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Abstract

Based on the adjoint boundary value problem proposed decades ago by
Zulehner and Rohatschek [1], analytic and closed-form expressions for the
photophoretic forces exerted by arbitrary-shaped beams on homogeneous and
low-loss spherical particles is derived in both the free molecular and slip flow
regimes. To do so, the asymmetry vector for arbitrary-index particles is ex-
plicitly calculated by expanding the internal electromagnetic fields with the
aid of the generalized Lorenz-Mie theory (GLMT). The approach here pro-
posed is, to the best of the authors’ knowledge, the first systematic attempt
to incorporate the GLMT stricto sensu into the field of photophoresis and
might as well be extended, e.g. to spheroids and find important applica-
tions, among others, in optical trapping and manipulation of microparticles,
in geoengineering, particle levitation, optical trap displays and so on.
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1. Introduction1

The determination of radiometric or photophoretic forces (Fph) is not2

always an easy task. Because of that, the scientific community in the area3

of photophoresis suffers from the lack of an analytical theory capable of4

predicting such forces for light beams with arbitrary field profiles. In fact,5

the ’standard’ solution procedure involves dealing simultaneously with the6
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heat conduction equation and the Navier-Stokes equation with appropriate7

boundary conditions on the particle surface. Such conditions are based on8

physical grounds and dependent upon the Knudsen number Kn = `/a, where9

` is the mean free path of molecules in the host fluid and a the radius of the10

illuminated particle.11

After solving this set of equations for quantities such as temperature12

distribution in the particle and in the fluid, gas pressure and velocity fields,13

and photophoretic velocities, photophoretic forces are then evaluated from14

the stress tensor.15

For plane waves and spherical particles with low losses, analytical solu-16

tions exist for what is known as the asymmetry factor J1 (and, consequently,17

for Fph, since they are proportional to each other), in the slip-flow and free18

molecular regimes. The formalism involves expansions of the electromagnetic19

fields internal to the particle using the Mie theory [2]. Qualitatively, however,20

it is known in advance that the resulting photophoretic forces will point either21

parallel (positive photophoresis) or anti-parallel (negative photophoresis) to22

the Poynting vector. For light beams with arbitrary spatial field profiles, we23

find most of the times attempts to approximate or use numerical methods24

[3, 4, 5, 6].25

Boundary conditions depend upon the Knudsen number Kn. For Kn >>26

1 (free molecular regime), the particle is much smaller than the mean free27

path ` of the gas and kinetic theory of gases applies. In 1967, using this28

theory, Hidy and Brock found an expression for the photophoretic force29

in this regime by assuming a solid, non-volatile and non-radiative homo-30

geneous sphere [7]. Such an analysis was further improved by Tong in 1973,31

who introduced the additional effect of radiation from the surface of a black32

body caused by heating [8], and by subsequent works [2, 9, 10, 11, 12]. For33

Kn < 1 or Kn << 1 (slip-flow or continuous regime, respectively), the34

particle is larger or much larger than ` and the mechanical transport of the35

particle is given in terms of a continuous medium approach with appropriate36

slip-flow boundary conditions, the photophoretic force being then a direct37

consequence of thermal creep [13, 14]. In 1928, Hettner presented the first38

expressions for Fph in the continuous regime, assuming solid and non-volatile39

homogeneous spheres [15]. Also, a few decades after Rosen and Orr proposed40

an order of magnitude estimation for Fph [16] based on specific expressions41

for the temperature gradient at the surface of the particle previously deduced42

by Rubinowicz [17] and relying upon spheres illuminated only over a single43

hemisphere (z < 0). In a notorious work, Yalamov, Kutukov and Shchukin44
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carried out a systematic study of the theory of photophoretic movement for45

volatile aerosols, considering the pressure on the particle surface caused by46

the asymmetric evaporation of the substance from the sphere [18]. Another47

interesting work was also published by Reed in almost the same period [19],48

who theoretically investigated photophoretic forces in the low Knudsen num-49

ber regime for opaque particles, comparing his theoretical predictions with50

the most recent experimental results so far available [8, 20]. The dependence51

of the photophoretic force as a function of the size parameter was analyzed52

numerically by Arnold and Lewittes [21] and analytically by Mackowski [2]53

with the aid of the Mie theory for expressing the internal electric and mag-54

netic fields. Studies involving photophoretic forces in the intermediate region55

Kn < 1 and how two extreme cases Kn >> 1 and Kn << 1 link to each56

other were initially carried out by Reed [19] and Mackowski [2]. In all pre-57

vious works, as well as in the majority of publications to date, theoretical58

analysis has been restricted to uniform plane wave illumination (see, for in-59

stance, Refs. [14, 22, 23] for the period before 2013, to be complemented60

by Refs. [24, 25, 26, 27, 28] and references therein.). Very recently, pho-61

tophoretic longitudinal and transverse asymmetry factors for dielectric and62

magnetodieletric cylinders and aggregates, including reflection from planar63

boudaries and corner spaces, have been investigated by Mitri, including in-64

cidence by waves and light-sheets with arbitrary polarization and incidence65

angle [29, 30, 31, 32].66

The inclusion of arbitrary-shaped beams in photophoresis problems with67

spheres will certainly lead us to work within the formalism of the gener-68

alized Lorenz-Mie theory (GLMT) [33]. In the GLMT strictu senso, the69

incident, scattered and internal fields are expanded over a set of orthogo-70

nal spherical wave functions, the coefficients of such expansions - the beam71

shape coefficients (BSCs) - carrying all the information regarding the spatial72

field distribution of the incident wave. Because any solution to Maxwell’s73

equations can be described within this context, we expect that any general74

theory on photophoresis for light-scattering by arbitrary-shaped beams and75

homogeneous spheres must inevitably incorporate GLMT into its mathemat-76

ical foundations. In this path, Ambrosio has recently been able to extend77

the analysis beyond plane waves and dielectric particles, first by introducing78

arbitrary-index spheres in the case of plane wave illumination [34] and then79

by considering photophoretic forces exerted by on-axis axisymmetric beams80

[35], subsequently extended to higher-order Bessel beams by Wang et al. [36].81

As stated by Fuchs [37] (also quoted in Ref. [14]), “The main difficulty82
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in calculating the radiometric force on a particle is the determination of the83

temperature gradient in the particle itself.”. Lamb’s general solution, usually84

