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Abstract: In the context of high energy costs and energy transition, the optimal use of energy resources
for industrial consumption is of fundamental importance. This paper presents a decision-making
structure for large consumers with flexibility to manage electricity or natural gas consumption to
satisfy the demands of industrial processes. The proposed modelling energy system structure relates
monthly medium and hourly short-term decisions to which these agents are subjected, represented
by two connected optimization models. In the medium term, the decision occurs under uncertain con-
ditions of energy and natural gas market prices, as well as hydropower generation (self-production).
The monthly decision is represented by a risk-constrained optimization model. In the short term,
hourly optimization considers the operational flexibility of energy and/or natural gas consumption,
subject to the strategy defined in the medium term and mathematically connected by a regret cost
function. The model application of a real case of a Brazilian aluminum producer indicates a measured
energy cost reduction of USD 3.98 millions over a six-month analysis period.

Keywords: energy procurement; load-supply flexibility; integrated stochastic optimization model;
regret cost function

1. Introduction

Industrial sector players are adapting their processes to align with energy transition
objectives by focusing on decarbonization, efficient energy use, and increasing renewable
energy sources.

In this context, players could face relevant issues to their business in the efforts
undertaken for the energy transition, such as the cost of energy acquisition (and market
competition), the use of locally available energy resources, and the technological specificities
required in their industrial process, among others.

Minimizing energy purchasing costs is an important decision-making process for large
energy consumers, particularly those operating in the aluminum, metal, and petrochemical
sectors. Owing to the amount of energy demanded in these industrial processes, agents seek
to diversify their energy supply alternatives by investing in self-production and equipment
powered by fuels, in addition to the traditional alternative of procuring electrical energy on
the market or through bilateral contracts [1].

By owning energy generation assets to satisfy their demands, that is, being self-
producers, large consumers (LCs) represent both load and generation, and they may use
different strategies for energy transactions in the market, including selling their surplus in
addition to purchasing to satisfy their loads.

Energies 2024, 17, 5389. https:/ /doi.org/10.3390/en17215389

https://www.mdpi.com/journal/energies



Energies 2024, 17, 5389

20f19

Another strategy employed by LCs to minimize their energy supply costs is the use
of fuel-powered equipment in industrial processes to partially supply their demand (for
example, by using heat boilers driven by natural gas (NG)) as an alternative to exclusive
dependence on electricity.

The decision to contract energy and NG involves decision-making under uncertain
conditions, for example, in relation to energy and NG market prices, energy generation
(self-production), and demand forecasts.

Strategically, LCs plan to satisfy their energy demands within different timeframes.
Long-term strategies involve investment in generation assets for the self-production of
energy. Medium-term strategies involve the contractual portfolio, which defines positions
under uncertain conditions, to provide predictability about the expected cost over a given
horizon (e.g., for one year). In addition, short-term decision-making should be faced, which,
with hourly granularity, aims at to satisfy the demand by utilizing managerial flexibility in
using NG or electricity.

In this context, the decision-making process of a large energy consumer comprises a
relationship between those decisions taken at the strategic level (medium term; monthly
basis) and the decisions to be taken on the operational level (short term; hourly basis).
Similarly, long-term decisions, such as investment in self-production, are related to medium-
and short-term decisions because self-production determines the basic conditions to satisfy
demands.

Considering the decision-making process of a large energy consumer with renewable
generation assets as a self-production strategy, demand-supply will occur under uncertain
conditions of actual generation. If self-production is not sufficient to fully satisfy demand,
decisions should be made for the medium term based on existing alternatives, for example,
by purchasing energy and/or NG for use in equipment, if this operational flexibility exists.
Because NG contracts have specific delivery clauses (e.g., take-or-pay and flexibility), this
condition serves as a guideline for short-term decisions.

In all these decisions, prices (e.g., of energy and NG) are important drivers. Addition-
ally, as an energy self-producer, an agent can sell electricity on the market if consuming NG
instead of electricity is more advantageous.

In summary;, as these decisions are significant and involve different constraints and
uncertainties, this paper presents an optimization model structure that can support the
decision-making of LCs in the medium and short-term horizons, considering the relation-
ship between decisions in each horizon.

Some studies have addressed the electricity procurement problem of LCs. Refer-
ence [2] presented a mixed-integer programming model to minimize the expected cost and
conditional value at risk (CVaR) of the LC’s weekly portfolio operation, considering energy
purchased on the pool market, through bilateral contracts or self-generation investment,
as alternatives for its load supply. The authors calculated the levelized electricity price as
the investment representation, which is essentially a long-term decision, on a weekly basis,
obtaining the energy price per unit produced and assuming that this can be compared
with the energy spot price. Although the consideration of self-production investment
proved innovative compared with other studies, such as [3], the study did not examine the
selling of the LC’s surplus energy or renewable generation (used as self-production) as an
uncertainty source.

A similar study can be found in reference [4], where some alternative renewable self-
production investments were investigated in terms of efficient and cost-effective energy use
and the renewable generation uncertainty was represented by a scenario generator model.

The limitation of not examining the selling of the LC’s surplus energy was addressed
in [5] through the proposal of a model where the LC has the option of selling the surplus
energy on the pool market. The risk-averse optimization model also considers as uncer-
tainties the photovoltaic generation of the self-production and the price of energy on the
spot market. However, the study focused on short-term decisions without considering
investment or medium-term contractual portfolio decisions.
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The above-mentioned studies presented risk-averse solutions based on forward con-
tracts and self-generation production as hedging strategies against pool market volatility.
In this type of modelling, the decision is guided by the relationship between the expected
cost and associated risk. Similar results were obtained in [6-8], where in [6], player demand
was addressed through a cost-minimization approach that incorporated associated risks,
as measured by variance, via a weighted parameter in the objective function. The study
presented in [7] advanced the contributions from [6] by incorporating the conditional value
at risk as a method for calculating risk, while the research discussed in [8] used concepts
from information gap decision theory to model the price uncertainty.

