they 
are implicated in carbohydrate synthesis and potentially 
influence the balance between sucrose accumulation and the 
defense response (Ma et al. 2017; Shu and Yang 2017; Liu 
et al. 2019; Qin et al. 2021; Khan et al. 2023).

While only a limited number of genes were consistently 
identified across all approaches and datasets, there is a clear 
consensus emerging regarding the biological processes and 
mechanisms influenced by these selected genes. To con-
solidate our findings, we constructed a gene coexpression 
network. Specifically, our analysis enabled us to delineate 
eight distinct gene groups within the network comprising 
DEGs as well as genes exhibiting significant associations 
with SNPs linked to divergent sucrose accumulation levels, 
as identified through GWAS and FS.

Based on the premise that the selected genes are corre-
lated with sucrose accumulation, we hypothesize that the 
most significant differences in the impact of these genes on 

on sugarcane have indicated a potential overlap between 
sugar and ABA-related processes. This overlap arises from 
the capacity of ABA to regulate a set of genes associated 
with sucrose metabolism (Papini-Terzi et al. 2009).

In addition to the findings obtained from GWAS, we 
employed machine learning approaches, a strategy that 
has proven effective in uncovering genotype‒phenotype 
associations (Aono et al. 2020; Pimenta et al. 2021, 2023). 
Through this integrative approach, we present a comprehen-
sive analysis that extends beyond conventional GWAS find-
ings. This enables us to uncover a wider set of metabolic 
pathways that may be associated with genes implicated in 
sucrose accumulation.

Our analysis revealed an expanded repertoire of enriched 
GO terms in the FS results, reflecting a diverse range of 
regulatory and nonspecific processes. These include post-
translational modifications in proteins, DNA and organelle 
processing, embryonic development, transport, and nutrient 
responses. Notably, processes related to growth, hormone 
signaling, stress responses, and lipid metabolism were also 
indicated. To date, there has been no direct association 
between these processes and sugar metabolism documented 
in the literature. However, it is plausible that, similar to the 
mechanism associated with ABA, these processes may exert 
an indirect influence on this process.

When comparing different genotypes, the observed 
DEGs were implicated in a broad array of biological pro-
cesses. Thus, when comparing the IN84-58 S. spontaneum 
genotype with the SP80-3280 and R570 hybrid genotypes, 
subset selection was necessary to identify potential associa-
tions with sucrose accumulation profiles. Although sucrose 
synthesis primarily occurs in sugarcane leaves, sucrose is 
transported through the phloem to culms, where it is uti-
lized for plant growth and development or is stored (Mason 
et al. 2020). When the plant reaches maturation, sugars are 
directed toward storage, accompanied by the activation of 
specific mechanisms, resulting in changes in accumulation 
efficiency within the culms (Wang et al. 2013b).

Thus, we selected DEGs between S. spontaneum and the 
hybrids only if they were also detected during contrasting 
developmental stages. This decision stems from the fact that 
the gene expression patterns in sugarcane tissues are sig-
nificantly influenced by the developmental stage (Wang et 
al. 2013b; Chen et al. 2019). In addition to developmental 
differences, there are also genotype-specific DEGs (Papini-
Terzi et al. 2009). As our focus did not include the specific 
mechanisms of R570 and SP80-3280, we opted for an inter-
section between the results obtained from both compari-
sons, thereby enhancing the reliability of associating such 
expression changes with sucrose accumulation.

The intersection of the DEG sets led to the identification 
of 853 genes, revealing intriguing insights. Notably, these 
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betweenness were mostly associated with protein synthesis 
and gene expression regulation, including the protein trans-
lation factor SUI1 (Li et al. 2022), the transcription factor 
BTF3 (Pruthvi et al. 2017), and the calcium/calmodulin-reg-
ulated receptor-like kinase 1 (Yuan et al. 2022). In contrast, 
the network modeled for S. spontaneum had genes with high 
betweenness primarily associated with cellular structure and 
division, such as the kinetochore-associated protein KNL-2 
(Zuo et al. 2022) and formin-like protein (Kollárová et al. 
2021). A high betweenness measure indicates that a gene 
permeates many gene associations, potentially facilitating 
the flow of interactions within the network. This suggests 
that in S. spontaneum, gene associations favor the main-
tenance of cellular architecture integrity. Conversely, in 
hybrid networks, these genes are more involved in signal 
transduction.

Remarkably, the observed network dynamics suggest 
that gene communication within the gene set associated 
with S. spontaneum is predominantly associated with plant 
immunity. In contrast, in the hybrid networks, we observed 
indications of a more nuanced interplay, potentially influ-
enced by external factors. These findings highlight the intri-
cate regulatory networks underlying sucrose accumulation, 
revealing distinct regulatory strategies adopted by different 
genotypes in response to environmental stimuli.