applied for plane wave illumination, might not be of much help beyond it85

[38, 39].86

This paper deals with analytic and closed-form solutions to the pho-87

tophoretic forces in both slip-flow and free molecular regimes with the aid of88

the GLMT. It incorporates into the theory of photophoresis, for the first time89

in the literature to the best of the author’s knowledge, shaped beams beyond90

plane waves and arbitrarily located with respect to an opaque, non-radiative,91

non-volatile spherical scatterer. To do so, the method of the Adjoint Bound-92

ary Value Problem (ABVP) to the heat conduction equation proposed a93

few decades ago by Zulehner and Rohatschek [1] is here invoked in order94

to resolve for a vector generalization of J1 called the asymmetry vector ras,95

thus allowing us to solve for the photophoretic forces without the need for96

explicitly finding the temperature distribution within the particle itself. Ex-97

pressions for both longitudinal and transverse components of ras exerted on98

arbitrary-index micro-spheres are then derived in terms of the BSCs, a fea-99

ture which makes the present theory valid for any incident wave field in any100

optical regime (Rayleigh, Mie or geometric).101

Section 2 presents a brief review on the method of calculation of Fph for102

spherical particles and plane waves, including the main aspects of the ABVP103

to be adopted in the subsequent sections. Section 3 concerns the derivation104

of ras for arbitrary beams with the aid of the GLMT, using the approach105

proposed by Zulehner and Rohatschek, for which Fph ∝ ras. Here, both heat106

transfer from the particle and absorption of radiation within the fluid are107

neglected, and particles are restricted to non-volatile (solid) homogeneous108

spheres. Finally, conclusions are presented in Sec. 4.109

2. Photophoresis for uniform plane wave illumination110

2.1. The ’standard’ procedure based on Lamb’s general solution111

Let us consider a homogeneous micro-particle of radius a and constant112

thermal conductivity ks. The gas density, pressure and temperature distri-113

bution are represented by ρg, pg and Tg, respectively.114

The ’standard’ procedure based on Lamb’s general solution to the heat115

conduction equation [38, 39] says that in order to determine the photophoretic116

velocity and, consequently, the photophoretic force Fph, the temperature dis-117

tribution Ts within and on the surface of the sphere must be determined. For118
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Kn < 1, i.e. in the slip-flow regime, for example, the following set of equa-119

tions must be solved120

∇2Ts = −Q (r, θ, ϕ)

ks
, (1a)

121

∇2Tg =
ρgcp
kg

(
vθ
r

∂Tg
∂θ

+ vr
∂Tg
∂r

)
, (1b)

122

∇2v =
1

ηg
∇pg, (1c)

123

∇ · v = 0. (1d)

Equations (1a) and (1b) are the heat conduction equations for Ts and124

Tg, respectively. The function Q(r, θ, ϕ) is known as the heat source function125

(HSF) and depends on the internal field intensity distribution. Navier-Stokes126

equations are given by (1c) and (1d), where v = vrr̂ + vθθ̂ + vϕϕ̂ is the fluid127

velocity vector according to a spherical coordinate system (r, θ, ϕ) whose128

origin coincides with the center of the sphere.129

The differential equations in Eq. (1) must satisfy the following boundary130

conditions:131

Tg − Ts = ct`
∂Tg
∂r

, r = a, (2a)

132

kg
∂Tg
∂r

= ks
∂Ts
∂r

, r = a, (2b)

133

Tg = T0, r →∞, (2c)

134

vr = 0, r = a, (2d)

135

vθ = cm`

[
r
∂

∂r

(vθ
r

)
+

1

r

∂vr
∂θ

]
+

csηg
ρgT0a

∂Tg
∂θ

= cm`σθr +
csηg
ρgT0a

∂Tg
∂θ

, r = a,

(2e)
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136

vϕ = cm`

[
r
∂

∂r

(vϕ
r

)
+

1

r sin θ

∂vr
∂ϕ

]
+

csηg
ρgT0a

∂Tg
∂ϕ

= cm`σϕr +
csηg
ρgT0a

∂Tg
∂ϕ

, r = a,

(2f)

137

v = V0, r →∞. (2g)

In (1) and (2), ηg is the viscosity and kg the thermal conductivity of the138

gas, ct, cm and cs are constants calculated from the kinetic theory of gases139

with values 2.18, 1.14 and 1.17, respectively [40], and cp is the specific heat140

at constant pressure. The elements of the stress tensor σ are designated by141

σij.142

For details involving the solution of the set of equations in the free molec-143

ular regime, including its appropriate boundary conditions, see e.g. Refs.144

[2, 18]. Analytic solutions of (1) and (2) have been found when (i) the HSF145

has azimuthal symmetry [that is, Q(r, θ, ϕ) ≡ Q(r, θ)], which happens to be146

the case for unpolarized plane wave illumination), and (ii) when convection147

terms of the r.h.s. of (1b) are neglected, which means that Tg obeys a Laplace148

equation. For axisymmetric flow, it is easy to infer that vϕ = 0 and one can149

shown that for +z-propagating light, Fph = Fz ẑ.150

The standard method for solving the set of equations (1) and (2) relies151

upon expansions of Tg, v and pg in terms of spherical wave functions. For the152

axisymmetric plane wave case and using spherical coordinates, the general153

solutions to the thermodynamics [(1a) and (1b)] and hydrodynamics [(1c)154

and (1d)] equations can be obtained with the aid of Lamb’s general solutions155

[38, 39] under the following form [2]:156

Ts − T0
T0

=
∞∑
n=0

[Anζ
n +Gn (ζ)]Pn (µ) , (3a)

157

Tg − T0
T0

=
∞∑
n=0

Dnζ
−(1+n)Pn (µ) , (3b)

158

vr =
∞∑
n=1

frn (ζ)Pn (µ) , (3c)

6



159

vθ =
∞∑
n=1

fθn (ζ)P 1
n (µ) , (3d)

160

pg =
∞∑
n=1

fpn (ζ)Pn (µ) , (3e)

where Pm
n (x) are the associated Legendre functions [P 0

n(x) = Pn(x)] accord-161

ing to Robin’s notation [41] adopted in the GLMT convention. The constants162

An and Dn, as well as the r-dependent functions ζ = r/a, frn, fθn and fpn,163

are calculated after the imposition of the boundary conditions (2), see [2].164

The function Gn(ζ) depends on the HSF Q(r, θ) according to165

Gn (ζ) =
1

2

[
ζn

1∫
ζ

t1−n
1∫

−1

g (t, θ)Pn (cos θ) d (cos θ) dt

+ ζ−(1+n)
ζ∫

0

tn+2

1∫
−1

g (t, θ)Pn (cos θ) d (cos θ) dt

]
,

(4)

with g(r, θ) = a2Q(r, θ)/ksT0. After some algebra, one finds an expression166

for Fph [2, 9, 19]:167

Fph = −
4πcsη

2
gIλaJ1

ρgksT0

1

(1 + 3cm`/a) (1 + 2ct`/a+ 2kg/ks)
ẑ, (5)

where J1 is the asymmetry factor168

J1 (x,M) = 3nspmspx

1∫
0

1∫
−1

B
(
t =

r

a
, µ
)
t3µdµdt. (6)