Other studies focused on daily LC operation and demand response to market prices [1,9-12],
and the results emphasize the consumption allocation at lower market hour prices. Reference [12]
analyzed an LC in the Brazilian market; however, the study did not consider an alternative for
satisfying demand via self-production and, therefore, did not consider the possibility of selling
surplus energy on the spot energy market. These aspects were considered in this paper.

Reference [13] analyzed a similar LC problem from the perspective of investing in
a wind power plant to compose, in conjunction with a hydroelectric plant, a generation
portfolio for the self-production of energy. A risk-averse optimization model was applied
to support decision-making, and the results indicated that the complementarity of the
portfolio’s asset generation contributed to minimizing energy supply risks.

In [14], the LC methodology developed by [6,7] was applied to a hydrothermal system,
where uncertainties in energy prices are dependent on the river flow’s stochastic behavior.

Reference [15] presented some originalities from [12-14] by connecting long, medium
and short-term decisions of an LC problem, considering the possibility to have power
purchasing agreements (medium term) and the installation of a photovoltaic self-unit
(long-term decision), where the hourly energy adjustment is traded at day-ahead and
real-time markets (short term). However, the paper presents some gaps by not permitting a
longer medium-term analysis at the same time of a dynamic short-term analysis. This is
circumvented in our paper by the regret cost function, which allows the coupling between
the medium- and short-term models, enabling the application of a stochastic medium-term
model and a more detailed deterministic short-term model.

Reference [16] proposed the application of a regret cost function in the LC problem,
although the focus was on a simple LC framework design (only short-term operation
without the option to establish any contract) and theoretical analysis, not considering
numerical and simulation studies.

It is important to note that, although reference [17] addressed both NG and electricity
for heat-load management, the study did not represent a model of a self-producing agent
with the capability to sell surplus energy and establish bilateral contracts. Instead, it focused
on a microgrid model with some self-generation options to meet the load, in addition to
relying on the electrical grid.

Regarding optimal bidding strategies between electricity and NG markets, the model
presented in [18] aims at the maximizing of a gas-fired power plant’s profits, while in [19],
the strategic investment is also analyzed, but both of the works do not consider the business
model of an LC energy-procurement problem, focusing solely on the generation perspective.

This paper shows originalities from all studies cited before by applying a stochastic
optimization model to support the LC energy-procurement problem, considering the
relationship between a monthly contractual portfolio medium-term decision and hourly
short-term operations, such as (i) load shutdown or startup and (ii) settlement in the spot
market. The relationship between the two models is represented through a regret cost
function.

The main contributions of this paper are as follows:

(1) An optimization modelling framework is developed, considering optimal decisions

to be taken in the medium term and how they constrained optimal decisions in the
short term.
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(2) A decision-making structure for LCs is developed, considering managerial flexibility
in consuming electricity or NG to satisfy the demands of industrial processes.

(3) A penalty mathematical function is modelled to represent the regret cost function and
the connection of medium- and short-term decisions.

(4) The CVaR metric is applied to manage financial risks associated with uncertainties
such as electricity, renewable generation (hydro), and NG prices.

2. Large Consumer Decision Problem

An energy-related LC decision problem encompasses various uncertainties and de-
cisions that vary depending on the analysis time horizon. Long-term decisions have
implications for medium- and short-term operations. By owning both load and electric-
ity production assets, the LC’s power management entails critical aspects of generation,
commercialization, and load supply, as well.

Figure 1 summarizes the LC decision problem, where long-term decisions are repre-
sented by investments in NG boilers to enable load-supply flexibility through electricity
or NG. Medium-term decisions focus on contractual portfolios, and short-term decisions
consist of the utilization of either the NG boiler or electricity consumption to satisfy the LC
load. All analysis horizons consider spot market operations, where the difference between
energy resources and load is settled at the spot price; therefore, different decisions drive
different results in the spot market.

Contractual Portfolio

NG Boiler
Investment ) ¢

Electricity and NG
Short Term Model ——— > Boilers' Hourly
Operations

Medium Term
Model

Figure 1. LC decision problem by analysis horizon.

The long-term decision to invest in an NG boiler provides load-supply flexibility
between electricity and NG, which is inserted as an input in medium- and short-term
operations.

Subsequently, a linear stochastic optimization model is applied to the medium-term
horizon to optimize the electricity contractual portfolio by considering the spot energy
price and hydrogeneration as uncertainties.

Note that the medium-term results indicate the NG use for the subsequent months,
and the short-term model details the solution driven by the medium-term model. For
coherency of the solutions, a regret cost function is included in the short-term model to
relate the daily operation to previous medium-term decisions, thereby associating the
short-term deterministic operation with uncertainties from the medium-term stochastic
model.

Regarding the granularity of uncertainties, the long-term and medium-term model
considers monthly scenarios of spot electricity price and self-hydroelectric generation.
Additionally, the NG price projections reflect an average cost associated with the contractual
arrangements with the NG supplier. The total monthly energy demand is assumed to
remain constant, with the potential for modulation of electricity and NG. In the short-term
model, the spot electricity price is characterized as hourly and deterministic.

As the short-term model is close to real-time operation, the boiler unit commitments
and network connections restrictions are also represented.

Within this framework, the LC decision problem is comprehensive because decisions
formulated within a specific analysis horizon exert significant impacts across the entire
analysis spectrum.
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For simplicity, in the following, a case study is presented in which the investment
in the NG boiler has already been made and amortized, focusing on the decision-making
process only in medium- and short-term operations. The investment model equation for an
LC is detailed in [13].

