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Abstract: Hydrogen is a well-known clean energy carrier with a high energetic yield. Its versatility
allows it to be produced in diverse ways, including biologically. Specifically, dark fermentation
takes advantage of organic wastes, such as agro-industrial residues, to obtain hydrogen. One of
these harmful wastes that is poorly discharged into streams is sugarcane bagasse pentose liquor
(SBPL). The present study aimed to investigate hydrogen generation from SBPL fermentation in batch
reactors by applying different food/microorganism (2–10 F/M) and carbon/nitrogen (10–200 C/N)
ratios under mesophilic and thermophilic conditions. Biohydrogen was produced in all pentose
liquor experiments along with other soluble microbial products (SMPs): volatile fatty acids (VFAs)
(at least 1.38 g L−1 and 1.84 g L−1 by the average of C/N and F/M conditions, respectively) and
alcohols (at least 0.67 g L−1 and 0.325 g L−1 by the average of C/N and F/M conditions, respectively).
Thermophilic pentose liquor reactors (t-PLRs) showed the highest H2 production (H2 maximum:
1.9 ± 0.06 L in 100 C/N) and hydrogen yield (HY) (1.9 ± 0.54 moles of H2 moles of substrate−1

in 2 F/M) when compared to mesophilic ones (m-PLRs). The main VFA produced was acetate
(>0.85 g L−1, considering the average of both nutritional conditions), especially through the butyrate
pathway, which was the most common metabolic route of experimental essays. Considering the
level of acid dilution used in the pretreatment of bagasse (H2SO4 (1%), 1.1 atm, 120 ◦C, 60 min),
it is unlikely that toxic compounds such as furan derivatives, phenol-like substances (neither was
measured), and acetate (<1.0 g L−1) hinder the H2 production in the pentose liquor reactors (PLRs).
Sugarcane bagasse pentose liquor fermentation may become a suitable gateway to convert a highly
polluting waste into a renewable feedstock through valuable hydrogen production.

Keywords: hydrogen; pentose liquor; xylose; sugarcane bagasse; batch reactors; mesophilic condition;
thermophilic condition; F/M ratios; C/N ratios

1. Introduction

The continuing depletion of fuel reserves and the steady rise of environmental aware-
ness are two major reasons for seeking alternative and sustainable energy sources. Hy-
drogen emerges as one of the most interesting candidates as it generates water after its
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combustion since its molecular backbone has no carbon, sulfur, or nitrogen included, show-
ing a high energy yield of 122 kJ g−1 [1], which is 2.75 times greater than regular fossil
fuels [2]. To date, total H2 production comes almost exclusively from reforming fossil
fuels (natural gas, oils, and coal) [3]. As H2 has become an important energy source, its
production and distribution encompass concepts of ecological sustainability (especially
during its production stage).

Among the various forms of obtaining hydrogen, the biological way is likely the
most environmentally friendly as it achieves two goals at once: Commonly associated
with anaerobic digestion, it gives a final destination for hard-degradation residues that
have no clear safe disposal, and it produces biofuel, which has potential energetic and
economic assets [4,5]. Dark fermentation (DF) is a feasible technology when considering
cost efficiency. A large range of feeds can be managed by DF, often including organic
wastes [6,7].

The biohydrogen generated through DF can be obtained by adopting mesophilic and
thermophilic conditions. The evaluation of optimum temperature ranges for hydrogen pro-
duction is complex because it involves multiple parameters (pH, type of inoculum, residue
characteristics, and reactor configuration) that interfere with the overall process. In general,
thermophilic temperatures are more favorable for hydrogen production as they reduce
the probable development of H2 consumers in microbiota reactors, enhance enzymatic
reaction rates, and thereafter boost the hydrolysis of solid particles [8–11]. Some of these
possible explanations were brought to light by [11] when the authors reported higher HY
(0.81 molH2 molglucose−1) in thermophilic fermentation than in mesophilic conditions
(0.47 molH2 molglucose−1) using cheese whey powder as raw material. The thermophilic
condition was also more favorable for higher hydrogen production than the mesophilic
condition, as indicated in [12]. This study adopted hydrolyzed wheat as a substrate in
one of its experimental conditions, and it had the highest cumulative production (752 mL)
and the highest HY (2.40 molH2 molglucose−1) at 55 ◦C. Hot temperatures (70–80 ◦C) ease
the H2 transference from the liquid to gas phase, reducing the inhibitory effect for H2
producers caused by high H2 partial pressure in liquid media. Thus, at high temperatures,
reactors could contain a greater amount of H2, with pressure values above 2000 Pa [13,14].
On the other hand, mesophilic conditions have no energetic demands for heating, which
substantially reduces the operational cost. In addition to cost benefits, running the system
under mild temperature conditions does not face some of the disadvantages encountered
under harsh temperature conditions, such as poor efficiency in effluent removal, dewater-
ing of residual sludge, and operation complexity in achieving two objectives, namely H2
production during thermophilic fermentation and wastewater depuration [15].

There are other operational parameters that also affect H2 production, such as car-
bon/nitrogen (C/N) and food/microorganism (F/M) ratios. They are usually analyzed to
enhance clarification processes in wastewater treatments. However, there is also a large
number of scientific papers that evaluated C/N and F/M ratios and their effect on H2
production using different substrates [5,16–18]. Optimum values of C/N and F/M ratios
for biohydrogen production have been exhibited with great variability over different stud-
ies: For instance, a study found C/N = 47:1 using anaerobic sewage sludge as the seed
and sucrose as the substrate in batch reactors [19], whereas C/N was 100:2.2 in anaerobic
sequencing batch reactors (ASBRs) used for the fermentation of cassava wastewater [20]. In
another study, the authors determined F/M = 7–10 to be optimal when they evaluated the
effect of F/M ratios (1–10) on H2 production using anaerobic sludge in batch reactors filled
with mixed food as substrate under two different temperatures: 35 and 50 ◦C [16]. Lastly,
F/M = 0.5–1.0 was evaluated in a study in which the authors aimed to investigate the effect
of several parameters (initial pH, initial pH combined with F/M ratio, different types of
seed, and the initial pH applied in substrate pretreatment) on the H2 yield using complex
biomass waste [4]. This shows a strong interrelation between these operational parameters
with a reactor configuration and/or physicochemical characteristics of a specific substrate.



Fermentation 2024, 10, 432 3 of 34

No matter which temperature conditions are adopted for hydrogen production, a fea-
sible feedstock should be chosen that encompasses energetic, environmental, and economic
aspects. Lignocellulose residues from agroindustry activities are well suited considering
the above-mentioned features. They are available in large amounts, they are inexpensive,
and they show energetic potential [21–23]. The molecular structure is made up of 5- and
6-carbon sugar polymers that act as fermentable sugars. Sugarcane bagasse is one of the
most abundant lignocellulosic residues produced worldwide, mostly in tropical coun-
tries. Nowadays, around 50% of sugarcane bagasse is stockpiled [24,25], representing a
notable risk of self-combustion and a waste of potential energy resources. In Brazil (mainly
in São Paulo state) over the last decades, environmental legislation against traditional
land burning practices before harvesting has been enforced [26], leading to restraint in
throwing away even more bagasse residues which could have been taken advantage of as
energetic feedstock.

Second-generation bioethanol production uses sugarcane bagasse as lignocellulosic
core material. After a pretreatment stage (commonly steam explosion or diluted acid
treatment) that breaks down hemicellulose structure into pentose and hexose monomers,
softening the cellulose molecule to ease enzymatic hydrolysis attack, a xylose-rich hy-
drolysate is produced. As the usual 6-carbon sugar fermenter yeast Saccharomyces cerevisiae
is not able to deal with 5-carbon sugars [27] and the genetically modified pentose ferment-
ing microorganisms are highly priced and yield poorly under ordinary hexose fermentation,
sugarcane bagasse pentose liquor (SBPL) is often discharged into streams without suitable
wastewater treatment. It is a concerning pollutant in virtue of its high chemical oxygen
demand (COD) concentration and recalcitrant features: above 1500 mgCOD L−1 (calculated
from simulated data of pentose liquor stream in a biorefinery concept) [27], impurities
as free alkali and sulfates and other remaining components comprising lignin, hemicellu-
lose, sugar, and organic acids [28]. To avoid environmental issues and to generate newly
revenues in refineries from SBPL, the authors in [27] evaluated economically simulated
scenarios of 1G and 2G integrated bioethanol refinery concepts. Some propositions would
take advantage of pentose sugars extracted from pretreatment of lignocellulose portion
to produce biogas or butanol. As basal operations defined for all scenarios (503 tonnes
of sugarcane stalks per hour in 167 days of operation, 122 kg of bagasse per dry stalk,
5% of bagasse stockpiled for boilers, and 58 dry tonnes of bagasse per hour available for
biorefinery), the schemes that produced biogas or butanol from pentose liquor obtained, at
least, an Internal Rate Return (IRR) of 11%.

Regarding the dark fermentation hydrogen from the SBPL, most studies were accom-
plished on a lab scale pursuing the optimization of H2 production using the observation
of operational parameters such as the type of pretreatment of bagasse (biological, phys-
ical, chemical), or the usage of more than one method combined [29–32], the kind of
inoculum [30,33–35], mineral supplementation [36], etc. To date, there is no operational
biorefinery on an industrial scale conceptualized to generate hydrogen from xylose-rich
liquor of sugarcane bagasse. The main bottlenecks to be overcome regarding the production
of added value byproducts (such as hydrogen, organic acids, butanol, acetone) from SBPL
in 2G biorefinery lie in obtaining cost-effective and greener pretreatments for the sugarcane
bagasse [37] and pentose sugar fermentation with high yield and low-cost at large scale [38].