In (5), Iλ = |E0|2/2η0 is the intensity of the incident wave, E0 its electric169

field strength and η0 the intrinsic impedance of the gas. The size parameter170

of the particle is defined as x = (2π/λ)a = ka and M = nsp − imsp is its171

complex refractive index with µsp = µ′ = µ0 and εsp = ε′ − iε′′ its perme-172

ability (µ0 is the permeability of free space) and permittivity, respectively.173

Parameters relative to the external medium carry a subscript ’r’ (e.g., a rel-174

ative permittivity εsp,r = ε′r− iε′′r). Finally, B(r, θ) = |Eint(r, θ)|2/|E0|2 is the175
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dimensionless radiative intensity distribution function [2], source strength176

[42] or normalized source functions [3], with Eint the electric field inside the177

sphere.178

The double integral in (6) can be evaluated explicitly for the case of179

a plane wave illumination using the Mie theory for scattering by dielectric180

particles. By expanding the internal fields into a sum of spherical wave181

functions, Mackowski [2] found an expression for J1 which, in terms of the182

standard time harmonic factor exp(+iωt) used in the GLMT [33], can be183

written as:184

J1 (x,M) =
6nspmsp

|M |2x3
Im

∞∑
n=1

{
n (n+ 2)

M
(cn+1c

∗
nRn+1 + dn+1d

∗
nRn)

−
[
n (n+ 2)

n+ 1

(
c∗n+1cn + dn+1d

∗
n

)
+

2n+ 1

n (n+ 1)
cnd
∗
n

]
Sn

}
,

(7)

where the Mie coefficients cn and dn for internal fields and dielectric particles185

are [33]:186

cn =
M [ξn (x)ψ′n (x)− ξ′n (x)ψ (x)]

ξn (x)ψ′n (Mx)−Mξ′n (x)ψn (Mx)
, (8a)

187

dn =
M2 [ξn (x)ψ′n (x)− ξ′n (x)ψ (x)]

Mξn (x)ψ′n (Mx)− ξ′n (x)ψn (Mx)
. (8b)

Also, Rn and Sn are functions of x and M according to the following188

relations (correcting for a typo in Eq. (61) of Ref. [2]),189

Rn ≡
x∫

0

|ψ (Mρ)|2dρ =
Im [Mψn+1 (Mx)ψ∗n (Mx)]

Im (M2)
, (9)
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190

Sn ≡
x∫

0

ρψ∗n (Mρ)ψ′n (Mρ) dρ

= − i

2 Im (M2)

{
x
(
M |ψn (Mx)|2 +M∗|ψn+1 (Mx)|2

)
−
(
M + 2 (n+ 1)

Re (M2)

M

)
Rn + (2n+ 1)M∗Rn+1

}
.

(10)

In (8)-(10), ψn(x) and ξn(x) are Ricatti-Bessel functions, with a prime in-191

dicating a differentiation with respect to the argument [33]. Generalizations192

of (7) have been recently developed by Ambrosio for arbitrary refractive193

index spheres under plane wave illumination [34] and for on-axis axisym-194

metric beams (Gaussian and zero-order circularly symmetric Bessel beams)195

[35], with an extension to higher-order circularly symmetric Bessel beams by196

Wang et al. [36]. To the best of the author’s knowledge, despite experimental197

advances, the only other work that attempts to analytically calculate Fph for198

arbitrary-shaped beams is the one presented by Desyatnikov et al. in 2009 [6]199

for low-loss aerosol particles manipulated via photophoretic forces using vor-200

tex beams (Laguerre-Gauss LG01 beam). In their approach, approximations201

are proposed based on the size of the particle with respect to the diffraction202

length l and assuming that the sphere is always placed along the optical203

axis (z axis). Theoretical results are shown to be in good agreement with204

experiments.205

2.2. The ABVP method and the asymmetry vector206

In 1994, Zulehner and Rohatschek [1] presented a method for calculating207

Fph for non-spherical particles based on an equivalent problem to the heat208

conduction equation. The analysis was separated according to the slip-flow209

or free molecular regime, which means that for each regime certain boundary210

conditions must be met.211

In this method, Fph is expressed directly in terms of the HSF after ap-212

plying Green’s second identity to obtain an adjoint boundary value problem213

starting from the non-homogeneous heat conduction equation (1a). In the214

process, a weight function w(r) is introduced (r = xx̂+yŷ+zẑ is the position215

vector) whose form depends on the geometry of the particle.216
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For the free molecular regime, a general linear boundary condition is217

assumed for (1b):218

−ks
∂Ts
∂n

= A+BTs, (11)

where ∂/∂n denotes the normal derivative with respect to the surface of the219

particle, A = −hT0 and B = h, with h being the molecular heat transfer220

coefficient and given by h = αpgv/2T0 for monatomic and h = 3αpgv/4T0 for221

diatomic gases, where α is the thermal accommodation coefficient and v is222

the mean speed of gas molecules. In view of that, for Kn >> 1 [1],223

Fph = −C
∫
Vp

Q (r)w (r) dV, (12)

where C = αpg/4T0 and Vp is the volume of the arbitrary-shaped particle.224

In the case of a spherical particle, w(r) = r/(Ba+ ks) and (12) reduces to225

Fph = − C

Ba+ ks

∫
Vp

rQ (r) dV. (13)

Similarly, in the slip-flow regime with boundary condition given by (2b),226

one has [1]:227

Fph = −
3csη

2
g

ρgT0a2 (kg + ks)

∫
Vp

rQ (r) dV. (14)

It is seen from (13) and (14) that, instead of a scalar asymmetry factor228

J1, one can now speak in terms of an asymmetry vector, ras [1, 5] which, for229

our purposes and differing slightly from previous works, is here defined as:230

ras =

∫
Vp

rQ (r) dV. (15)

3. Photophoretic forces for arbitrary-shaped beams in the GLMT231

Equations (13) and (14) can be written in a more compact form:232

Fph = −CKnras, (16)
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where CKn = C/(Ba + ks) for Kn >> 1 and 3csη
2
g/[ρgT0a