3. Mathematical Formulation
3.1. Medium-Term Operation

The medium-term model aims to determine the optimal contractual electricity portfolio
by considering the domains of candidate contracts with different volumes, prices, and
delivery horizons.

The following equations describe the linear stochastic optimization model applied to
the market intelligence tool:

max F = Zps Rs +p- (A—— Zpsﬂs) (1)

seQ) seQ)
1
stiR =Y — . [(R + RSPOT _ cgf) - cﬁ’f] )
teT (1 +7)
- Z xs sC Vt sC 7Tt sc (3)
sc € SC
RSPOT PSPOT SfOT (4)

PSPOT <Gs,t+ E xi%g"@épg) _< + 2 xssc Vtsc) (5)

pc € PC sc € SC
PC _ PC
Cs,t - Z xs ,pc thc Ty ,pc (6)
pc € PC
NG NG /NG, NG

Cs = Xgt Vim (7)
oo <1 xS = 0; x5 < 1L xl5 >0, 100 <1, x)C >0 8)
as > A—Rg; a5 >0 )

The objective function in Equation (1) follows the methodology proposed by Camargo
et al. [20], in which the objective is to maximize the convex function composed of the
expected return and risk metrics. The level of risk-aversion parameter p [%] and its
complement (1 — p) embody the notion of risk aversion as they apply weights to the two
constituents of the equation, representing the decision-maker’s risk-aversion profile. The
equation considers a defined number of scenarios ‘s” belonging to a set of scenarios () [21].
The variable A [USD] corresponds to the value at risk (VaR) with a confidence interval o €
(0,1), ps [%] is the probability of scenario s belonging to (), and a_s is an auxiliary variable
used to calculate the CVaR of scenario s [22].

Equation (1) under p of 100% represents a completely risk-averse agent, where the
decision is taken only by accounting for the CVaR. In contrast, for a completely risk-neutral
agent, p is zero, and the decision is taken based on the expected return. Intermediate values
of p correspond to risk-aversion profiles that weigh both the expected return and CVaR in
the decision.

The expected return (R;) in Equation (2) comprises two components: one related to
electricity operation and the other to NG consumption. The electricity operation is calcu-

lated as the sum of the earnings from selling contracts (Rfftz), spot market results (Rflt) OT) ,

and purchasing contract expenses (Cg €), whereas the NG component is represented by the

NG acquisition cost (Cg\],tc). The expected return (Rs) is represented by the present value,
where r is the interest rate and £ is the time step in analysis horizon T.
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The decision variables correspond to the selling percentage of a contract (sc) belonging
to a set of contracts SC (x§$,), the purchasing percentage of a contract (pc) belonging to the
set of contracts PC (xf/ gc), and NG consumption (xg\ftc), all in %.

The revenue from selling contracts (Rf,f), as shown in Equation (3), is obtained by
multiplying x3S, by the maximum amount of energy that can be sold from the contract
(stc) and its price (nggc) at each time ¢.

The spot result (R$7OT
( PSS,{)OT

) in Equation (4) is obtained by multiplying the spot position
) by the spot price (ngf OT), where Pssf OT, calculated using Equation (5), depends on
the difference between the energy owned by the LC and the energy committed to selling
contracts and consumption. In Equation (5), G, corresponds to self-hydrogeneration, and
Df,t is the electricity demand for each s and t.

The expense from purchasing contracts (Cg ) is calculated using Equation (6) by

PC
s,pc

be acquired from the contract (prc) and its price (715 ;?c) ateach t.

multiplying the purchasing percentage (x; ) by the maximum amount of energy that can

Equation (7) expresses the NG acquisition cost (Cg\’f) , which depends on the product

of NG consumption and its price (xg\],tc). (VNG) represents the maximum amount of NG
purchased through a bilateral contract with an NG distributor.

Equation (8) are the constraints applied to the decision variables, which must be
between one and zero.

Furthermore, Equation (9) are constraints used to compute the CVaR. The result is
obtained considering all analysis horizons T and for each s.

Flexibility Between NG and Electricity

In Equation (5), Dgt corresponds to the electricity demand at t and in s. The formula-
tion reduces Df,t while enabling its fulfilment through the utilisation of NG, as shown in
Equation (10), where DS’JG represents the load amount that can be supplied using NG in
MWh, and DTs’ftN is the total energy demand, also in MWh.

DE, + DN¢ = DTEN (10)

Equation (11) provides the relationship between NG use and its electricity equivalent,
where B is expressed in MWh/Nm? (As a mathematical simplification, the thermal inertia
of the boilers was indirectly considered in the minimum shutdown time; however, the cost
of state transition was not taken into account).

Dg\],tG :,B'xg\],tG"/tNG (11)

3.2. Short-Term Operation

The short-term model takes into account the electricity and NG boiler operations
required to supply the LC demand, considering electricity and NG price estimations for
the subsequent months.

The objective in Equation (12) aims to maximize the expected return from electricity
and NG operations, where R3¢ corresponds to the revenue from selling contracts, R77OT is
the electricity spot result, CI'“ is the cost of purchasing contracts, CNT is the charging of the
electricity transmission network, and CtN G is the NG acquisition cost.

The decision variables are represented by the electricity boiler activation at t (u;),
the contracted plus transmission network activation (xNT), and the NG consumption
percentage (x{\] ).

Equation (13) calculates the revenue from selling contracts (Ry©) obtained using the

product of x5¢, VE, and nssgt ateach t.