The present study aimed at producing biohydrogen using different C/N and F/M
ratios in batch reactors under thermophilic and mesophilic conditions. In addition, through
this work, we aimed to contribute new insights into biofuel production using unconven-
tional agro-industrial residues, such as SBPL.

2. Methods
2.1. Overall Procedure for H2 Production

H2 production was carried out in 2 L batch reactors (Duran® flasks, DWK Life Sciences
GmbH, Wertheim, Germany) with a reactional volume of 1 L at different temperatures
(30 and 55 ◦C). Under both mesophilic and thermophilic conditions (represented here by
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codes “m” and “t”, respectively) the same experiments were carried out: in the first round,
the F/M ratio was verified, whilst in the second, different C/N ratios were tested. All
reactors were maintained under constant agitation in reciprocating shakers (100 min−1)
with an initial pH of 6.0 over 35 days. The autoclaved nutritional media (described further
in another topic) were injected with N2 gas for 10 min to keep an anaerobic environment.
The main carbon source came from xylose obtained from pentose liquor (almost 85%
of the liquid content comprised xylose). For comparative purposes, blank samples of
pure xylose (Sigma-Aldrich®, Merck KGaA, Darmstadt, Germany) were used. In the first
round, different F/M ratios were applied to reactors with varying organic matter loadings
(1000–20,000 mgO2 L−1), fixing biomass concentration at the same time (500 mgSVT−1).
Thus, the F/M ratios were 2, 10, 20, and 40 mgO2 L−1 mgTVS−1 corresponding to FMI,
FMII, FMIII, and FMIV conditions, respectively. In the second round, different C/N ratios
were applied to reactors (10, 50, 100, and 200 mgC mgN−1 matched to CNI, CNII, CNIII,
and CNIV conditions, respectively). To meet these ratios, the nitrogen source was fixed
by applying 93.5 mg of CH4N2O L−1 (urea) in xylose reactors (xrs) and 5.1 mg in pentose
liquor reactors (plrs). The same feeding procedure adopted in the first round was also
adopted in the second round.

2.2. Composition of Substrate

Organic matter loadings were measured in terms of COD. The xrs showed xylose
concentrations of 935, 4673, 9346, and 18,692 mg L−1 for FM/CNI, FM/CNII, FM/CNIII,
and FM/CNIV conditions, respectively. The COD values of plrs were measured after
extraction of 5-carbon rich liquor. It was obtained from sugarcane bagasse adopting a pro-
cedure adapted from a previous study [39]. Briefly, the experimental extraction consisted
of lignocellulose material hydrolysis with diluted acid (a H2SO4 solution (1% v/v)) applied
onto dry bagasse (1:9 w/w). The heterogeneous solution was autoclaved under 1.1 atm, at
120 ◦C for 60 min. The mixture was filtered for separation of the solid/liquid phases. The
hydrolysate showed 13,825 mg total sugars L−1, accounting for 25,000 mg O2 L−1 in terms
of COD and a nitrogen concentration of 80 mgTKN L−1, where TKN means total Kjeldahl
nitrogen. Thus, to reach the desirable COD concentrations under the FM/CNI, FM/CNII,
FM/CNIII, and FM/CNIV conditions, the hydrolysate was poured into reactors in amounts
of 40, 200, 400, and 800 mL, respectively. As previously mentioned, nitrogen sources for
both types of reactors (xrs and plrs) were obtained by adding urea. The minimum salt
solution was applied to flasks according to [40]: NiSO4·6H2O (0.5 mg L−1), FeSO4·7H2O
(2.5 mg L−1), FeCl3·6H2O (0.25 mg L−1), CoCl2·6H2O (0.04 mg L−1), CaCl2·6H2O
(2.06 mg·L−1), SeO2 (0.14 mg·L−1), KH2PO4 (5.36 mg·L−1), K2HPO4 (1.30 mg·L−1), and
Na2HPO4 (2.70 mg·L−1). As the pentose liquor registered a low pH (<3.0), bicarbonate salt
was added to adjust the initial pH to 6.0.

2.3. Inoculum

All reactors received a pre-treated inoculum from a poultry slaughterhouse UASB
reactor from Dacar Industrial S.A, hosted in Tietê, São Paulo, Brazil. The steps for pretreat-
ment of the sludge consisted of macerating and pouring a concentrated HCl solution until
reaching pH 3.0 at room temperature, keeping the solution still for 24 h. Afterward, a NaOH
solution was added until reaching pH 6.0 and it was kept for 48 h at room temperature.
The main objective of this procedure was to inhibit the H2 consumer microorganisms.

2.4. Monitoring Analyses

The COD, pH, and sulfate parameters were measured according to Standard Meth-
ods [41]. The total sugars were measured according to [42].

Biogas measurements (CH4, CO2, N2 and H2) were carried out by gas chromatography
using Shimadzu® GC equipment (Shimadzu Corporation, Kyoto, Japan) with a Carboxen®

1010 (Merck KGaA, Darmstadt, Germany) (30 m × 0.53 mm × 0.30 µm) capillary column,
and thermal conductivity detector (TCD) with argonium as effluent and synthetic com-
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pressed air as make-up at a 12 mL min−1 rate. The injector and detector worked at 220 and
230 ◦C, respectively. The oven was programmed with an initial temperature of 40 ◦C for
2 min; it was increased to 60 ◦C at a rate of 5 ◦C min−1, then heated until 95 ◦C at a rate
of 25◦C min−1. This temperature was maintained throughout the analysis (5 min). The
volume of injected biogas was 30 µL.

The ideal gas equation was used for biogas volume measurements expressed under
normal temperature and pressure (NTP) conditions. The variations in biogas pressure
were measured using a digital manometer. The cumulative pressure was adopted by
equalizing the internal flask pressure to atmospheric pressure after each measurement of
the biogas pressure. The calculations of equivalent gas volume and volumetric gas rate can
be observed in Equations (1) and (2), respectively.

VTα =

(
PVH

T
TCNTP

PCNTP

)
xα (1)

VTα: total volume of equivalent gas α under NTP (L); P: absolute pressure of headspace
(atm); VH: volume of headspace (L); T: temperature (K); TCNTP: temperature under NTP
(273 K); PCNTP: pressure under NTP (1 atm); xα: gas fraction, where α = H2, N2, CO2,
and CH4.

Γα = ∑n
i=0 Vi+1

Tα −Vi
H.xi

α (2)

Γα: equivalent gas α volumetric rate (L).
Volatile fatty acid (VFA) concentrations were measured by liquid chromatography

using a modular Shimadzu® chromatograph (Shimadzu Corporation, Kyoto, Japan) with a
pumper system (LC-10AD), oven (CTO-20A), controller (SCL-10A), and photodiode array
detector (PDA) that was adjusted to read wavelengths from 190 to 370 nm (UV spectra)
at 1 nm steps, as described by [43]. The fixed phase was formed by a BIO-RAD Aminex
HPX-87H (Bio-Rad Laboratories, Hercules, CA, USA) 3000 × 7.8-mm column at a constant
temperature of 55 ◦C. The eluent consisted of 100 µL of the 0.005 mol L−1 H2SO4 at a
0.8 mL min−1 rate.

Concentration measurements of different alcohols such as ethanol, methanol, n-
butanol were performed with a Shimadzu® GC2010 headspace gas chromatograph. The
flame ionization detector (FID) was maintained at 280 ◦C and fed with a mixture of H2
and synthetic air at 30 and 300 mL min−1, respectively. A Hewlett-Packard INNOWAX®

column (Agilent Technologies Inc., Santa Clara, CA, USA) with a 30 m × 0.25 mm and
0.25 µm film thickness and an H2 flow rate of 1.6 mL min−1 (the same as the mobile phase)
was used. The injector was maintained at 250 ◦C with an oven temperature of 35 ◦C. The
temperature was increased at a rate of 2 ◦C min−1 until a temperature of 38 ◦C. Then, the
rate was increased to 10 ◦C min−1 until reaching 75 ◦C. Then, a rate of 2 ◦C min−1 was
adopted until reaching 120 ◦C. Finally, the flux was increased to 10 ◦C min−1 until a tem-
perature of 170 ◦C was obtained. N2 was used as the make-up gas (to sweep components
through the detector to minimize band broadening) at a flow rate of 30 mL min−1. Sample
preparation was carried out by adding 1 g of NaCl, 70 µL of 1 g L−1 isobutanol solution
(as an internal standard), and 200 µL of 2 mol L−1 H2SO4 solution into 2 mL volume. The
sample flask was heated for 13 min at 100 ◦C, and 400 µL of the sample headspace was
injected with a syringe heated at 100 ◦C [44].

2.5. Kinetic Analysis

The present study adopted a residual first-order model for a kinetic approach due
to low substrate concentrations visualized in the experimental tests. This kinetic model
originated through Monod’s model simplification as described by [43] (Equation (3)).

C(t) = CR + (CI −CR)·e−kapp
1 ·t (3)
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C(t): xylose concentration (mg·L−1); CR: residual xylose concentration (mg L−1); CI:
initial xylose concentration (mg L−1); t: time(hours); kapp

1 : apparent kinetic constant (h−1).
Thus, the absolute efficiency (Ea) was calculated as follows (Equation (4)):

Ea = 1− CR

CI
(4)

The accumulated hydrogen production was verified using a simple dose–response
sigmoidal model as shown in Equation (5).