2(kg + ks)] for233

Kn < 1. As is clear from (16), knowledge of ras for a given HSF or, in234

other words, for a given electromagnetic field distribution inside the sphere235

completely determines (except for a constant factor) the photophoretic force236

in both the slip-flow and free molecular regimes. Equation (16) shall be237

explicitly solved first for dielectric (or non-magnetic) particles having only238

electric losses. Then, we extend the calculations to incorporate scatterers239

having an arbitrary index of refraction, which encompasses magnetic, mag-240

netodielectric, negative index scatterers and so on, for which both electric241

and magnetic losses can be present.242

3.1. Dielectric/non-magnetic particles243

For dielectric or non-magnetic particles in general, the HSF Q(r, θ, ϕ) can244

be written in terms of the electric field intensity as [34]:245

Q (r, θ, ϕ) =
1

2
σ|E (r, θ, ϕ)|2 = kε′′rIλB (r, θ, ϕ) . (17)

In (17), σ = ωεmε
′′
r is the electric conductivity of the sphere (εm is the246

permittivity of the host fluid), Iλ = |E0|2/2η0 is the intensity of the wave,247

ηm being the intrinsic impedance of the fluid. In addition, B (r, θ, ϕ) =248

|Eint (r, θ, ϕ)|2/|E0|2 is the dimensionless radiative intensity distribution func-249

tion [2] (also called source strength [42] or normalized source function [3]).250

The determination of Fph starts with the replacement of (17) into (15)251

and substituting |Eint|2/E0 considering the electric field components provided252

by the GLMT formalism [33] (see also [43, 44] and references therein), which253

may be rewritten as:254

Er
E0

=
∞∑
n=1

n∑
p=−n

(−i)n+1 (2n+ 1) cng
p
n,TM

ψn (kspr)

k2spr
2

P |p|n (cos θ) eipϕ, (18a)

255

Eθ
E0

=
1

kspr

∞∑
n=1

n∑
p=−n

(−i)n+1En

{
cng

p
n,TMψ

′
n (kspr) τ

|p|
n (cos θ)

+ p

(
µspk

µksp

)
dng

p
n,TEψn (kspr)π

|p|
n (cos θ)

}
eipϕ,

(18b)
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256

Eϕ
E0

=
i

kspr

∞∑
n=1

n∑
p=−n

(−i)n+1En

{
pcng

p
n,TMψ

′
n (kspr) π

|p|
n (cos θ)

+

(
µspk

µksp

)
dng

p
n,TEψn (kspr) τ

|p|
n (cos θ)

}
eipϕ.

(18c)

In (18), ksp = Mk, En = (2n + 1)/[n(n + 1)], τ(cos θ) = dPm
n (cos θ)/dθ257

and πmn (cos θ) = Pm
n (cos θ)/ sin θ are generalized Legendre functions. The258

coefficients gmn,TM and gmn,TE are the beam shape coefficients (BSCs) for TM259

and TE modes, respectively. The BSCs contain all the information regarding260

the spatial field distribution of the incident beam relative to the plane wave.261

Computing |Eint|2 from (18) and replacing the resulting HSF from (17)262

in (16), one finds the following expression for ras:263

ras =
ε′′r
2
Iλ [Ixx̂+ Iyŷ + Iz ẑ] , (19)

where264

Ix = 2
x

a

2π∫
0

π∫
0

a∫
0

B (r, θ, ϕ) r3 sin2 θ cosϕdrdθdϕ, (20a)

265

Iy = 2
x

a

2π∫
0

π∫
0

a∫
0

B (r, θ, ϕ) r3 sin2 θ sinϕdrdθdϕ, (20b)

266

Iz = 2
x

a

2π∫
0

π∫
0

a∫
0

B (r, θ, ϕ) r3 cos θ sin θdrdθdϕ. (20c)

The integrals with respect to the azimuth angle ϕ in (20) can be easily267

evaluated. It can be shown from (18) that they are of the form268

2π∫
0

ei(p−q) cosϕdϕ = π (δp,q+1 + δq,p+1) , (21a)

269
2π∫
0

ei(p−q) sinϕdϕ = iπ (δp,q+1 − δq,p+1) , (21b)
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270
2π∫
0

ei(p−q)dϕ = 2πδp,q, (21c)

where δi,j is the Kronecker delta. Imposing (21) on (20), we get the double271

integrals:272

Ix = 2
x

a

π∫
0

a∫
0

Bx (r, θ) r3 sin2 θdrdθ, (22a)

273

Iy = 2
x

a

π∫
0

a∫
0

By (r, θ) r3 sin2 θdrdθ, (22b)

274

Iz = 2
x

a

π∫
0

a∫
0

Bz (r, θ) r3 cos θ sin θdrdθdϕ, (22c)

where275

B x
y


=

5∑
j=1

Bj x
y


, (23)

with276

B1 x
y


=

iπ

|ksp|4r4

∞∑
n=1

∞∑
l=1

(−1)n+1 in+l+2 (2n+ 1) (2l + 1) cnc
∗
lψnψ

∗
l

×

[
l∑

q=−l

gq+1
n,TMg

q∗
l,TMP

|q+1|
n P

|q|
l ±

n∑
p=−n

gpn,TMg
p+1∗
l,TMP

|p|
n P

|p+1|
l

]
,

(24a)

13



277

B2 x
y


=

iπ

|ksp|2r2

∞∑
n=1

∞∑
l=1

(−1)n+1 in+l+2EnElcnc
∗
lψ
′
nψ

′∗
l

×

[
l∑

q=−l

gq+1
n,TMg

q∗
l,TM

(
τ |q+1|
n τ

|q|
l + q (q + 1) π|q+1|

n π
|q|
l

)
±

n∑
p=−n

gpn,TMg
p+1∗
l,TM

(
τ |p|n τ

|p+1|
l + p (p+ 1) π|p|n π

|p+1|
l

)]
,

(24b)

278

B3 x
y


=

iπ

|ksp|2r2

∣∣∣∣µspkµksp

∣∣∣∣2 ∞∑
n=1

∞∑
l=1

(−1)n+1 in+l+2EnEldnd
∗
lψnψ

∗
l

×

[
l∑

q=−l

gq+1
n,TEg

q∗
l,TE

(
τ |q+1|
n τ

|q|
l + q (q + 1) π|q+1|

n π
|q|
l

)
±

n∑
p=−n

gpn,TEg
p+1∗
l,TE

(
τ |p|n τ

|p+1|
l + p (p+ 1) π|p|n π

|p+1|
l

)]
,

(24c)