The spot result (R779T), shown in Equation (14), is obtained by multiplying 7ty 70T

by P?POT, which results from the difference between the energy owned by the LC and the
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energy committed by selling contracts and consumption, as indicated in Equation (15),
where G; corresponds to self-hydrogeneration, and DF is the electricity demand for each ¢.

Equation (16) presents the flexibility between NG and electricity to satisfy the load supply,
where DNG is the NG consumption, and DT/ is the total energy demand for each ¢.

As in the medium-term model, Equation (17) provides the relationship between NG
use and its electricity equivalent, where { is expressed in MWh/Nm?.

The purchasing contract cost (CI'C), shown in Equation (18), is obtained by multiplying

by t and x ¢ ateach t.

The restrlctlons presented in Equations (19) and (20) are related to the unit commitment
process of the electric boiler, where the startup and shutdown times should satisfy the
minimum amount of time (£°//).

In addition, the electricity operation has a minimum (Df—MI N) and maximum (
power to be delivered, as specified by Equations (21) and (22), where u; is a binary variable
representing the state of the NG boiler.

Equations (23) and (24) determine the charge related to the transmission network
usage agreement. The LC has the option of increasing the limit value of the network
usage agreement in periods with more electric consumption. CNT is the total network
transmission charge, where CNT_fix ig the fixed amount contracted, and CNT-P1us ig the
additional amount that can be contracted. xNT corresponds to the decision variable of
activating the additional amount, which is equal to 1 if the electricity demand exceeds
the amount of contracted network usage (DTFN) for any ¢ belonging to TM. Note that if
the electricity demand exceeds the network usage limit at any time within the analyzed
horizon, an additional transmission rate is charged. The rate comprises fixed and variable
values. In Equation (24), TM represents the set of hours for each month in the analysis, and
it belongs to the total analysis horizon T.

The NG cost acquisition is given by Equation (25), which is the product of NG con-
sumption, its price (NC. VNC) represents the maximum amount of NG that differs from
the bilateral contract with the NG distributor, and v is the function that relates the NG
consumption in the short term with the medium-term indication, expressing a cost if the
result differs from that of the medium-term output.

DtE_MAX)

max F = Y (Rp + RgPOT — ¢ — 1) — ¢ (12)
teT
Rfc = Z xSC Vct nsct (13)
sc € SC
RSPOT PSPOT SPOT (14)
PPPOT = (G + Y xSV t) (Dt + Y xS VE ) (15)
pc € PC sc € SC
DF + DN¢ = DTEN (16)
DNC = .xNC.yNC (17)
Cfc = Z xPC Vpct' I;cct (18)
pc € PC
Up = Upp1 + Uy orf Uy gopr <1 19)
ut — ut+1 + ut+t0ff—l + ut+t0ff Z _1 (20)
Df > up-DE-MIN (21)
D < u;-DE-MAX (22)

CtNT — CNT_fix + xi\IT'CNT_plus (23)
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3.3. Regret Cost Function

According to [23], the regret cost notion addresses future costs required to execute a
change, which is associated with the potential short-term benefits by changing the course
of action.

In Equation (25), the parameter 7 expresses a regret cost function if the short-term
output of NG consumption differs from that obtained from the medium-term model.

The first step in building this function consists of simulating the medium-term model
according to Equations (1) to (11), resulting in the objective function (F 51) and the NG

s1
consumption (x?’tc VN G) , indicated as the NG consumption objective obtained from the

medium-term operation.

Therefore, two more simulations are applied to the medium-term model, each with
the implementation of the restrictions shown in Equations (26) and (27), resulting in two
more objective functions (F52 and F°3), where ¢ represents a small increment to fluctuate
the output from the previous optimization.

(e ve)™ < (e ve) - 26)
(stf*w/gVG)s3 > (xth-VtNG)Sl-(l +e) 27)

The three simulations result in the graph are presented in Figure 2, where the angles
41 and J can be calculated using Equations (28) and (29).

PSl _ FSZ
= ———— (28)
e (xg\,ItG.VtNG)
FSl _ FS3
= (29)
8,(xé:ItG_VtNG)
FS]_ ,,,,,,,,,,,,
FS3 62
FSZ ____________ /{
EEP- L~  F T (x;‘ff ; vg"z)-*‘l- (1+¢)

Figure 2. Variation in the medium-term objective function according to the addition of restrictions.

The final step involves adding the restrictions shown in Equations (30)—(32) to the
short-term model:

v>0 (30)

72 | (00 - (e ve) 4 QY
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7> | (0v) - (0.v) | (32)

Consequently, by changing the short-term NG consumption from that indicated by
the medium-term operation, a regret cost function is added to the objective function.
Therefore, the short-term output will differ from that of the medium-term output only if the
return exceeds the associated regret cost function. Figure 3 summarizes the construction
methodology of the regret cost function used in this paper.

&

Y
[(xN§ -W¥E) — (xNE - I{g"‘;)“] -6, [(xNE - V&)1 (xNE . VNG)] - 5,
s |1 Mim oy |
S 0 03 et
Ny
N
NG , NG
Xs¢ Ve

(25 - ey
Figure 3. Construction methodology of the regret cost function.

A sensitivity analysis of the input parameters spot electricity price, NG price, and the
availability of contracts is crucial for assessing the robustness of the model’s outcomes. Due
to the linear optimization framework, the model is highly sensitive to variations in these
parameters, which can lead to significant fluctuations in projected results. However, the
incorporation of a regret cost function helped to attenuate the outcome variability, especially
in the short-term horizon. The regret cost function mitigates the impact of parameter
fluctuations by adjusting the optimization criteria, enhancing the model’s stability and
reliability.