H(t) =
Hmáx

1 + 10(l−t)·p (5)

H(t): accumulated H2 production at time t (L); Hmáx: maximum H2 production (L);
l: time to achieve the maximum H2 production rate (h); p: average H2 production rate at
exponential phase (L h−1).

The kinetic parameters were adjusted with the Levenberg–Marquadt algorithm using
Microcal Origin® v 8.1 software (OriginLab Corporation, Northampton, MA, USA).

2.6. Statistical Analysis

Hydrogen yield (HY) measured in terms of moles of H2 per moles of substrate was
statistically compared among all experimental conditions by the ANOVA one-way test
(F-value with p = 0.05). Regarding temperature evaluation, HY pairwise comparisons
between mesophilic and thermophilic temperatures with the same F/M or C/N ratios were
carried out using the Tukey test (p = 0.05).

3. Results

H2 and CO2 production took place throughout the fermentative process varying
between 500 and 2000 h (21–83 days), depending on which experimental condition was
observed (Figure 1). Large numbers of mplrs did not fit the sigmoidal dose–response
model for H2 production, thus their production rates (p) with tplrs (Table 1) could not be
compared. Most experimental conditions (except the mxr-FMIII that showed the same value
of txr-FMIII) reported greater H2 production rates (HPRs) at mesophilic temperature than
thermophilic ones when we compared the same F/M or C/N by turn (Table 1). In terms
of the volume of H2 produced (L), the thermophilic conditions showed higher hydrogen
production compared to their pairwise mesophilic conditions (except for mxr-FMI, mxr-
FMII, and mxr-FMIV which showed higher values). Even if these mesophilic conditions
had reported higher volumes of hydrogen than txr-FMI, txr-FMIII, and txr-FMIV, it is worth
noting that txr-FMIII and txr-FMIV showed higher H2 yields (HYs) compared to their
similar mesophilic versions from mxrs—1.0 and 0.9 mol H2 mol S−1 (or 165.72 and 156 mL
H2 gSubstrate−1), respectively.

Mxr-FMIV (0.005 L h−1), mxr-CNII (0.018 L h−1), and mxr-CNIII (0.003 L h−1) re-
ported greater values of H2 productivity compared to txr-FMIV (0.002 L h−1), txr-CNII
(0.003 L h−1), and txr-CNIII (0.002 L h−1), respectively (Table 1). Interestingly, these
mesophilic experimental conditions showed lower HYs compared to thermophilic equiv-
alents (txr-FMIV, txr-CNII, and txr-CNIII): 0.84 to 0.9 (141.52 to 156 mLH2 gSubstrate−1),
0.7 to 1.2 (94.71 to 165.97 mLH2 gSubstrate−1), and 0.64 to 1.4 mol H2 mol S−1 (84.54 to
185.70 mLH2 gSubstrate−1), respectively.

We decided to do inter and intra group comparisons with HY values (explained below).
The following abbreviations will appear in the next paragraph: “F” stands for “F-value”;
the first term inside parenthesis represents the degree of freedom; the second term is the
total number of samples analyzed; and “prob” is the calculated α-value, i.e., the significance
value of the test.
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Figure 1. Biogas production at both temperatures (30 and 55 °C). Letters indicate specific F/M or 
C/N ratio: FMI (A1,A2); FMII (B1,B2); FMIII (C1,C2); FMIV (D1,D2); CNI (E1,E2); CNII (F1,F2); 
CNIII (G1,G2); CNIV (H1,H2). Numbers stand for different reactor types: xylose (1) and pentose 
liquor (2). The mesophilic temperature (30 °C) is depicted in blue and the thermophilic temperature 
(55 °C) in red. 

Figure 1. Biogas production at both temperatures (30 and 55 ◦C). Letters indicate specific F/M or
C/N ratio: FMI (A1,A2); FMII (B1,B2); FMIII (C1,C2); FMIV (D1,D2); CNI (E1,E2); CNII (F1,F2);
CNIII (G1,G2); CNIV (H1,H2). Numbers stand for different reactor types: xylose (1) and pentose
liquor (2). The mesophilic temperature (30 ◦C) is depicted in blue and the thermophilic temperature
(55 ◦C) in red.
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Table 1. Kinetic parameters of substrate degradation and biogas production.

Kinetic Parameters of Substrate Kinetic Parameters of Biogas Production

Reactor Condition kapp
1

(h−1)
CI

(mg L−1)
CR

(mg L−1) EA R2 Hmax
(L)

l
(h)

p
(L h−1) R2

HY ii

(molH2
molS−1)

CO2
(L)

mxr

F/M I 0.02 ± 0.003 1101.1 ± 76.7 1.3 ± 28 0.99 0.95 0.11 ± 0.006 52 ± 7.9 0.029 ± 0.013 0.83 0.61 ± 0.21 0.12

F/M II 0.006 ± 0.0007 4355 ± 283.5 0.0 i 1.00 0.93 0.54 ± 0.07 262.3 ± 33.9 0.006 ± 0.002 0.85 0.85 ± 0.48 0.68

F/M III 0.004 ± 0.0005 10,789.5 ± 750.1 0.0 i 1.00 0.89 0.86 ± 0.02 360.9 ± 9.7 0.004 ± 0.0004 0.99 0.35 ± 0.14 1.6

F/M IV - - - - - 1.2 ± 0.04 342.8 ± 12 0.005 ± 0.0007 0.97 0.84 ± 0.37 2.1

mplr

F/M I 0.02 ± 0.002 692.5 ± 31.9 0.0 i 1.00 0.98 - - - - 0.36 ± 0.33 0.09

F/M II 0.02 ± 0.003 3313.3 ± 223.3 0.0 i 1.00 0.95 - - - - 0.22 ± 0.09 0.52

F/M III 0.01 ± 0.002 5553.4 ± 308.2 265 ± 134.9 1.00 0.96 - - - - 0.31 ± 0.11 0.98

F/M IV 0.01 ± 0.001 10,183 ± 284.1 206.7 ± 161.7 1.00 0.99 - - - - 0.22 ± 0.07 2.9

txr

F/M I 0.016 ± 0.004 1658.27 ± 140 82 ± 69.4 1.00 0.93 0.10 ± 0.014 149.2 ± 27.6 0.008 ± 0.004 0.80 0.24 ± 0.16 0.11

F/M II 0.001 ± 0.0001 5330.4 ± 171.5 0.0 i 1.00 0.90 - - - - 1.4 ± 0.72 0.46

F/M III - - - - - 0.62 ± 0.029 301 ± 22.5 0.004 ± 0.0007 0.89 1.0 ± 0.28 0.67

F/M IV - - - - - 0.93 ± 0.083 369.9 ± 49.8 0.002 ± 0.0006 0.79 0.9 ± 0.44 0.89

tplr

F/M I 0.03 ± 0.005 642.5 ± 47.5 49.4 ± 11.3 1.00 0.90 0.20 ± 0.003 109 ± 8.6 0.008 ± 0.001 0.93 1.9 ± 0.54 0.31

F/M II 0.005 ± 0.0006 3164.8 ± 207 0.0 i 1.00 0.91 0.66 ± 0.024 367.2 ± 33 0.002 ± 0.0003 0.90 0.82 ± 0.32 1.4

F/M III 0.001 ± 0.00001 5067.4 ± 24.2 0.0 i 1.00 0.99 1.83 ± 0.098 749.5 ± 49.7 0.001 ± 0.0001 0.95 0.99 ± 0.62 2.0

F/M IV - - - - - 1.2 ± 0.10 713.5 ± 86 0.001 ± 0.0004 0.93 0.78 ± 0.48 1.6

mxr C/N I 0.022 ± 0.003 1620 ± 117.8 78.9 ± 33.7 1.00 0.92 - - - - 0.18 ± 0.13 0.12

C/N II 0.012 ± 0.001 6548.9 ± 364.5 0.0 i 1.00 0.96 0.65 ± 0.02 76.5 ± 9.3 0.018 ± 0.007 0.88 0.70 ± 0.15 0.86

C/N III 0.003 ± 0.0003 11,167.5 ± 662.4 1753.1 ± 571 1.00 0.92 1.1 ± 0.04 220.1 ± 20 0.003 ± 0.0004 0.94 0.64 ± 0.12 1.5

C/N IV - - - - - 0.54 ± 0.02 83.6 ± 12.9 0.009 ± 0.002 0.89 0.52 ± 0.16 0.95

mplr

C/N I - - - - - - - - - 0.12 ± 0.08 0.0

C/N II 0.03 ± 0.001 4677.9 ± 76.1 124.1 ± 20.2 1.00 0.99 - - - - 0.06 ± 0.04 1.1

C/N III 0.02 ± 0.003 5026.2 ± 294.8 310.8 ± 80.8 1.00 0.94 - - - - 0.13 ± 0.11 1.1

C/N IV 0.019 ± 0.003 10,892 ± 833.9 577.3 ± 236 1.00 0.90 - - - - 0.12 ± 0.03 2.2
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Table 1. Cont.