279

B4 x
y


=

iπ

|ksp|2r2

(
µspk

µksp

)∗ ∞∑
n=1

∞∑
l=1

(−1)n+1 in+l+2EnElcnd
∗
lψ
′
nψ
∗
l

×

[
l∑

q=−l

gq+1
n,TMg

q∗
l,TE

(
qτ |q+1|
n π

|q|
l + (q + 1) π|q+1|

n τ
|q|
l

)
±

n∑
p=−n

gpn,TMg
p+1∗
l,TE

(
(p+ 1) τ |p|n π

|p+1|
l + pπ|p|n τ

|p+1|
l

)]
,

(24d)

14



280

B5 x
y


=

iπ

|ksp|2r2

(
µspk

µksp

) ∞∑
n=1

∞∑
l=1

(−1)n+1 in+l+2EnEldnc
∗
lψnψ

′∗
l

×

[
l∑

q=−l

gq+1
n,TEg

q∗
l,TM

(
qτ |q+1|
n π

|q|
l + (q + 1) π|q+1|

n τ
|q|
l

)
±

n∑
p=−n

gpn,TEg
p+1∗
l,TM

(
(p+ 1) τ |p|n π

|p+1|
l + pπ|p|n τ

|p+1|
l

)]
,

(24e)

and281

Bz =
5∑
j=1

Bj
z , (25)

with282

B1
z =

2π

|ksp|4r4

∞∑
n=1

∞∑
l=1

n∑
p=−n

(−1)n+1 in+l+2 (2n+ 1)

× (2l + 1) cnc
∗
l g
p
n,TMg

p∗
l,TMψnψ

∗
l P
|p|
n P

|p|
l ,

(26a)

283

B2
z =

2π

|ksp|2r2

∞∑
n=1

∞∑
l=1

n∑
p=−n

(−1)n+1 in+l+2EnElcnc
∗
l

gpn,TMg
p∗
l,TMψ

′
nψ

′∗
l

(
τ |p|n τ

|p|
l + p2π|p|n π

|p|
l

)
,

(26b)

284

B3
z =

2π

|ksp|2r2

∣∣∣∣µspkµksp

∣∣∣∣2 ∞∑
n=1

∞∑
l=1

n∑
p=−n

(−1)n+1 in+l+2EnEl

dnd
∗
l g
p
n,TEg

p∗
l,TEψnψ

∗
l

(
τ |p|n τ

|p|
l + p2π|p|n π

|p|
l

)
,

(26c)

285

B4
z =

2π

|ksp|2r2

(
µspk

µksp

)∗ ∞∑
n=1

∞∑
l=1

n∑
p=−n

p (−1)n+1 in+l+2

EnElcnd
∗
l g
p
n,TMg

p∗
l,TEψ

′
nψ
∗
l

(
τ |p|n π

|p|
l + π|p|n τ

|p|
l

)
,

(26d)

15



286

B5
z =

2π

|ksp|2r2

(
µspk

µksp

) ∞∑
n=1

∞∑
l=1

n∑
p=−n

p (−1)n+1 in+l+2

EnEldnc
∗
l g
p
n,TEg

p∗
l,TMψnψ

′∗
l

(
τ |p|n π

|p|
l + π|p|n τ

|p|
l

)
.

(26e)

In Eqs. (24) and (26), Ψn(kspr) ≡ Ψn, the same being valid for the func-287

tions Pm
n (cos θ), τmn (cos θ) and πmn (cos θ), where we omitted the arguments.288

The θ-integrals in (22a) and (22b) related to Bx and By are of the form:289

Iθ,1 =

π∫
0

P |q+1|
n P

|q|
l sin2 θdθ, (27a)

290

Iθ,2 =

π∫
0

P |p|n P
|p+1|
l sin2 θdθ, (27b)

291

Iθ,3 =

π∫
0

[
τ |q+1|
n τ

|q|
l + q (q + 1) π|q+1|

n π
|q|
l

]
sin2 θdθ, (27c)

292

Iθ,4 =

π∫
0

[
τ |p|n τ

|p+1|
l + p (p+ 1) π|p|n π

|p+1|
l

]
sin2 θdθ, (27d)

293

Iθ,5 =

π∫
0

[
qτ |q+1|
n π

|q|
l + (q + 1) π|q+1|

n τ
|q|
l

]
sin2 θdθ, (27e)

294

Iθ,6 =

π∫
0

[
(p+ 1) τ |p|n π

|p+1|
l + pπ|p|n τ

|p+1|
l

]
sin2 θdθ, (27f)

and, for Bz in (22c),295

Iθ,7 =

π∫
0

P |p|n P
|p|
l cos θ sin θdθ, (28a)

296

Iθ,8 =

π∫
0

[
τ |p|n τ

|p|
l + p2π|p|n π

|p|
l

]
cos θ sin θdθ, (28b)

16



297

Iθ,9 =

π∫
0

[
τ |p|n π

|p|
l + π|p|n τ

|p|
l

]
cos θ sin θdθ. (28c)

Some of the integrals in (27) and (28) can be found in Ref. [45], and oth-298

ers in the Appendix section of Ref. [33], the remaining ones being calculated299

from combinations of some of the integrals presented in the first aforemen-300

tioned reference using several recurrence relations for the associated Legendre301

polynomials and their derivatives. For convenience, we list them in the Ap-302

pendix with the appropriate notation. In using Ref. [45] we have introduced303

a multiplicative factor (−1)m to ensure the usual Robin’s definition of the304

associated Legendre polynomials adopted the GLMT [33].305

Substituting (25) in (22c) and making use of (26) with the corresponding306

integrals (28) whose solutions are given in (A.7)-(A.9), changing dummy307

variables and after some pages of calculations, one gets an expression for Iz308

in terms solely of integrals over r:309

Iz =
16πx

a|ksp|2
∞∑
n=1

n∑
m=−n

Im

{
c∗ncn+1g

m∗
n,TMg

m
n+1,TM[

1

|ksp|2
(n+ 1 + |m|)!

(n− |m|)!

x∫
0

ψ∗n (Mρ)ψn+1 (Mρ)

ρ
dρ

+
1

k2
1

(n+ 1)2
(n+ 1 + |m|)!

(n− |m|)!

x∫
0

ψ
′∗
n (Mρ)ψ′n+1 (Mρ) ρdρ

]

+

∣∣∣∣µspkµksp

∣∣∣∣2 1

k2
1

(n+ 1)2
(n+ 1 + |m|)!