Conclusion

Sugar production is the primary focus of sugarcane breed-
ing, and this process is governed by complex interactions 
among polygenic effects and diverse biological processes. 
Unraveling the genotype‒phenotype associations that signif-
icantly increases sucrose content presents a great challenge 
but holds immense value for sugarcane breeding. Despite 
these efforts, the development of varieties optimized for this 
trait remains limited. Genetic modifications targeting genes 
specific to sucrose metabolism have not yielded the desired 
outcomes. Thus, comprehensive investigations spanning a 
broad set of mechanisms are essential for identifying prom-
ising targets.

In our study, we adopted an integrative approach to exam-
ine sugarcane genetics. By combining GWAS, machine 
learning algorithms, and differential expression analyses, we 
identified key factors involved in sucrose accumulation that 
warrant attention. Notably, a jasmonate-induced oxygenase 
was identified as a DEG associated with significant findings 
from our GWAS. The mutation observed near this gene, 
known for its role in suppressing plant immunity, appears 
to favor sugar accumulation. Additionally, the role of the 
beta-glucosidase protein was noteworthy, with annotations 
found in genes proximal to GWAS hits and DEGs. Given its 

sucrose accumulation are attributable to their interactions. 
Therefore, investigating these interactions might provide 
valuable insights into key genes that could serve as focal 
points for more extensive investigations. Thus, we con-
structed specific gene coexpression networks, differentiat-
ing between the gene expression profiles of hybrids and the 
S. spontaneum genotype.

The network constructed for S. spontaneum gene expres-
sion exhibited approximately 50% more connections than 
the hybrid genotype networks. This suggests that a greater 
number of gene interactions are necessary for S. spontaneum 
to perform the same biological processes as the hybrids. We 
believe that the simpler network structure observed in the 
hybrids signifies more efficient regulation of the processes 
related to sucrose accumulation through gene interactions. 
However, external factors, such as stressors, can easily 
influence gene interactions in the hybrid networks. In con-
trast, gene communication in S. spontaneum is less suscep-
tible to disruption, consistent with the inherent resistance of 
this species to different types of biotic and abiotic stresses.

While conducting a comprehensive analysis of all net-
work components could provide valuable insights into 
sucrose accumulation, our study prioritized key network 
elements. We achieved this by evaluating specific centrality 
measures, aiming to correlate node influence with the bio-
logical implications of gene roles, thus enabling meaningful 
inferences (Wang et al. 2022c). Furthermore, by compar-
ing genes with high centrality measures across the networks 
modeled, we can infer differences in the regulatory mecha-
nisms governed by the gene sets within these networks.

Starting with evaluations of degree, which measures the 
importance of a gene based on the number of connections 
it possesses, and Kleinberg’s hub score, which incorporates 
gene proximity to other network nodes into the assessment, 
it becomes evident that genes exhibiting increased centrali-
ties in the hybrid networks are more closely associated with 
the regulation of fundamental cellular processes crucial 
for plant growth, including amino acid biosynthesis, sig-
nal transduction, gene expression regulation, and protein 
synthesis. Conversely, in the S. spontaneum network, these 
genes appear to be involved in a broader array of mecha-
nisms, potentially including roles in stress-response sig-
naling pathways, as indicated by glutathione S-transferase 
(Vaish et al. 2020), adagio protein (Bulgakov et al. 2017), 
auxin response factor (Li et al. 2016), acyl-coenzyme A 
thioesterase (Kalinger et al. 2020), and cinnamoyl-CoA 
reductase 1 (Park et al. 2017). These findings support our 
observation regarding the association of this network archi-
tecture with the effective response of S. spontaneum to vari-
ous types of stress.

Betweenness centrality exhibited an opposite pattern. 
In the networks modeled for the hybrids, genes with high 
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negative impact on sucrose accumulation, this enzyme is a 
promising target for biotechnological investigations.

Moreover, we integrated all genes associated with our 
findings across analyses and datasets into a comprehen-
sive gene coexpression network, providing a foundation 
for future genetic studies. Contrasts between specific gene 
coexpression networks constructed for S. spontaneum and 
sugarcane hybrids revealed differences in gene associations 
linked to sugar accumulation. We hypothesize that the sim-
pler network structure observed in hybrids may indicate a 
more efficient process, albeit potentially more susceptible to 
external influences such as stressors. Conversely, the more 
cohesive network observed in S. spontaneum may be associ-
ated with enhanced plant immunity.
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