Kinetic Parameters of Substrate Kinetic Parameters of Biogas Production

Reactor Condition kapp
1

(h−1)
CI

(mg L−1)
CR

(mg L−1) EA R2 Hmax
(L)

l
(h)

p
(L h−1) R2

HY ii

(molH2
molS−1)

CO2
(L)

txr

C/N I 0.02 ± 0.0004 935.6 ± 7.2 4.25 ± 1.8 1.00 1.00 - - - - 0.31 ± 0.15 0.05

C/N II 0.004 ± 0.0006 5369.7 ± 287.3 0.0 i 1.00 0.95 0.97 ± 0.03 260.2 ± 12.2 0.003 ± 0.0003 0.97 1.2 ± 0.18 1.4

C/N III - - - - - 1.2 ± 0.05 378.4 ± 27 0.002 ± 0.0003 0.95 1.4 ± 0.41 1.5

C/N IV - - - - - - - - - 0.75 ± 0.34 1.2

tplr

C/N I 0.01 ± 0.001 531.1 ± 27.7 0.0 i 1.00 0.96 - - - - 1.6 ± 1.1 0.00

C/N II 0.01 ± 0.002 4473.9 ± 305.2 0.0 i 1.00 0.96 - - - - 0.38 ± 0.38 0.54

C/N III 0.002 ± 0.0002 5308 ± 285 0.0 i 1.00 0.83 1.9 ± 0.06 555.4 ± 28.9 0.002 ± 0.0002 0.96 1.4 ± 0.76 2.8

C/N IV - - - - - 1.1 ± 0.06 890.1 ± 48.9 0.001 ± 0.0001 0.96 0.56 ± 0.33 2.1

i Fixed parameters to adjust to significant values in kinetic models. ii HYs (in terms of mLH2 gSubstrate−1): mxr-FMI: 84.04 ± 33.38; mxr-FMII: 115.09 ± 63.25; mxr-FMIII: 45.98 ± 21.99;
mxr-FMIV: 141.52 ± 75.91; mplr-FMI: 40.35 ± 28.62; mplr-FMII: 27.90 ± 10.27; mplr-FMIII: 42.75 ± 16.68; mplr-FMIV: 29.32 ± 9.99; txr-FMI: 36.31 ± 24.54; txr-FMII: 203.08 ± 108.22;
txr-FMIII: 156.29 ± 46.26; txr-FMIV: 165.72 ± 109.05; tplr-FMI: 283.73 ± 86.73; tplr-FMII: 110.08 ± 52.62; tplr-FMIII: 143.22 ± 94.40; tplr-FMIV: 150.68 ± 104.72; mxr-CNI: 24.72 ± 16.65;
mxr-CNII: 94.71 ± 29.59; mxr-CNIII: 84.54 ± 24.56; mxr-CNIV: 79.79 ± 27.24; mplr-CNI: 15.98 ± 8.02; mplr-CNII: 7.86 ± 4.60; mplr-CNIII: 19.35 ± 15.11; mplr-CNIV: 16.48 ± 4.01;
txr-CNI: 44.46 ± 21.30; txr-CNII: 165.97 ± 25.66; txr-CNIII: 185.70 ± 48.84; txr-CNIV: 130.11 ± 62.51; tplr-CNI: 223.97 ± 160.22; tplr-CNII: 51.20 ± 56.88; tplr-CNIII: 206.78 ± 120.17;
tplr-CNIV: 112.45 ± 73.22.
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The HY values throughout F/M ratios within the mxrs, txrs, and tplrs groups showed
significant differences, statistically speaking: F (3;59) = 4.34, prob = 0.008; F (3;69) = 8.57,
prob = 6.5 × 10−5; and F (3;82) = 19.65, prob = 1.08 × 10−9, respectively. The HYs within
the mplrs group were not significantly different (F(3;44) = 1.26, prob = 0.3). When the
evaluation focused on temperature conditions between mxrs and txrs equivalents (same
F/M ratio) using the Tukey Test, only the FMIII condition showed a significant difference
(qvalue = 6.49, prob = 2.73 × 10−4). Meanwhile, the pairwise comparisons between
mplrs and tplrs, (the pentose liquor reactors) reported differences under all conditions:
mplr-FMI × tplr-FMI showed qvalue = 12.96 and prob = 4.16 × 10−8; mplr-FMII × tplr-
FMII showed qvalue = 4.97 and prob = 0.01; mplr-FMIII × tplr-FMIII showed qvalue = 5.62
and prob = 0.003; and mplr-FMIV × tplr-FMIV showed qvalue = 4.70 and prob = 0.025
(remembering in this study, the standardized α-value was p = 0.05).

The results throughout the C/N ratios recorded significant differences in HYs within
each group constituted by mxrs, txrs, and tplrs: F (3;64) = 38.69, prob = 2.2 × 10−14;
F (3;85) = 29.54, prob = 3.50 × 10−13; F (3;73) = 6.05, prob = 9.71 × 10−4, respectively.
No statistical differences were reported within the mplrs using different C/N condi-
tions: F (3;70) = 1.65, prob = 0.18. The C/N ratio pairwise comparisons based on tem-
perature conditions between the xrs and plrs apparently showed no clear tendency in
relation to HY results. Considering the xrs, two comparisons were statistically differ-
ent: mxr-CNII × txr-CNII (qvalue = 6.93, prob = 6.6 × 10−5) and mxr-CNIII × txr-
CNIII (qvalue = 9.71, prob = 3.83 × 10−8). On the other hand, the mxr-FMI × txr-FMI
(qvalue = 1.64, prob = 0.94) and mxr-CNIV × txr-CNIV (qvalue = 3.18, prob = 0.33) were
not significantly different. In plrs, there were also two comparisons which were signifi-
cantly different (mplr-CNI × tplr-CNI (qvalue= 8.70, prob = 2.29 × 10−7) and mplr-CNIII
× tplr-CNIII (qvalue = 8.26, prob = 9.4 × 10−7)). Meanwhile, the mplr-CNII × tplr-CNII
(qvalue= 1.69, prob = 0.93) and mplr-FMIV × tplr-FMIV (qvalue = 2.81, prob = 0.49) were
statistically equivalent.

In general, the HYs were higher at thermophilic temperature than mesophilic tem-
perature, considering the same F/M or C/N ratio comparison. The highest cumulative
H2 production was observed at the mxrs versus txrs and at the tplrs versus mplrs when
analyzing F/M ratios. In the case of C/N samples, higher cumulative H2 production was
found at the txrs compared with the mxrs, and at the tplrs than when compared with
mplrs, evaluating C/N ratios. Figure 1 shows higher lag phase periods under mesophilic
conditions compared to thermophilic flasks within the same nutritional ratio spectrum. The
lag phase range values experienced variations due to substrate concentrations (in terms of
5-carbon amount) at both temperatures.

Within addition to H2 production, volatile fatty acids (VFAs) and alcohols were
produced throughout the dark fermentation period in all reactors (Figure 2). Acetate,
butyrate, and ethanol (EtOH) are the main soluble microbial products (SMPs) (Table 2)
generated in most H2 fermentation processes, thus some parameters such as Hbu (butyric
acid)/SMPtotal, Hac (acetic acid)/SMPtotal, EtOH/SMPtotal, Hbu/Hac, and Hbu/EtOH
were measured to better understand the fermentative liquid bulk of substances produced
in the reactors (Table 3). Ethanol plus acetate dominated the SMP production over the
mxr-FMI-IV conditions (Figure 2), showing EtOH/SMPtotal of 0.26, 0.39, 0.50, and 0.51
in mxr-FMI, mxr-FMII, mxr-FMIII, and mxr-FMIV, respectively (Table 3). The acetate
comprised around 10% of the total SMPs produced in these conditions. However, the
mxr-FMI, the mxr-FMII, mxr-FMIII, and mxr-FMIV had an EtOH/SMPtotal above 0.30.
The sum of acetate and ethanol in these reactors represented around 60% of total SMPs
produced, indicating ethanol-type fermentation. Knowing that Hbu/Hac is one of the most
common parameters used to evaluate H2 production stability in fermentation media, the
highest value ratio in each of the mxr-FMs (1.65 in mxr-FMII), mplr-FMs (0.78 in mplr-
FMI), tplr-FMs (0.81 in tplr-FMI), and txr-CNs (0.81 in txr-CNIII) matched up with the
highest HYs of each reactor group: 0.85 (115.09 mLH2 gSubstrate−1) in mxr-FMII, 0.36
(40.35 mLH2 gSubstrate−1) in mplr-FMI, 1.9 (283.73 mL H2 gSubstrate−1) in tplr-FMI, and
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1.4 mol H2 mol S−1 (185.70 mL H2 gSubstrate−1) in txr-CNIII. This correlation was not
observed in other reactor groups, such as txr-FMs, mxr-CNs, mplr-CNs, and tplr-CNs.
However, within the mxr-CNs and mplr-CNs groupings, the values of the highest HYs and
the highest Hbu/Hac ratios were quite close.

Propionic acid (Hp) production peaked after 300 h (12.5 days) of fermentation un-
der mplr-FMIV conditions, which was the second most produced SMP until the end of
acidogenesis (Figure 2). This reactor showed low HY with 0.22 moles H2 moles xylose−1

(29.33 mL H2 gSubstrate−1). Mostly, mplrs had the lowest HYs along with the highest
levels of propionate.

In addition to the above-mentioned SMPs, other substances such as lactate are high-
lighted in terms of production. Lactic acid (Hlac) became one of the main SMPs that was
largely found at thermophilic temperatures, particularly in the txr-FMI, txr-FMII, txr-FMIV,
and txr-CNIV conditions, accounting for 49, 43, 23, and 25% of the total SMPs, respectively.