4. Case Study

The proposed modelling structure for LCs was applied to analyze the decision-making
process of an aluminum producer operating under the Brazilian energy market framework
(Information about the aluminum producer’s electricity consumption and energy planning
is important for planning the Brazilian electricity system, given the significant role that the
industrial sector plays in overall electricity consumption [24]). The optimization models
were run on the Fico Xpress optimizer [25].

Although the case study focused on a Brazilian LC, the proposed modelling structure
is applicable in other markets worldwide because the particularities of the Brazilian sector
were not the main aspect of the modelling, but rather the rational decisions of LCs.

4.1. Description

The case study was designed for the optimal operation of the LC, considering a
planning horizon from July 2021 to December 2021, covering six months.

The medium-term model (MT) and the short-term model (ST) had analysis horizons
of six and two months, respectively. The medium-term results, such as the contractual
portfolio and NG monthly consumption decisions, were represented as inputs in the
short-term model, which aimed to determine the electricity and NG hourly consumption
(Figure 4).

To cover all analysis horizons, the MT and ST were applied six times. Therefore,
12 simulations were run, with both having the same first initial month of simulation (IM1:
July 2021) and the last month depending on each analysis horizon (six and two for the
medium and short term, respectively).
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Analysis Month (AM)

AM1 AM2 AM3 AM4 AMS5 AM6

C

2

=

E
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E ST > Electricity and NG Hourly Consumption
c

Figure 4. Case study simulations.

Discretion was applied in the simulations to consider the uncertainty projections closer
to operation, where, in a new set of simulations, the generation and price estimations were
updated with information from the current month.

The case study considered an LC with a risk-aversion profile (parameter p) of 50%,
indicating the same weight for both the risk and return in its objective function.

Concerning its load-supply flexibility, the LC had the option of satisfying 50% of its
total load by using NG instead of electricity. The conversion factor from NG consumption
into electricity was 0.006 MWh/m?, which was obtained according to the data considered by
the Brazilian system planner (Energy Research Company—EPE) in its ten-year expansion
plan [26]. The total monthly load was 20 MWavg (MWavg is related to electricity and
represents its equivalent in MW; the total electricity consumed during this time is calculated
as the ratio between the electricity consumed in MWh and the duration in hours (MWh/h)),
meaning that 10 MWavg could be attended by NG or electricity, while the remaining
10 MWavg must be provided by electricity.

Table 1 lists the monthly NG price for the simulations, beginning with the initial
month from IM1 to IM6, considering the tariffs applied by NG distributors in Brazil (For
simplification, the NG price applied expresses an average cost for NG use in USD/m?>. In
practice, the NG cost has two terms, one related to contracted demand and the other to the
consumption range. Future works will present the methodology developed to simplify the
cost components in one average tariff.).

Table 1. NG price [USD/m?] (Summarizing, the NG price follows brent and dollar prices from the
past three months. Future works consist of explaining in detail the methodology applied to calculate
the NG price.).

Initial Month IM1 IM2 IM3 IM4 IM5 IM6
NG Price 0.56 0.56 0.57 0.57 0.58 0.58

By deciding to consume more electricity than previously contracted from the grid,
the LC had an additional cost of USD 38623 to be inserted as CNT-P1s jn Equation (23),
considering 14.8 MWh as the fixed amount of network contracted energy (DF-"7) and USD
20,982 (The addition and fixed network transmission charges were calculated considering
Brazilian tariffs (1.43 USD/MWh to peak times and 1.42 USD/MWh to off-peak times)) as
the network transmission charge related to the fixed contracted amount.

As a contractual portfolio, quarterly and semi-annual purchasing and selling candidate
contracts were considered, taking into account the market prices published in [27] and a
maximum volume of 10 MWavg. The decision portfolio of one simulation was applied as
the input to the next set of simulations until the contract ended. For example, if, in the
simulation beginning at IM1, a 100% of quarterly selling contract was established, these
data would be inserted as input in the medium- and short-term simulations beginning in
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months IM2 and IM3, as well in the short-term simulation beginning in IM1. All simulations
considered the existence of a selling contract of 5 MWavg at 20.8 USD/MWh for all time
horizons to be considered.

Note that for a negative or positive spot position, the LC would be settled at the spot
price; therefore, the model seeks to optimize the contractual portfolio and NG consumption
to maximize its result, considering electricity and NG estimation prices as well as the results
in the spot market.

4.2. Scenarios

In Brazil, the National Electricity Independent System Operator (ONS) uses the op-
timization models NEWAVE, DECOMP, and DESSEM to define optimal centralized gen-
eration dispatch for long-term and medium-term planning, and short-term operation,
respectively, by attempting to minimize system operating costs.

The problem formulation considers the stored water in the system reservoirs, future
water inflows to the river basins, demand forecasts, thermal power plant operating costs,
and operational restrictions. Consequently, the models calculate the marginal cost of
operating the system, which represents the spot price in the Brazilian electricity market
after cap and floor prices are applied by the Chamber of Electric Energy Commercialization
(CCEE) [28]. As a consequence of the centralized hydrothermal dispatch from the ONS,
the system operator decides the amount of generation that each thermal and hydropower
plant produces at any given time, where the energy allocated to the LC depends on the
total system hydrogeneration and its energy credit from the electricity trade process [29].

More information about the mathematical formulation, as well as the restrictions
applied in the Brazilian centralized dispatch models, can be found in [30-32].

4.2.1. Medium-Term Scenarios

The spot prices and generation scenarios provided by NEWAVE [33] and used in
the medium-term simulations are presented in Tables 2 and 3, respectively. P95 and P05
correspond to the 95th and 5th percentiles of the 2000 scenarios provided by NEWAVE
outputs.

Table 2. Monthly spot price [USD/MWh].