(n− |m|)!
d∗ndn+1g

m∗
n,TEg

m
n+1,TE

×
x∫

0

ψ∗n (Mρ)ψn+1 (Mρ) ρdρ

+ im

(
µspk

µksp

)∗
1

k2
2n+ 1

n2 (n+ 1)2
(n+ |m|)!
(n− |m|)!

cnd
∗
ng

m
n,TMg

m∗
n,TE

×
x∫

0

ψ∗n (Mρ)ψ′n (Mρ) ρdρ

}
,

(29)

17



where ρ = kr. For Ix and Iy, the expressions are more complicated. Setting310

ψn(Mρ) ≡ ψn with ρ = kr, they can be put into the form311

I x
y


= 2

x

a

3∑
j=1

I
j x
y


, (30)

with312

I1 x
y


=

4π

|ksp|2

{
Im
Re

} ∞∑
n=1

{
±

n+1∑
m=0

c∗ncn+1g
m+1∗
n,TM g

m
n+1,TM

× (n+m+ 1)!

(n−m− 1)!
−

n∑
m=0

c∗ncn+1g
m+1
n+1,TMg

m∗
n,TM

(n+m+ 2)!

(n−m)!

∓
−1∑

m=−n−1

c∗ncn+1g
m+1∗
n,TM g

m
n+1,TM

(n+ |m|+ 1)!

(n− |m|+ 1)!

+
−1∑

m=−n

c∗ncn+1g
m+1
n+1,TMg

m∗
n,TM

(n+ |m|)!
(n− |m|)!

}

×
x∫

0

(
ψ∗nψn+1

|ksp|2ρ
+

ψ
′∗
n ψ
′
n+1

k2 (n+ 1)2
ρ

)
dρ,

(31a)

313

I2 x
y


=

4π

|ksp|2
|ηr|2

{
Im
Re

} ∞∑
n=1

{
±

n+1∑
m=0

d∗ndn+1g
m+1∗
n,TE g

m
n+1,TE

× (n+m+ 1)!

(n−m− 1)!
−

n∑
m=0

d∗ndn+1g
m+1
n+1,TEg

m∗
n,TE

(n+m+ 2)!

(n−m)!

∓
−1∑

m=−n−1

d∗ndn+1g
m+1∗
n,TE g

m
n+1,TE

(n+ |m|+ 1)!

(n− |m|+ 1)!

+
−1∑

m=−n

d∗ndn+1g
m+1
n+1,TEg

m∗
n,TE

(n+ |m|)!
(n− |m|)!

} x∫
0

ψ∗nψn+1

k2 (n+ 1)2
ρdρ,

(31b)

18



314

I3 x
y


=

4iπ

k2|ksp|2

{
Im
Re

} ∞∑
n=1

2n+ 1

[n (n+ 1)]2
η∗rcnd

∗
n

{
n∑

m=0

(
gm+1
n,TMg

m∗
n,TE ± gmn,TMg

m+1∗
n,TE

) (n+m+ 1)!

(n−m− 1)!

−
−1∑

m=−n

(
gm+1
n,TMg

m∗
n,TE ± gmn,TMg

m+1∗
n,TE

) (n+ |m|)!
(n− |m|)!

} x∫
0

ψ∗nψ
′
nρdρ.

(31c)

Now, the following relations are invoked [2]:315

ψ
′∗
n ψ
′
n+1 = ψnψ

′∗
n −

(n+ 1)2

|M |2ρ2
ψ∗nψn+1 +

n+ 1

Mρ
ψn+1ψ

∗
n+1, (32a)

316

ψ∗nψn+1 = −ψ∗nψ′n +
n+ 1

Mρ
ψnψ

∗
n. (32b)

Replacing (32) in (31) and after reintroducing the definitions of Rn and317

Sn given in (9) and (10), we arrive at the final expressions for Ix, Iy and Iz:318

I x
y


=− 8πa3

|M |2x3

{
Im
Re

} ∞∑
n=1

[
Amn

(
S∗n +

n+ 1

M
Rn+1

)

+Bm
n

(
−Sn +

n+ 1

M
Rn

)
+ iCm

n Sn

]
,

(33a)

319

Iz =
16πa3

|M |2x3
Im

∞∑
n=1

m∑
m=−n

[
Dm
n

(
S∗n +

n+ 1

M
Rn+1

)

+ Em
n

(
−Sn +

n+ 1

M
Rn

)
+ iFm

n Sn

]
,

(33b)

19



where the coefficients Gm
n (G = A,B,C,D,E, F ) are given as320

Amn =
1

(n+ 1)2

{
n−1∑
m=0

cnc
∗
n+1g

m+1
n,TMg

m∗
n+1,TM

(n+m+ 1)!

(n−m− 1)!

+
n∑

m=0

c∗ncn+1g
m∗
n,TMg

m+1
n+1,TM

(n+m+ 2)!

(n−m)!

−
−1∑

m=−n−1

cnc
∗
n+1g

m+1
n,TMg

m∗
n+1,TM

(n+ |m|+ 1)!

(n− |m|+ 1)!

−
−1∑

m=−n

c∗ncn+1g
m∗
n,TMg

m+1
n+1,TM

(n+ |m|)!
(n− |m|)!

}
,

(34a)

321

Bm
n =

|ηr|2

(n+ 1)2

{
n−1∑
m=0

dnd
∗
n+1g

m+1
n,TEg

m∗
n+1,TE

(n+m+ 1)!

(n−m− 1)!

+
n∑

m=0

d∗ndn+1g
m∗
n,TEg

m+1
n+1,TE

(n+m+ 2)!

(n−m)!

−
−1∑

m=−n−1

dnd
∗
n+1g

m+1
n,TEg

m∗
n+1,TE

(n+ |m|+ 1)!

(n− |m|+ 1)!

−
−1∑

m=−n

d∗ndn+1g
m∗
n,TEg

m+1
n+1,TE

(n+ |m|)!
(n− |m|)!

}
,

(34b)

322

Cm
n =

2n+ 1

[n (n+ 1)]2
η∗rcnd

∗
n

×

{
n∑

m=0

(
gm+1
n,TMg

m∗
n,TE ± gmn,TMg

m+1∗
n,TE

) (n+m+ 1)!

(n−m− 1)!

−
−1∑

m=−n

(
gm+1
n,TMg

m∗
n,TE ± gmn,TMg

m+1∗
n,TE

) (n+ |m|)!
(n− |m|)!

}
,

(34c)

323

Dm
n =

1

(n+ 1)2
c∗ncn+1g

m∗
n,TMg

m
n+1,TM

(n+ |m|+ 1)!

(n− |m|)!
, (34d)
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324

Em
n =

|ηr|2

(n+ 1)2
d∗ndn+1g

m∗
n,TEg

m
n+1,TE

(n+ |m|+ 1)!