Other VFAs with considerable production at least in one condition were isobutyric
(Hib), valeric (Hva), and caproic acids (Hca). The Hib in the txr-FMIV reached values
close to 100 mg L−1 at the end of the fermentation process (Figure 2). The Hva showed
high production under some operational conditions: the mplr-FMI reached its maximum
concentration of 160 mg L−1 after 500 h (20.83 days), the mplr-FMII peaked around
250 mg L−1 after 300 h, and the mplr-FMIV achieved nearly 300 mg L−1 after 400 h
(16.7 days) (Figure 2). Finally, the Hca showed a constant production around 250 mg L−1 in
the mplr-FMII at 100 h (4.17 days).

Considerable concentrations of methanol (MeOH) were observed under mplr-FMII
(381.89 mg COD L−1), mplr-FMIII (921 mg COD L−1), mxr-CNII (215.23 mg COD L−1), mxr-
CNIII (1261.75 mg COD L−1), mxr-CNIV (2845.25 mg COD L−1), mplr-CNII
(981.62 mg COD L−1), mplr-CNIII (430.98 mg COD L−1), and mplr-CNIV (1300.96 mg
COD L−1) conditions (Table 2). Their concentrations accounted for 17, 24, 12, 42, 65, 41, 24,
and 36% of the total SMPs produced during fermentation, respectively.

Almost total fructose degradation before total xylose consumption under mplr-FMI,
mplr-FMII, mplr-FMIII, mxr-FMIII, and tplr-CNII conditions were observed probably due
to initial lower fructose concentrations compared to xylose (Figure 3). In the present
study, a possible strong substrate inhibition in mxr-CNIV (19.9 g L−1 of xylose), txr-CNIV
(18.7 g L−1 of xylose), txr-FMIV (19.8 g L−1 of xylose), tplr-FMIV (8.2 g L−1 of xylose), and
tplr-CNIV (9.8 g L−1 of xylose) was verified as shown in Figure 3.

Overall, the pairwise comparison of reactors between mild and high temperatures
fixing the same substrate, C/N and F/M ratios, and mesophilic environment showed
higher values of kapp

1 than thermophilic conditions (Table 1). This behavior can be re-
lated to greater SMP production at 30 ◦C when compared to 55 ◦C as shown in Table 2.
Some lower kinetic parameter values also showed the highest HYs. The following con-
ditions agreed with the last statement: txr-CNII (0.004 h−1; 1.2 mol H2 mol xylose−1 or
165.97 mL H2 g xylose−1), mxr-CNII (0.012 h−1; 0.70 mol H2 mol xylose−1 or 94.71 mL
H2 g xylose−1), txr-FMII (0.001 h−1; 1.4 mol H2 mol xylose−1 or 203.08 mL H2 g xylose−1),
and tplr-CNIII (0.002 h−1; 1.4 mol H2 mol xylose−1 or 206.78 mL H2 g xylose−1). Moreover,
greater substrate degradations were observed in the plrs when compared to their similar
xrs in terms of nutritional requirements (same F/M or C/N ratio) at both temperatures.

It is worth noting that some experimental conditions (mainly thermophilic ones) did
not fit the modified Monod model as predicted in the present work.
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Figure 2. Soluble microbial production at both temperatures (30 and 55 °C). Letters indicate specific F/M or C/N ratio: FMI (A1,A2); FMII (B1,B2); FMIII (C1-C2); 
FMIV (D1,D2); CNI (E1,E2); CNII (F1,F2); CNIII (G1,G2); and CNIV (H1,H2). Numbers correspond to reactor types: xylose (1) and pentose liquor (2). Geometric 
forms are in blue and the mesophilic (30 °C) and thermophilic (55 °C) temperatures are in red, respectively. Hci: citric acid; Hm: malic acid; Hsu: succinic acid; 
Hla: lactic acid; Hf: formic acid; Hac: acetic acid; Hpr: propionic acid; Hib: isobutyric acid; Hbu: butyric acid; Hiv: isovaleric acid; Hv: valeric acid; Hca: caproic 
acid; MeOH: methanol; EtOH: ethanol.  

Figure 2. Soluble microbial production at both temperatures (30 and 55 ◦C). Letters indicate specific F/M or C/N ratio: FMI (A1,A2); FMII (B1,B2); FMIII (C1,C2);
FMIV (D1,D2); CNI (E1,E2); CNII (F1,F2); CNIII (G1,G2); and CNIV (H1,H2). Numbers correspond to reactor types: xylose (1) and pentose liquor (2). Geometric
forms are in blue and the mesophilic (30 ◦C) and thermophilic (55 ◦C) temperatures are in red, respectively. Hci: citric acid; Hm: malic acid; Hsu: succinic acid;
Hla: lactic acid; Hf: formic acid; Hac: acetic acid; Hpr: propionic acid; Hib: isobutyric acid; Hbu: butyric acid; Hiv: isovaleric acid; Hv: valeric acid; Hca: caproic
acid; MeOH: methanol; EtOH: ethanol.
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Figure 3. Xylose and fructose degradation at both temperatures (30 and 55 °C). Letters located above each graph indicate specific F/M or C/N ratio: FMI (A1,A2); 
FMII (B1,B2); FMIII (C1,C2); FMIV (D1,D2); CNI (E1,E2); CNII (F1,F2); CNIII (G1,G2); CNIV (H1,H2). Numbers match reactor types: xylose (1) and pentose liquor 
(2). Acronyms such as “fx”, “fl”, “x” and “l” correspond to fructose from xylose reactor, fructose from pentose liquor reactor, xylose from xylose reactor and xylose 
from pentose liquor reactor, respectively. White and blue depict mesophilic temperature (30 °C); black and red represent thermophilic (55 °C) temperature. 

Figure 3. Xylose and fructose degradation at both temperatures (30 and 55 ◦C). Letters located above each graph indicate specific F/M or C/N ratio: FMI (A1,A2);
FMII (B1,B2); FMIII (C1,C2); FMIV (D1,D2); CNI (E1,E2); CNII (F1,F2); CNIII (G1,G2); CNIV (H1,H2). Numbers match reactor types: xylose (1) and pentose
liquor (2). Acronyms such as “fx”, “fl”, “x” and “l” correspond to fructose from xylose reactor, fructose from pentose liquor reactor, xylose from xylose reactor and
xylose from pentose liquor reactor, respectively. White and blue depict mesophilic temperature (30 ◦C); black and red represent thermophilic (55 ◦C) temperature.
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Table 2. Soluble metabolic products from all experimental conditions (in terms of mgCOD L−1).

Reactors Experimental
Conditions

Hci
(Citric
Acid)

Hm
(Malic
Acid)

Hsu
(Succinic

Acid)

Hlac
(Lactic
Acid)

Hf
(Formic
Acid)

Hac
(Acetic
Acid)

Hp
(Propionic

Acid)

Hib
(Isobutyric

Acid)

Hbu
(Butyric

Acid)

Hiv
(Isovaleric

Acid)

Hva
(Valeric
Acid)