Analysis Horizon

nitial Month Metrie AM1 AM2 AM3 AM4 AM5 AM6
P95 1214 1214 121.4 1214 1214 117.8

M1 Average 110.3 99.1 89.5 78.1 65.7 46.5
P05 56.1 46.6 38.7 26.8 18.9 12.4

P95 1214 1214 121.4 1214 121.4 119.8

M2 Average 1154 105.9 92.5 77.7 54.2 39.6
P05 76.3 52.7 34.2 25.1 15.3 10.3

P95 1214 1214 121.4 1214 121.4 1214

M3 Average 118.0 105.5 924 68.3 48.8 38.3
P05 86.2 37.7 24.5 14.9 10.3 10.3

P95 1214 1214 121.4 1214 1214 114.3

M4 Average 99.0 83.2 60.3 45.2 37.2 32.0
P05 43.5 25.3 16.0 10.3 10.3 10.3

P95 43.8 46.7 53.1 54.4 54.6 53.2

M5 Average 26.8 24.2 22.0 20.4 19.7 18.6
P05 13.9 10.3 10.3 10.3 10.3 10.3

P95 24.0 31.2 38.3 33.7 32.3 29.9

M6 Average 14.6 14.6 14.4 14.4 14.2 13.6
P05 10.3 10.3 10.3 10.3 10.3 10.3
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Table 3. Generation [MWavg].
Initial Month Metric Analysis Horizon
AM1 AM2 AM3 AM4 AMS5 AM6
P95 6.0 6.2 6.2 6.8 6.9 74
M1 Average 5.6 5.6 5.5 6.0 6.1 6.7
P05 53 52 5.0 52 51 5.8
P95 6.0 6.3 65 69 7.4 8.6
M2 Average 55 5.6 5.8 59 65 8.0
P05 53 53 53 5.0 55 71
P95 6.1 7.0 7.0 7.7 8.7 9.0
IM3 Average 56 6.0 5.9 6.6 8.0 85
P05 55 54 5.0 54 6.8 7.4
P95 7.0 72 7.6 87 9.0 8.8
M4 Average 6.1 6.4 6.7 8.1 8.5 8.4
P05 53 53 57 71 75 73
P95 7.0 7.6 87 9.0 8.8 8.0
IM5 Average 6.9 7.5 85 89 87 7.9
P05 6.8 73 8.1 8.4 8.1 75
P95 7.6 83 9.0 8.8 8.0 71
M6 Average 7.6 8.3 9.0 8.8 8.0 7.1
P05 7.5 82 8.8 8.6 7.8 69
The generation forecasts shown in Table 3 were obtained by multiplying the energy
credit (firm energy certificates, FEC) of the hydropower plant by the generation scaling
factor (GSF), which reflects the total generation of the system, considering a hydropower
plant with 8 MWavg of FEC.
4.2.2. Short-Term Scenario
Figures 5 and 6 show the hourly spot price and hourly self-hydrogeneration, respec-
tively, utilized as assumptions in the short-term model based on the outputs published by
the CCEE [33].
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Figure 5. Spot price for short-term simulations considering as initial month IM1, IM2, IM3, IM4, IM5,

and IM6.



Energies 2024, 17, 5389

13 of 19

Generation [MWh]

7.5

6.5

5.5

45

|
T T T T T e AN AN ANANANNOOONOOM < N wnwmwmo
T T T T T T TT T T T TT T T T T T T T T T T T

— 1M1
— M2
— M3

IM4

— M5

— IM6

Figure 6. Self-hydrogeneration for short-term simulations considering as initial month IM1, IM2,
M3, IM4, IM5, and IM6.

5. Results

The general results of the simulations are presented in Tables 4-6, which show the NG
consumption decisions, contractual portfolio outputs, and final electricity balance sheets,
respectively. In the first set of simulations, beginning in IM1 until IM3, the model decided
to supply the load using NG in the months of higher electricity prices, whereas in the next
simulations, beginning in IM4 until IM6, the electricity price exhibited a significant decrease,
from 81.5 USD/MWHh on average at the simulation starting in IM1 to 59.5 USD/MWh in
the simulation beginning in IM4 (Table 2), resulting in the total load supply by electricity.

Table 4. NG consumption in terms of MWavg.

Initial Analysis Horizon

Month AM1 AM2 AM3 AM4 AM5 AM6
M1 10 10 10 10 10 _
M2 10 10 10 3 - .
M3 10 10.5 - - . i
M4 - - . i i i
M5 - - . . i i
M6 - - . i i i

Table 5. Candidate contractual portfolio—price and decisions.

Quarterly Contract Six-Month Contract

Initial Month [USD/MWh] Decision [USD/MWh] Decision
M1 108.21 Purchase 13.6% 49.38 Purchase 100%
M2 113.29 Sell 100% 48.51 Purchase 100%
M3 112.86 Sell 100% 49.72 Purchase 100%
M4 60.48 Sell 46.1% 38.56 Purchase 100%
M5 39.99 Sell 100% 37.13 Purchase 2.3%
IM6 32.14 Sell 100% 36.80 Sell 100%

For the simulation beginning in IM1, the model decided to purchase 100% of the
semi-annual energy contract at 49.38 USD/MWHh and a 13.6% quarterly energy contract at
108.21 USD/MWh to hedge against higher electricity price forecasts.
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In the next set of simulations, as the electricity price forecast decreased along the
planning horizon, risk perception enabled bolder operations, with the model deciding
to purchase the semi-annual contract and sell this energy at a higher price in a quarterly
contract, performing as a trader of energy, as observed in the simulations beginning in
IM2, IM3, IM4, and IM5. For the simulation beginning in IM6, as the electricity spot price
estimation was even lower and both quarterly and semi-annual contracts had similar prices,
the model decided to sell the total energy, having been exposed to a negative balance sheet
to be settled at the spot price.