(n− |m|)!
, (34e)

325

Fm
n =mη∗r

2n+ 1

[n (n+ 1)]2
cnd
∗
ng

m
n,TMg

m∗
n,TE

(n+ |m|)!
(n− |m|)!

. (34f)

Inserting (33) and (34) back into (19) for ras and then using the result in326

(16) provides us with an analytic and closed-form expression for Fph in both327

the slip-flow and free molecular regimes.328

3.2. Arbitrary-index particles329

So far, only non-magnetic or dielectric particles have been considered. It330

is, however, possible to extend the analysis developed in the previous section331

in order to incorporate particles possessing magnetic responses and losses as332

well, or even metamaterial spheres, using the GLMT.333

The procedure is similar to that presented by the author for on-axis ax-334

isymmetric beams in Ref. [35]. First, remember that the HSF Q (r, θ, ϕ) is335

related to the energy which is dissipated within the particle and that, when336

magnetic losses are presented, it is given as [3]337

Q (r, θ, ϕ) = −1

2
Re [∇ · (Eint (r, θ, ϕ)×H∗int (r, θ, ϕ))] , (35)

where Hint (r, θ, ϕ) is the magnetic field distribution inside the particle which,338

according to the GLMT, reads as339

Hr

H0

=
∞∑
n=1

n∑
p=−n

(−i)n+1 (2n+ 1) dng
p
n,TE

ψn (kspr)

k2spr
2

P |p|n (cos θ) eipϕ, (36a)

340

Hθ

H0

=
1

kspr

∞∑
n=1

n∑
p=−n

(−i)n+1En

{
dng

p
n,TEψ

′
n (kspr) τ

|p|
n (cos θ)

− p
(
µspk

µksp

)−1
cng

p
n,TMψn (kspr) π

|p|
n (cos θ)

}
eipϕ,

(36b)
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341

Hϕ

H0

=
i

kspr

∞∑
n=1

n∑
p=−n

(−i)n+1En

{
pdng

p
n,TEψ

′
n (kspr) π

|p|
n (cos θ)

−
(
µspk

µksp

)−1
cng

p
n,TMψn (kspr) τ

|p|
n (cos θ)

}
eipϕ.

(36c)

For an arbitrary-index particle having a complex permeability µsp = µ′−342

iµ′′, we introduce the vector identity∇·(E×H∗) = (∇×E)·H∗−E·(∇×H∗)343

and use Maxwell’s equations to write ∇×E and ∇×H∗ in terms of H and344

E∗, respectively. From (35), one then obtains:345

Q (r, θ, ϕ) = −1

2
Re
[
−iωµsp|Hint|2 + iωε∗sp|Eint|2

]
=

1

2
Re
[
ωµ′′|Hint|2 + ωε′′|Eint|2

]
=

1

2
Re
[
ωµmµ

′′
r |Hint|2 + ωεmε

′′
r |Eint|2

]
.

Extracting multiplicative factors of |H0|2 and |E0|2, using the relation346

E0 = H0/η0 [33] and the definition of Iλ (= |E0|2/2η0), (35) can be recast347

under the form [34]:348

Q (r, θ, ϕ) =

(
σm
ηm

)
IλBm (r, θ, ϕ) + (σeηm) IλBe (r, θ, ϕ)

= kµ′′rIλBm (r, θ, ϕ) + kε′′rIλBe (r, θ, ϕ) ,

(37)

where σm = ωµmµ
′′
r and σe = ωεmε

′′
r are the electric and magnetic conduc-349

tivities of the particle. In (37), the source strength Be (r, θ, ϕ) coincides with350

the one appearing in (17), as expected for electric losses. A magnetic source351

strength Bm (r, θ, ϕ) in (37) indicates that radiation is absorbed in the par-352

ticle due to magnetic losses. Equation (19) for ras is now replaced by a more353

general expression in which the electric term of (19) is complemented by a354

similar magnetic term:355

ras =
µ′′

2
Iλ [Ix,mx̂+ Iy,mŷ + Iz,mẑ] +

ε′′r
2
Iλ [Ix,ex̂+ Iy,eŷ + Iz,eẑ] , (38)

22



where Ix,e, Iy,e and Iz,e are exactly those calculated previously for a non-356

magnetic particle and given in (33). As for Ix,m, Iy,m and Iz,m, they can357

be found using the magnetic field expansions in (36) and following the steps358

that lead to (33).359

There is, however, a clever way to calculate such integrals without re-360

doing all the calculations. Just as done in Refs. [34, 35], it is based on the361

observation that (18) and (36) are dual to each other, so that they are related362

according to the following replacements:363

cn → dn,

dn → −cn,
ηr → η−1r ,

gpn,TM → gpn,TE,

gpn,TE → gpn,TM,

(39)

with ηr = (µspk/µksp). Instead of (8), cn and dn for arbitrary-index particles364

are now given by (see Eqs. (3.90) and (3.91) of Ref. [33]):365

cn =
Mµr [ξn (x)ψ′n (x)− ξ′n (x)ψ (x)]

µrξn (x)ψ′n (Mx)−Mξ′n (x)ψn (Mx)
, (40a)

366

dn =
M2 [ξn (x)ψ′n (x)− ξ′n (x)ψ (x)]

Mξn (x)ψ′n (Mx)− µrξ′n (x)ψn (Mx)
. (40b)

Therefore, application of (39) in (33) and (34) gives us for the magnetic367

contribution to the asymmetry vector:368

I x,m
y,m


=− 8πa3

|M |2x3

{
Im
Re

} ∞∑
n=1

[
A
m

n

(
S∗n +

n+ 1

M
Rn+1

)

+B
m

n

(
−Sn +

n+ 1

M
Rn

)
∓ iCm

n Sn

]
,

(41a)

369

Iz,m =− 16πa3

|M |2x3
Im

∞∑
n=1

m∑
m=−n

[
D
m

n

(
S∗n +

n+ 1

M
Rn+1

)

+ E
m

n

(
−Sn +

n+ 1

M
Rn

)
+ iF

m

n Sn

]
,

(41b)
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where the coefficients G
m

n (G = A,B,C,D,E, F ) are given as370

A
m

n = |ηr|−2Bm
n , (42a)

371

B
m

n = |ηr|−2Amn , (42b)

372

C
m

n = ∓|ηr|−2 (Cm
n )∗ , (42c)

373

D
m

n = |ηr|−2Em
n , (42d)

374

E
m

n = |ηr|−2Dm
n , (42e)