Hca
(Caproic

Acid)
EtOH

(Etha-nol)
MeOH

(Methanol) SMPtotal

mxr

F/M I 0.89 3.93 8.36 16.21 9.13 49.46 11.34 8.76 29.88 6.69 138.74 0.00 108.01 28.53 419.95

F/M II 2.10 8.71 23.82 77.62 13.19 109.42 7.21 9.25 180.09 67.90 17.00 0.00 407.28 48.71 1035.30

F/M III 6.60 11.95 29.42 387.48 34.67 281.37 10.83 22.77 12.36 132.41 53.45 2.85 1067.51 37.47 2091.16

F/M IV 3.76 18.27 37.54 649.45 35.40 406.85 12.70 13.15 31.20 209.49 86.74 0.00 1691.69 64.47 3260.72

mplr

F/M I 3.88 2.37 14.00 18.25 14.63 280.95 38.37 17.93 219.70 15.40 86.48 124.45 0.00 0.00 835.44

F/M II 3.33 12.51 33.83 14.08 16.46 673.50 91.72 54.80 435.73 26.20 149.04 357.73 0.00 381.89 2250.83

F/M III 4.62 8.10 162.92 147.41 22.17 1222.06 148.41 172.98 579.18 45.44 10.28 310.23 0.00 921.00 3754.80

F/M IV 7.30 11.52 269.02 167.62 21.96 1409.78 497.69 375.37 657.49 137.04 251.39 190.96 0.00 0.00 3997.14

txr

F/M I 2.78 20.62 5.15 185.39 14.14 65.46 6.45 16.61 18.72 20.81 11.76 0.00 3.72 3.67 375.28

F/M II 11.03 18.00 9.14 186.42 13.19 92.06 9.10 33.00 7.10 19.75 9.53 0.00 22.58 0.67 431.56

F/M III 4.08 9.04 9.92 57.88 10.91 139.66 7.63 17.36 92.91 14.08 0.00 9.57 23.51 0.00 396.57

F/M IV 8.80 33.60 11.89 113.41 13.73 120.85 7.29 106.87 18.22 16.30 14.15 16.24 10.45 2.16 493.96

tplr

F/M I 3.10 14.19 15.81 35.06 23.41 250.80 2.86 24.54 202.42 24.40 9.11 5.84 0.00 0.00 611.53

F/M II 4.11 14.86 100.96 63.64 20.79 625.79 6.25 8.79 323.16 39.26 6.54 26.68 0.00 0.00 1240.81

F/M III 6.98 18.63 85.84 167.38 28.04 1179.37 16.54 94.73 619.06 87.23 8.82 81.53 0.00 0.00 2394.16

F/M IV 7.05 27.23 44.52 711.02 40.80 1347.06 22.82 179.79 616.02 47.37 13.11 73.38 0.00 0.00 3130.16

mxr

C/N I 2.36 5.96 5.34 3.28 15.89 241.72 29.76 21.70 160.46 9.99 2.60 5.71 0.00 0.86 505.65

C/N II 2.35 2.80 12.87 3.39 12.85 468.41 65.00 26.97 881.39 14.69 2.38 21.53 0.00 215.23 1729.87

C/N III 2.47 5.60 15.95 2.40 16.28 426.46 173.77 80.96 927.56 36.12 8.71 29.90 29.87 1261.75 3017.82

C/N IV 2.65 11.96 21.92 11.36 14.99 379.48 191.35 63.97 767.95 11.03 6.61 16.10 22.78 2845.25 4367.40

mplr

C/N I 2.77 4.22 14.92 12.98 14.09 328.75 25.82 7.43 13.98 30.79 40.63 14.26 0.00 0.00 510.65

C/N II 3.13 7.78 27.17 6.79 11.73 871.10 128.48 28.27 107.45 27.08 128.76 33.48 0.00 981.62 2362.86

C/N III 3.88 6.77 47.30 8.32 10.21 869.92 227.08 24.33 80.49 34.80 35.72 35.04 0.00 430.98 1814.84

C/N IV 3.33 13.13 126.51 9.02 11.54 1477.81 349.28 98.50 87.28 37.85 46.22 23.25 0.00 1300.96 3584.69
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Table 2. Cont.

Reactors Experimental
Conditions

Hci
(Citric
Acid)

Hm
(Malic
Acid)

Hsu
(Succinic

Acid)

Hlac
(Lactic
Acid)

Hf
(Formic
Acid)

Hac
(Acetic
Acid)

Hp
(Propionic

Acid)

Hib
(Isobutyric

Acid)

Hbu
(Butyric

Acid)

Hiv
(Isovaleric

Acid)

Hva
(Valeric
Acid)

Hca
(Caproic

Acid)
EtOH

(Etha-nol)
MeOH

(Methanol) SMPtotal

txr

C/N I 2.32 1.55 5.41 21.42 12.94 217.70 6.70 31.73 145.50 34.67 1.68 13.76 0.00 0.00 502.33

C/N II 2.78 2.26 7.40 11.45 12.32 506.29 9.29 2.03 296.56 84.93 0.00 24.69 0.00 0.00 960.02

C/N III 5.92 7.95 5.94 61.48 13.94 476.31 13.75 2.10 386.06 75.59 1.32 11.01 0.00 0.00 1061.38

C/N IV 3.60 17.97 7.00 180.44 14.35 318.28 20.05 2.27 231.27 42.84 1.17 0.00 0.00 0.00 839.25

tplr

C/N I 2.60 1.60 7.00 6.17 14.33 197.80 8.60 11.41 49.47 27.97 4.84 3.71 0.00 0.00 335.79

C/N II 2.40 3.65 13.92 9.95 20.06 518.85 8.59 40.05 171.46 34.08 13.86 34.00 0.00 0.00 870.87

C/N III 11.05 20.59 85.49 159.45 27.26 1076.47 7.12 56.48 567.40 77.61 5.75 45.01 1.97 0.00 2141.60

C/N IV 17.61 43.47 63.90 977.04 58.12 1865.24 20.31 328.99 147.67 72.59 2.72 0.00 0.00 0.00 3597.64

Table 3. Main ratios of soluble substances and pH values from all experimental conditions.

Reactors Experimental
Conditions Hbu/SMPtotal Hac/SMPtotal EtOH/SMPtotal Hbu/Hac Hac/EtOH pH Initial pH Final

mxr

F/M I 0.07 0.11 0.26 0.60 0.46 6.4 4.0

F/M II 0.17 0.10 0.39 1.65 0.27 6.4 3.5

F/M III 0.006 0.13 0.50 0.04 0.26 6.3 3.0

F/M IV 0.009 0.12 0.51 0.08 0.24 6.1 2.9

mplr

F/M I 0.26 0.34 0.00 0.78 - 5.3 4.7

F/M II 0.19 0.30 0.00 0.65 - 6.0 4.2

F/M III 0.15 0.32 0.00 0.47 - 6.1 4.3

F/M IV 0.16 0.35 0.00 0.47 - 6.6 5.3

txr

F/M I 0.05 0.17 0.01 0.29 17.66 7.1 3.1

F/M II 0.02 0.21 0.05 0.08 4.08 6.0 3.6

F/M III 0.23 0.35 0.06 0.66 5.94 6.1 3.5

F/M IV 0.04 0.24 0.02 0.15 11.56 6.1 3.6



Fermentation 2024, 10, 432 24 of 34

Table 3. Cont.

Reactors Experimental
Conditions Hbu/SMPtotal Hac/SMPtotal EtOH/SMPtotal Hbu/Hac Hac/EtOH pH Initial pH Final

tplr

F/M I 0.33 0.41 0.00 0.81 - 6.0 4.8

F/M II 0.26 0.50 0.00 0.51 - 6.9 4.7

F/M III 0.26 0.49 0.00 0.52 - 6.7 4.6

F/M IV 0.20 0.43 0.00 0.46 - 6.4 4.6

mxr

C/N I 0.32 0.48 0.00 0.66 - 6.6 4.5

C/N II 0.51 0.27 0.00 1.88 - 6.0 3.9

C/N III 0.30 0.14 0.01 2.17 14.3 5.7 3.5

C/N IV 0.18 0.09 0.005 2.02 16.66 5.3 3.6

mplr

C/N I 0.03 0.64 0.00 0.04 - 6.0 6.4

C/N II 0.04 0.36 0.00 0.12 - 6.1 4.6

C/N III 0.04 0.48 0.00 0.09 - 6.1 5.2

C/N IV 0.02 0.41 0.00 0.06 - 6.1 5.3

txr

C/N I 0.29 0.43 0.00 0.67 - 6.0 4.3

C/N II 0.30 0.52 0.00 0.59 - 5.8 3.8

C/N III 0.36 0.45 0.00 0.81 - 6.1 3.6

C/N IV 0.27 0.38 0.00 0.73 - 6.1 3.5

tplr

C/N I 0.15 0.58 0.00 0.25 - 6.1 5.0

C/N II 0.19 0.59 0.00 0.33 - 6.0 4.6

C/N III 0.26 0.50 0.0009 0.53 546.43 6.5 4.6

C/N IV 0.04 0.52 0.00 0.08 - 6.6 4.7
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4. Discussion
4.1. H2 and SMP Production Outlook Using Thermophilic and Mesophilic Reactors under F/M
and C/N Ratios

The sigmoidal curve model adopted in this study did not fit the H2 curve for mplrs.
The instability of the fermentation process (in terms of pH maintenance in certain intervals
of values, suitable H2 pressure, presence of toxic compounds, etc.) probably acted as a
preponderant factor for low H2 production in the abovementioned reactors.

Temperatures in the thermophilic range tend to favor hydrogen production in virtue
of lowering H2 pressure into liquid media by the increase in the gas escape rate from it. In
addition, it should be taken into account that the hydrolysis of complex substances is a
limiting step in dark fermentation as the organic molecules lie “hidden” inside the microbial
cell wall or entangled in an extracellular polymeric matrix, and their breakdown is carried
out by extracellular enzymes. Therefore, it is expected that elevated temperatures enhance
the dissolution of biodegradable content and also the releasing of hydrolytic enzymes from
thermophilic bacteria into aqueous media [45,46].

Although a simple sugar (xylose) as the main substrate was applied to the xrs, the
sludge used as seed for the fermentation process itself contained a bulk of organic sub-
stances entrapped in cell walls or extracellular matrices which did not allow efficient
contact between the microorganisms and the biodegradable content (xylose and fructose).
Diverse comparative studies using either complex (cellulose and starch, for instance) or
simple sugars reported higher H2 production at thermophilic temperatures than mesophilic
ones [10–12,47].

In the thermophilic range, H2-consuming bacteria have limited growth. Regarding bac-
terial diversity inside sewage seed, it is more probable we will find, proportionally, a larger
number of thermophilic H2-producing bacteria species than mesophilic H2-producing
strains [48,49].

When evaluating the influence of different temperatures on H2 production from
anaerobic mixed flora using batch reactors and xylose as the main substrate, the authors
in [19] found higher HPRs in the mesophilic range (30–40 ◦C) than thermophilic conditions
(45–55 ◦C). It is not necessarily mandatory that the highest values of HPR and HY are
found at the same experimental temperature. High HPRs tend to be reached in mesophilic
conditions due to the presence of low cell densities in outward flow, while high HYs
in thermophilic conditions are related to slow growth rates observed in extremophilic
microorganisms [50]. Ref. [10] performed a comparative study adopting mesophilic and
thermophilic temperatures to H2 production. They used a preheated mesophilic anaerobic
digester sludge as inoculum and reported, using starch as substrate, a maximum hydrogen
production rate (MHPR) of 5 at 60 ◦C and 11 mL h−1 at 37 ◦C while HYs were 1.13 (60 ◦C)
and 1.00 mol H2 mol hexoseadded

−1 (37 ◦C). The initial mesophilic characteristic of anaerobic
seed adopted in the present study, as in [10], might have affected kinetic parameters related
to the H2 production rate in the thermophilic range. However, as these cells have low
proliferation rates, they showed, at least in most of the tplrs, higher HYs in comparison
to mplrs.