An interesting result was that, in the short-term operation for the simulation beginning
in IM3, the model decided to use more NG than that indicated in the medium-term output,
even with USD 228.3 as a regret cost, representing 0.3% of the second-month result. This
can be justified by the spot price representation being closer to an actual operation in the
short-term operation, as shown in Figure 7, where, in the transition from higher to lower
electricity prices, some scenarios had the electricity price lower than the NG price, and vice
versa, showing the importance of having the information update at the final decision. This
resulted in the transition of fuel consumption, considering the startup and shutdown time
restrictions of the boilers.

To verify the effectiveness and to validate the model, the LC operation, considering the
realized market prices and three scenarios, was calculated as follows: (i) model decisions,
(if) no flexibility between NG and electricity for load supply but with contractual portfolio
decisions, and (iii) no optimization.

In the “Model Decision” case, all decision variables are optimized, resulting in an
energy-management solution based on the developed mathematical formulation and in-
corporating real electricity prices. The “No Flexibility” case addresses the LC’s energy
problem without the option to shift demand fulfillment between electricity and NG. In this
scenario, the entire load must be met exclusively by electricity; however, the LC retains the
ability to optimize its contractual portfolio. Finally, the “No Optimization” case involves
the absence of any decision.

This leaves the LC’s uncovered portion of its demand exposed to short-term price
fluctuations. As shown in Table 7, the application of the model led to a cost reduction
of USD 3.98 million for the total analysis horizon. The use of the tool was particularly
important in the first three months, when the electricity spot price reached values close to
its cap (121.4 USD/MWh). The possibility of NG consumption, in addition to the previous
establishment of purchasing contracts, enabled a less risky operation. Note that the LC
results were mostly negative, owing to their load characteristics.
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Figure 7. NG and electricity consumption x NG and electricity prices for simulation beginning in IM3.
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Table 6. Balance sheet result [MWavg].
Analysis Horizon
Initial Month AM1 AM2 AM3 AM4 AM5 AM6
Self-generation 5.59 5.61 5.46 5.98 6.06 6.69
Purchasing Contracts 11.36 11.36 11.36 10.00 10.00 10.00
M1 Load 10.00 10.00 10.00 10.00 10.00 20.00
Selling Contracts 5.00 5.00 5.00 5.00 5.00 5.00
Balance Sheet 1.95 1.97 1.82 0.98 1.06 —8.31
Self-generation 5.49 5.64 5.78 591 6.53 8.02
Purchasing Contracts 21.36 21.36 20.00 20.00 20.00 10.00
M2 Load 10.00 10.00 10.00 17.50 20.00 20.00
Selling Contracts 15.00 15.00 15.00 5.00 5.00 5.00
Balance Sheet 1.85 2.00 0.78 3.41 1.53 —6.98
Self-generation 5.56 5.98 5.88 6.58 7.97 8.51
Purchasing Contracts 31.36 30 30 30 20 10
M3 Load 10.00 10.50 20.00 20.00 20.00 20.00
Selling Contracts 25.00 25.00 15.00 5.00 5.00 5.00
Balance Sheet 1.92 0.48 0.88 11.58 297 —6.49
Self-generation 6.15 6.40 6.75 8.09 8.52 8.44
Purchasing Contracts 40 40 40 30 20 10
M4 Load 20.00 20.00 20.00 20.00 20.00 20.00
Selling Contracts 29.61 19.61 9.61 5.00 5.00 5.00
Balance Sheet —3.47 6.79 17.14 13.09 3.52 —6.56
Self-generation 6.94 7.49 8.51 8.88 8.67 791
Purchasing Contracts 50 50 40 30 20 10
M5 Load 20.00 20.00 20.00 20.00 20.00 20.00
Selling Contracts 39.38 29.38 24.77 14.77 14.77 14.77
Balance Sheet 244 8.11 3.75 4.11 6.10 16.86
Self-generation 7.57 8.31 8.96 8.75 7.97 7.10
Purchasing Contracts 50 40 30 20 10 0
M6 Load 20.00 20.00 20.00 20.00 20.00 20.00
Selling Contracts 49.38 4477 34.77 24.77 24.77 15.00
Balance Sheet —11.82 —16.46 —15.81 —16.02 —26.80 —27.90
Table 7. LC total result for model output x no optimization [Millions USD].
Analysis Horizon
Total Result
Jul/21 Aug/21 Sep/21 Oct/21 Nov/21 Dec/21
Model Decision Case -1.21 —0.75 —0.24 0.40 —0.02 —0.43
No Flexibility Case —-0.97 —0.52 —-0.02 0.40 —-0.02 —0.43
No Optimization Case -1.76 —1.78 —1.69 —0.70 —0.18 —0.12

Total Model Benefit

3.98

6. Discussion and Future Research

Electricity procurement for an LC is characterized by decisions under uncertainty
and involves several different variables. This complexity becomes more challenging when
various renewable generation assets exist for self-consumption and operational flexibility
in operating production units using electricity and NG.
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To contribute to this subject, this paper proposes a modelling structure composed
of two optimization models—one for monthly medium-term decisions and another for
short-term decisions—considering the integration between analysis horizons by a regret
cost function. It is very important to consider the two models, as this makes it feasible to
incorporate the medium-term stochasticity, where the associated risk can be examined, in
contrast to discretization in the short term, enabling the decision to be closer to an actual
operation.

To verify the applicability of the developed model, a case study in the Brazilian
context of actual market information is presented. The results showed the medium-term
potential of indicating the optimal contractual portfolio, considering a range of contracts
with different prices, horizons, and types (purchasing or selling), where the associated risk
was accounted for using the CVaR metric and the use of a convex function, which weights
risks and returns in the decision-maker’s risk-aversion profile.