375

F
m

n = −|ηr|2 (Fm
n )∗ . (42f)

For +z-propagating on-axis x-polarized axisymmetric beams, for which376

(see, for instance, Eq. (6.3) of Ref. [33]):377 {
gmn,TM = gmn,TE = 0, |m| 6= 1

g1n,TM = g−1n,TM = ig1n,TE = −ig−1n,TE = gn
2
,

(43)

where gn are known as the special BSCs, one infers that Fph = Fphẑ and that378

ras can be written in terms of J1 as first deduced for arbitrary-index particles379

by Ambrosio in Ref. [35].380

In addition, when the axisymmetric beam is a +z propagating, x-polarized381

uniform plane wave, gn = exp(ikz0) [33], that is, the special BSCs are simple382

phase factors. In this case, (33) and (34) reveals that such BSCs appears in383

the force expressions under the form |gn|2 = 1. For arbitrary-index particles,384

such conditions allow us to recover Eqs. (9), (11) and (12) of Ref. [34] for385

plane wave incidence on arbitrary-index spherical particles.386

It is also possible to extend the analysis and calculation of the asymmetry387

vector in order to incorporate concentric or multilayered spheres [46], or even388

geometries other than spherical, e.g., spheroidal particles [47], in particular389

by using the GLMT for spheroids [48] or cylindrical absorbers [49].390
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4. Conclusions391

This work has proposed a theoretical framework within which photophoretic392

forces can be calculated for on- or off-axis arbitrary-shaped beams. The anal-393

ysis is valid for both the free molecular and slip-flow regimes, for which parti-394

cles are much smaller or much larger than the mean free path of gas molecules395

in the host medium, respectively. Incidentally, the continuum regime is also396

contemplated since it is a limiting case of the slip-flow regime of very small397

Knudsen numbers.398

The analytic and closed-form expression for the asymmetry vector, be-399

sides involving an intricate dependence on the electromagnetic properties400

of the spherical micro-particle, incorporates arbitrary shaped beams with401

the help of the generalized Lorenz-Mie theory. It is now an easy and a402

computationally-efficient task to compute photophoretic forces for any light403

beam of interest, since everything that is required to know about it is em-404

bedded in the values of the beam shape coefficients, which can be easily405

calculated for a large number of laser beams of practical usage.406

Several applications can benefit from this approach in the optical and in-407

frared domains, including optical tweezers systems for trapping and manipu-408

lation of particles, atmospheric problems with suspended aerosols, transport409

mechanisms in combustion environments, particle levitation, optical trap dis-410

plays for creating three-dimensional images in space, and so on.411
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Appendix A.416

In this Appendix, the solutions to the integrals (27) and (28) are listed.417

For p ≥ 0 or q ≥ 0 (p < 0 or q < 0), the integrals (27) carry a superscript418

’+’ (’−’).419
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For the integrals in (27):420

I+
θ,1 =

2 (n− q)
(2n+ 1) (2n+ 3)

(n+ q + 1)!

(n− q)!
δl,n+1

− 2 (l + q + 2)

(2l + 1) (2l + 3)

(l + q + 1)!

(l − q)!
δn,l+1,

(A.1a)

421

I−θ,1 =− 2

(2n+ 1) (2n+ 3)

(n+ |q|+ 1)!

(n− |q|+ 1)!
δl,n+1

+
2

(2l + 1) (2l + 3)

(l + |q|)!
(l − |q|)!

δn,l+1,

(A.1b)

422

I+
θ,2 =− 2 (n+ p+ 2)

(2n+ 1) (2n+ 3)

(n+ p+ 1)!

(n− p)!
δl,n+1

+
2 (l − p)

(2l + 1) (2l + 3)

(l + p+ 1)!

(l − p)!
δn,l+1,

(A.2a)

423

I−θ,2 =
2

(2n+ 1) (2n+ 3)

(n+ |p|)!
(n− |p|)!

δl,n+1

− 2

(2l + 1) (2l + 3)

(l + |p|+ 1)!

(l − |p|+ 1)!
δn,l+1,

(A.2b)

424

I+
θ,3 =

2n (n+ 2)

(2n+ 1) (2n+ 3)

(n+ q + 1)!

(n− q − 1)!
δl,n+1

− 2l (l + 2)

(2l + 1) (2l + 3)

(l + q + 2)!

(l − q)!
δn,l+1,

(A.3a)

425

I−θ,3 =− 2n (n+ 2)

(2n+ 1) (2n+ 3)

(n+ |q|+ 1)!

(n− |q|+ 1)!
δl,n+1

+
2l (l + 2)

(2l + 1) (2l + 3)

(l + |q|)!
(l − |q|)!

δn,l+1,

(A.3b)
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426

I+
θ,4 =

2n (n+ 2)

(2n+ 1) (2n+ 3)

(n+ p+ 2)!

(n− p)!
δl,n+1

+
2l (l + 2)

(2l + 1) (2l + 3)

(l + p+ 1)!

(l − p− 1)!
δn,l+1,

(A.4a)

427

I−θ,4 =
2n (n+ 2)

(2n+ 1) (2n+ 3)

(n+ |p|)!
(n− |p|)!

δl,n+1

− 2l (l + 2)

(2l + 1) (2l + 3)

(l + |p|+ 1)!

(l − |p|+ 1)!
δn,l+1,

(A.4b)

428

I+
θ,5 =

2

2n+ 1

(n+ q + 1)!

(n− q − 1)!
δl,n, (A.5a)

429

I−θ,5 =− 2

2n+ 1

(n+ |q|)!
(n− |q|)!

δl,n, (A.5b)

430

I+
θ,6 =

2

2n+ 1

(n+ p+ 1)!

(n− p− 1)!
δl,n, (A.6a)

431

I−θ,6 =− 2

2n+ 1

(n+ |p|)!
(n− |p|)!

δl,n, (A.6b)

while for (28):432

Iθ,7 =
2

(2n+ 1) (2n+ 3)

(n+ |p|+ 1)!

(n− |p|)!
δl,n+1

+
2

(2l + 1) (2l + 3)

(l + |p|+ 1)!

(l − |p|)!
δn,l+1,

(A.7)

433

Iθ,8 =
2n (n+ 2)

(2n+ 1) (2n+ 3)

(n+ |p|+ 1)!

(n− |p|)!
δl,n+1

+
2l (l + 2)

(2l + 1) (2l + 3)

(l + |p|+ 1)!

(l − |p|)!
δn,l+1,

(A.8)

434

Iθ,9 =
2

2n+ 1

(n+ |p|)!
(n− |p|)!

δn,l. (A.9)
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