It is worth mentioning that there is no consensus about which temperature range
is better for hydrogen production through dark fermentation. Previous work [51], for
example, reported higher HY at mesophilic temperature (37 ◦C) than thermophilic (55 ◦C):
1.8 and 1.0 mol H2 mol glucose−1, respectively. On the other hand, [11] found higher
cumulative hydrogen production (171 mL), HY (111 mL H2 g total sugar−1), and SHPR
(3.46 mL H2 L−1 h−1) at 55 ◦C when compared to 37 ◦C using cheese whey powder solution
as substrate. In addition to the mesophilic or thermophilic H2 production being related
to seed enrichment with H2 producers, other factors should be considered, such as the
inoculum type, the substrate adopted as the carbon source, the hydraulic reactor regime,
and the mineral supplements applied.
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Evaluation of nutritional requirements such as F/M or C/N ratios have been pre-
sented in previous studies [52–55] as important operational parameters to achieve better
H2 production rates in distinct types of substrates used during the dark fermentation
process. Ref. [51] evaluated the influence of the C/N ratio in an H2 production context
using palm oil effluent. The authors observed optimum hydrogen generation at C/N = 140
and a reduction of this gas at C/N = 190, showing that the nitrogen deficiency could
affect microorganism metabolism, such as those related to H2 production. Apart from this,
taking the F/M ratio into consideration, ref. [52] reported over a F/M range of 1.5–38.2
(as in the present study) with a prominent HY value of 137.73 mLH2.g substrate−1 at
F/M = 38.2 using condensed molasses as substrate in a batch reactor. There is a wide varia-
tion in values of organic load ratios, which enhance quantities of cumulative H2 produced,
or even improve values of HYs. Likewise, regarding the influence of temperature, varying
numbers regarding feed ratios seem to lie in the uniqueness of microbial seeds, chosen
substrate, working temperature, initial organic load level applied, and hydraulic regime.

The proportion of SMPs such as acetate, butyrate, propionate, and ethanol in liquid
bulk contributes to evaluating the fermentation stability and the HY itself. Concerning
ethanol, the known ethanol-type fermentation is associated with several fermentative
reactions that globally result in ethanol production accounting for almost 30% (calcu-
lated as equivalent COD) of total SMPs, and the quantity of acetate and ethanol together
is more than 50% of the total produced by fermentation in liquid bulk [44]. Anaerobic
process stability often focuses on evaluating VFA (acetate, butyrate, and propionate) con-
centrations, although some authors have associated better H2 production and overall
process stability by analyzing ethanol-type fermentation [18,56,57]. The balance between
NAD+/NADH + H+ of approximately 1:1 is essential to ensure a suitable intracellular pH
and continuous hydrogen production. For ethanol or propionic acid generation, as well as
acetate, 2 moles of NADH + H+ are formed through glucose degradation to produce
2 moles of pyruvate, one of which generates 1 mol of acetate (without NAD+ formation),
and the other generates 1 mol of ethanol/propionate which produces 2 moles of NAD+;
thus, a dynamic equilibrium between reduced and oxidized forms of the nicotinamide
molecule [56,58] is achieved. Therefore, the closer the ethanol/acetate ratio to one, the more
stable the fermentative metabolism and biohydrogen production will be [59]. The probable
ethanol-type occurrence under mxr-FMII, mxr-FMIII, and mxr-FMIV conditions showed
the closest values of optimum ethanol/acetate ratio (except for mxr-FMI): 0.27 (mxr-FMII),
0.26 (mxr-FMIII) and 0.24 (mxr-FMIV) (Table 3). The propionic pathway (Equation (8)), how-
ever, consumes H2 and produces acidic forms that contribute to reducing pH, hindering the
fermentation process. Comparing ethanol-type fermentation to butyrate-type (Equations
(6) and (7), respectively), the first provides more fermentation stability, whilst the second
yields the same 2 H2 moles per hexose but produces a theoretical NAD+/NADH + H+ ratio
of 1:2, leaving the fermentation process unstable [57].

C6H12O6 + H2O→ C2H6O + C2H4O2 + 2CO2 + 2H2(
2NAD + 2NADH + H+ −→ 2NAD + 2NADH + H+

) (6)

C6H12O6 → 0.5C4H8O2 + 0.75C2H4O2 + 2CO2 + 2H2(
2NAD + 1NADH + H+ −→ 1NAD + 2NADH + H+

) (7)

C6H12O6 + 1.2H2 → 1.2C3H6O2 + 1.2C2H4O2 + 1.2H2O(
2NAD + 2NADH + H+ −→ 2NAD + 2NADH + H+

) (8)

Considering the availability of NADH + H+ as a precursor to H2 formation through
ferrodoxin reduction, butyrate-type fermentation has a higher potential to produce H2
than ethanol-type fermentation, in virtue of higher NADreduced concentration. However,
the stability of the anaerobic process is hindered (H2 production as well) eventually due
to an imbalance between NAD+/NADH + H+ forms, resulting in acidification of bulk
media. Some authors consider that the HBu/HAc ratio is proportional to HYs [47,60],
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and some of them suggest that the ideal ratios to find the highest HYs are 1.6–2.2 [60–62].
Other authors reported greater results in HY with the HBu/HAc ratio above 2.6 [63–65].
Theorizing acetate and butyrate production by xylose degradation, this metabolic pathway
would be able to yield 2.5 mol H2 mol xylose−1 and an HBu/HAc ratio of 0.5 (Equation (9)).
None of the batches reached this HY value (or close to it) as a result of limiting factors,
which is further discussed. The HBu/HAc ratio analyses only make sense for butyrate-type
fermentation that appears when butyrate encompasses 30% of the total SMPs and the
sum of butyrate and acetate exceeds 50% of fermentation products [44]. In the present
study, the butyrate-type fermentation has possibly been found in tplr-FMI, mxr-CNI, mxr-
CNII, mxr-CNIII, txr-CNII, and txr-CNIII conditions (Table 3). The low Hbu/SMPtotal
values in most of the plrs could be explained by a high initial concentration of acetate in
comparison to other VFAs, such as butyric acid. A higher relative presence of butyrate at
thermophilic rather than mesophilic reactors might be related to lower VFA production
at elevated temperatures. Thermophilic conditions tend to produce H2 from traditional
acetate or butyric routes in a stable way, often without a considerable amount of other
VFA compounds.

C5H10O5 + 0.835H2O→ 0.415C4H8O2 + 0.835C2H4O2 + 1.67CO2 + 2.5H2 (9)

Propionic acid is one of the VFAs that must be constantly monitored over the fer-
mentation period to ensure steady H2 production. High propionate concentrations in
a liquid bulk promote an intense cellular pH drop, collapsing the fermentative process.
Through xylose degradation, 1.67 moles of H2 are consumed per mole of C5 sugar, yielding
1.67 moles of propionate per mol of substrate (Equation (10)). The propionic acid-type
fermentation can be determined as the propionate reaches between 15–20% of the total
SMPs [44]. The mplr-FMIV condition possibly showed propionic acid-type fermentation
due to high propionate production allied to its low HY.

C5H10O5 + 1.67H2 → 1.67C3H6O2 + 1.67H2O (10)

Some studies reported acetate and lactate as the main intermediate SMPs at 70 ◦C
using sucrose [66] and xylose [67] as main substrates. Lactic producers are commonly
found at mesophilic temperatures competing with other fermentative bacteria and many
of them are not able to degrade xylose-rich compounds [68]. Previous works reported
the existence of one solely thermophilic lactate producer named Bacillus coagulans [69,70]
which can degrade both glucose and xylose sugars under 50–55 ◦C using simpler culture
media such as MRS medium [71]. As lactic acid produced through several conditions in
the present study was accomplished with considerable production of acetate, formate, and
in some cases, butyrate (Figure 2 and Table 2), it is reasonable to assume lactate formation
through the heterofermentative pathway derived from previous xylose breakdown by the
phosphoketolase pathway (discussed in detail later). Basically, two alternative metabolic
routes simultaneously appear: (1) The breaking of xilulose-5P into glyceraldehyde 3-P
(GAP), followed by pyruvate generation, and lastly lactate or formate; and (2) production of
acetil-P through the phosphoketolase pathway by the presence of xilulose-5P, followed by
acetate production or acetil-CoA generation from acetil-P, and further formation of acetate,
butyrate, ethanol, etc. [62,72].

Isobutyrate can be produced by thermophilic bacteria which are able to transform
pyruvate molecules from glycolysis into isobutyraldehyde (in a similar way to the Ehrlich
pathway in amino acid degradation) using the 2-ketoacid decarboxylase enzyme [73]. It is
probable that greater carbon availability under FMIV conditions have contributed to larger
metabolic route diversification.

Medium-chain fatty acids (MCFAs) are the result of carbon chain elongation from short-
chain fatty acids (SCFAs) such as acetic, butyric, and lactic acids without necessarily being
coupled with hydrogen production. Higher SCFA concentrations in mplr-FMs (Table 2)
might have allowed further carbon chain elongation in possible metabolic pathways. In a
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previous study [74], among the diverse routes of caproate production cited, the authors
suggested the formation of this acid along with H2 by anterior ethanol dehydrogenation.
As there was no ethanol presence in mplr-FMII, it is more reasonable to assume caproate
production from acetate and/or butyrate with H2 as the electron donor.