In addition, the flexibility between the two resources enables less risky operations, as
the electricity boiler or NG consumption is activated according to market price estimations.

The results underscore the significance of incorporating updates in information, high-
lighting that the short-term strategy may suggest a deviation from prior medium-term
strategies, even when such adjustments incur costs in the medium-term framework. How-
ever, the immediate advantages derived from these changes must outweigh the long-term
impact of costs, as estimated through the regret cost function, to justify changes in medium-
term decision-making strategies.

Finally, the proposed modelling structure can be applied in other markets because the
particularities of the Brazilian sector considered in the case study were not the main aspect
of the modelling, but rather the rational decisions of LCs.

Future research will examine the investment analysis of increasing the flexibility
between NG and electricity at the load supply by applying a cash flow calculation that
considers the plant lifecycle, capital disbursement schedule, and unitary cost for each source.
Therefore, the investment decision can be inserted into medium- and short-term models,
for instance, as a fixed purchasing contract, with the monthly price settled as a function of
the installed capacity and associated cost. Additionally, the risk-aversion parameter p could
be implemented as a rating scale with categories ranging from conservative to high risk,
with the aim of simplifying the mathematical interpretation of the variable. Furthermore,
the efficient value of p could also be calculated.

Author Contributions: Conceptualization, D.S.R., L.D.L. and M.H.B.; methodology, L.D.L., M.H.B.,
L.AS.C., D.S.R. and R.C., software, M.H.B. and L.D.L.; validation, L.D.L., L.A.S.C., R.C. and ES.C,;
formal analysis, L.D.L., M.H.B. and L.A.S.C.; investigation, L.D.L., M.H.B. and R.C.; resources, D.S.R.
and F.S.C,; data curation, L.D.L. and M.H.B.; writing—original draft preparation, L.D.L., L.A.S.C,,
M.H.B. and R.C.; writing—review and editing, L.D.L. and D.S.R,; visualization, L.D.L., L.A.S.C. and
M.H.B.; supervision, D.S.R.; project administration, D.S.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was financed in part by the Coordenagao de Aperfeicoamento de Pessoal de
Nivel Superior—Brasil (CAPES)—Finance Code 001.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: We acknowledge financial support from Estreito Hydroelectric Power Plant
through project PD-06512-0120/2020 (ANEEL Code).

Conflicts of Interest: Author Roberto Castro was employed by the company MRTS Consultoria Brazil.
Author Felipe Serachiani Clemente was employed by the company Alcoa Brazil. The remaining
authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.



Energies 2024, 17, 5389

17 of 19

Nomenclature

Abbreviations

CCEE Chamber of Electric Energy Commercialization

CVaR Conditional Value at Risk

LCs Large Consumers

EPE Energy Research Company

ONS National Electricity Independent System Operator

NG Natural Gas

VaR Value at Risk

Constants

foN T Amount of network use contracted (MWh)

71’5 ;(;:c Bilateral contract price of contract pc at time ¢ (USD/MWh)

ﬂtsg:c Bilateral contract price of contract sc at time t (USD/MWh)

B Conversion factor of natural gas volume into electricity (MWh/ m?)

o Confidence level (%)

Gs Hydro self-generation at time ¢ and scenario s (MWh)

r Interest rate (%)

0 Level of risk aversion (%)

Df*MAX Maximum amount of energy delivery by the electricity boiler (MWh)

VE Maximum amount of energy that can be purchased from the contract pc at
tpe time ¢ (MWh)

VtEs c Maximum amount of energy that can be sold from contract sc at time t (MWh)

VNG Maximum amount of natural gas that can be purchased from the bilateral
t contract with the natural gas distributor

Df*MI N Minimum amount of energy delivery by the electricity boiler (MWh)

nf\] G Natural gas price at time t (USD/m3)

CNT_plus Network transmission charge related to additional contracted amount (USD)

CNT_fix  Network transmission charge related to fixed amount contracted (USD)

toff Startup and shutdown time of the electricity boiler (h)

ntSP or Spot price at time t (USD/MWh)

7'[551; or Spot price at time ¢ and scenario s (USD/MWh)

DTEN Total energetic demand at time t and scenario s (MWh)

Decision Variables

NT
X

Ut

pe,s
SC

Xsc,s

Contracted plus transmission network activation at time ¢
Electricity boiler activation at time ¢

Natural gas consumption percentage at time f and in scenario s (%)
Percentage of natural gas consumption at time ¢ (%)

Purchasing percentage of contract pc in scenario s (%)

Selling percentage of contract sc in scenario s (%)

Indices and Sets

TM
T
PC
Q
SC

Parameters

as

Set of hours for each month in analysis
Set of time steps in the planning horizon
Set of purchasing contracts

Set of scenarios

Set of selling contracts

Auxiliary variable used to calculate the conditional value at risk (CVaR) of scenario s
(USD)

Cost from natural gas acquisition at time f (USD)

Cost from purchasing contracts at time ¢ (USD)

Cost from natural gas acquisition at time ¢ and in scenario s (USD)

Cost from purchasing contracts at time t and in scenario s (USD)
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Dg\],tc Natural gas demand at time ¢ and in scenario s (MWh)

Pssf or Position in terms of energy in the spot market at time f and in scenario s (USD)
RtS ¢ Revenue from selling contracts at time ¢ (USD)

RSS tC Revenue from selling contracts at time t and in scenario s (USD)

RtS(P oT Spot revenue at time ¢ (USD)

Rssf oT Spot revenue at time t and in scenario s (USD)

Cf\] N Total network transmission charge (USD)

A Variable that corresponds to the value at risk (VaR) (USD).
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