As methanol was reported in plrs, its presence could be explained by dissociation
of methyl and methoxy groups from lignin and hemicellulose polymers during acid pre-
treatment of sugarcane bagasse at elevated temperatures [75]. How would the existence
of methanol be explained in xrs and its increasing production throughout the fermenta-
tion process? The methanol found in mxr-CNII, mxr-CNIII, and mxr-CNIV must have
originated from poultry slaughterhouse inoculum. The use of glycerin from the biodiesel
industry as a food complement in poultry diets is common in Brazil [76]. During the indus-
trial biodiesel process, excess methanol is reacted with glycerin, and a considerable quantity
of this alcohol is not separated after the end of the reaction. Continuous production in some
conditions (mplr-CNII, mplr-FMIII, and mplr-CNIV, for example) suggests the metabolic
production of methanol from microorganisms with enzymes such as pectin methylesterase
(acts on methoxyl esters), found in some Clostridium strains [77]. To date, there is no
description of any presence of methanol in metabolic reactions associated with H2.

In general, at hot temperatures, few microorganisms are capable of surviving, and
thus, a poor variety of metabolic routes is observed with predominance of some ther-
mophilic strains of Clostridium. Fewer SMPs generated during the fermentation process at
55 ◦C indicate less availability of carbon sources, and consequently a reduced number of
metabolic pathways related to H2 when compared to mesophilic temperatures.

4.2. H2 Production Drawbacks from Non-Fermentative Products

Considering the maximum HY of 3.33 mol H2 mol xylose−1 when acetate is a byprod-
uct (Equation (11)) and the values of HYs observed in the present study, there was no
similar yield registered under any experimental conditions. Aside from the H2 production
by aforementioned fermentation types which yielded low HYs, this section intends to bring
other issues faced in obtaining high HYs to light.

C5H10O5 + 1.67H2O→ 1.67C2H4O2 + 1.67CO2 + 3.33H2 (11)

Certain aspects of substrate degradation might be related to lower HYs than those
theoretically expected. Glucose and fructose are commonly preferentially metabolized by
the most anaerobic microorganisms once the glycolytic pathway is present in all known
fermentative bacteria in opposition to efficient xylose-degrading enzymatic machinery.
Evidence that glucose transporters found in Saccharomyces cerevisiae can also accomplish
xylose uptake but at the cost of much lower rates [78] might also be assumed to exist in
fermentative bacteria; this is quite probable. As no bioaugmentation with xylose-degrading
strains took place, it is reasonable to assume low xylose uptake rates. Depending on the
origin of the mixed culture adopted, higher HYs can be obtained in reactors fed with xylose
rather than glucose as shown by [79].

D-xylose is not readily degraded as glucose and fructose, because this C5 sugar
does not go directly to the glycolysis pathway. Instead, it is converted into D-xylulose-5-
phosphate (X5P). This metabolite can follow two separate ways: the pentose phosphate
pathway (PPP), or the phosphoketolase pathway (PKP) [80]. The PPP consists of a set of
X5P rearrangement reactions into different sugars to generate glyceraldehyde-3-phosphate
(G3P), one of the most important intermediates of glucose metabolism [79]. In the PKP,
X5P is cleaved into G3P and acetylphosphate. The latter is converted into acetate [71].
Preferential acetate production by PKP leads to a lesser possibility of H2 formation as only
1 mole of G3P is generated per mole of xylose, while the PPP produces 2 G3P molecules
per mole of xylose.

Substrate inhibition was not an issue we could overlook, as xylose concentrations were
increasing during the experimental plan. Several authors reported substrate inhibition in
xylose-rich media at different concentrations with different seeds: 10 g L−1 using mixed
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culture [81], 15 g L−1 with isolated strain [82], and 20 g L−1 with pure culture [83]. This
substrate concentration range was adopted in the present study. The substrate inhibitions
should have occurred as of 10 g L−1 in trs and at 20 g L−1 in mxrs. It is worth remembering
that xylose concentrations measured in plrs were lower than in xrs due to the presence
of other substances in the hydrolysate which accounted for the increase in COD measure-
ments. High initial acetate concentrations exhibited in plrs (Table S1) should be taken into
consideration to evaluate ongoing xylose degradation in these reactors.

The mesophilic feature of microflora showing a substantial number of xylose-degrading
species in mild conditions when compared to thermophilic seeds may explain lower kapp

1
values therein. It is worth noting that high kapp

1 values do not necessarily mean higher
H2 yields. To illustrate this [10], using mesophilic seeds reported higher HYs both at ther-
mophilic cellulose-only and starch-only batches compared with mesophilic ones, although
the overall specific utilization rate (rsu/X) values were higher in mesophilic conditions.
Instead of hydrogen, higher kapp

1 values seem to head the production of SMP byproducts.
Elevated temperature conditions that had lower kapp

1 numbers and high H2 yields were
supported by low cell quantities, associated with a small proportion of H2-consumers
concomitant with an elevated percentage of H2-producers. As discussed in the previous
section and through all the content in this paragraph, the occurrence of higher HPRs in
mxrs than txrs, and greater HYs in the latter under a pairwise comparison context is not
surprising (Table 1).

H2 inhibitory compounds such as acetate, furfural, hydroxymethylfurfural (HMF), and
phenolic derivatives are produced with acid pretreatment hydrolysis of sugarcane bagasse.
Excess of acetic acid can lead to a reduction in intracellular pH causing fermentation
inhibition [84]. Moreover, furan substances may affect the glycolysis enzymes and cause
DNA damage in some fermentative bacteria [85]. Meanwhile, phenolic compounds may
alter the cell membrane permeability, hindering the fermentation process [86].

Based on several studies [85,87–89], furan derivatives and phenolic compounds show
an inhibitory effect on H2 production in concentrations of up to approximately 1 g L−1.
These toxic compounds commonly worsen hydrogen generation in concentrations close
to 1 g L−1, which is quite improbable to have been found in any plr. Values of furfural
were reported close to 1 g L−1 by [90] when dilute acid pretreatment of sugarcane bagasse
(2% H2SO4 (v/v), 122 ◦C, and 60 min) was used. A previous study [86], promoting corn
stover hydrolysis (2% H2SO4 (v/v), 121 ◦C, and 90 min), obtained 0.1 g L−1 of phenolic
compounds and 0.85 g L−1 of furan derivatives. These works applied higher temperatures
and acid concentration in the hydrolysis process of sugarcane bagasse compared to the
present study. Furthermore, proper xylose and COD concentrations were achieved after
further dilution of hydrolysate.

There is no consensus regarding the threshold acetate concentration for H2 inhibition,
but it seems to be found at high concentrations (up to 5 g L−1), with which some related
issues were noticed [91–94]. In [90], the authors applied a mixed seed with glucose as
a carbon source exhibiting an inhibition constant (Kc) of 8.27 g L−1 of acetate for H2
production. Using mixed seed and glucose as feed, Ref. [91] showed a decrease of 50% at
HPR (mL h−1) when 6 g L−1 of acetate was added. Considering that the highest acetic acid
concentration found in plrs was lower than 2.5 g L−1 (mplr-FMIV) (Table S1), its inhibitory
effect on H2 production seems unexpected and hard to measure in the present study.

High sulfate concentrations were found at higher xylose concentrations in plrs due to
sulfuric acid dissolution in the hydrolysis process (Table S1). Sulfate in high concentrations
leads to a reduction in H2 production by the proliferation of sulfate-reducing bacteria (SRB).
Some SRBs can lead to sulfate reduction using H2 as an electron donor and non-complex
molecules such as acetate or ethanol as carbon sources [95]. However, this metabolic
pathway hardly took place in plrs, as SRB are not able to survive at low pH values (<5.5)
commonly presented in fermentative processes [96].
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5. Conclusions

Sugarcane bagasse pentose liquor is a feasible source of fermentative hydrogen. This
highly pollutant agro-waste becomes an economic asset, being a raw material for energy
carrier production, and at the same time, having a clean destination for it, avoiding the
pollution of streams. In general, hydrolysate reactors under thermophilic temperatures
showed higher HYs and cumulative hydrogen production than mesophilic ones. Elevated
temperatures can ensure better contact between substrate and microorganisms, inhibit
most H2 consumers, and enable favorable thermodynamic conditions for hydrogen release
from liquid bulk media.

Variations in F/M and C/N ratios mostly implied significant HY differences even at
the same temperature. Relevant discrepancies were also verified under both mesophilic
and thermophilic environments for the same F/M or C/N ratio. Therefore, nutritional and
temperature aspects might have affected the hydrogen production parameters.

Diversification of experimental conditions drove H2 production through several fer-
mentation types (ethanol, butyric, and propionic-fermentation types), where acetate was
one of the main SMPs in a large majority of reactors. Other SMPs also had prominent
production in at least one condition. The unusual detection of methanol in substantial
quantities under some experimental conditions appeared to be intricately connected with it
being embedded into the inoculum. It could also have been produced by microorganisms
from sludge which contained enzymes, such as pectin methylesterases.

Aside from bacteria competition and their fermentative products, important draw-
backs for H2 production seemed to be more related to constraints concerning xylose uptake.
Occurrences of substrate inhibition at high xylose concentrations fitted better as a response
to poor H2 production than toxic substances such as acetate, furan derivatives, and phenolic
compounds presented therein.
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