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Abstract When predicting the next geolocation of a stolen vehicle using external sensor data, such as speed radars,
the challenge extends beyond the prediction itself to include determining the most suitable prediction architecture.
While existing studies provide data that influence prediction performance, there is no consensus on the optimal
architecture. Therefore, adopting a broader perspective to identify key criteria influencing the choice of architecture
is essential. This study evaluates the shift in the optimal architecture depending on the length of the historical
sequence and the format of geographic representation. The results reveal a shift in the optimal architecture, with
the shift point being influenced by the type of geographic representation.
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1 Introduction

Using speed radars with Optical Character Recognition
(OCR), as mentioned in [Bernardi et al., 2015], and know-
ing their geolocation allows for the identification of the mo-
mentary geographic location of a stolen vehicle, even if the
vehicle does not have any geolocation equipment attached
or inside it. This enables the identification of discrete and
sparse points along the vehicle’s route.

In this context, using historical points to predict the next
external sensor (speed radar) where a stolen vehicle is most
likely to be detected can assist both in the recovery of the
vehicle and in reducing crimes that may follow the theft of
the vehicle, as mentioned in [Neto ef al., 2021].

However, this scenario presents a trade-off: whether to use
the minimum possible number of historical sequence points
to predict and act more quickly in the attempt to recover the
stolen vehicle, or to wait for additional sequence points to im-
prove the accuracy of the next geolocation prediction, which
may never occur, as the stolen vehicles tend to have only a
few records.

To illustrate this issue, which is further complicated by the
fact that a driver acting outside the law naturally tends to ex-
hibit anomalous driving behavior compared to a typical cit-
izen in their daily life [Haviland and Wiseman, 1974], Fig-
ure 1 shows the number of stolen vehicles by the number of
records they have in the non-public anonymized database of
the state of S@o Paulo (SP), Brazil, that we had access from

government to do this study. For example, a vehicle with 3
records also has 2 or 1 record, but not 4 records. Thus, vehi-
cles with at least 9 records represent only 9.2% of the total
number of stolen vehicles with at least 1 record. That is, the
greater the need for a longer historical input sequence, the
fewer vehicles can be located.

Unlike studies such as [Tsiligkaridis et al., 2020] and
[Chen et al., 2024], which use the complete trajectory of
the vehicle, these records of stolen vehicles, although spread
throughout the state of Sdo Paulo, are only made at spe-
cific points where speed radars are located. Figure 2 shows
the possible geolocation record points in blue, from the non-
public anonymized database of the state of Sdo Paulo, demon-
strating the variability and dispersion of these points. It
is noteworthy that while some speed radars are kilometers
apart, others are positioned side by side.

The Long-Short Term Memory (LSTM) machine learning
architecture has been one of the most widely used in stud-
ies for prediction trajectory. In some cases, it has proven to
be the best, as in [Bae et al., 2022] and [Gaiduchenko et al.,
2020], while in other cases, it has not, as in [Xu et al., 2023]
and [Chen et al., 2022]. Nevertheless, a specific implementa-
tion of Gradient Boosted Regression Trees (GBRT) architec-
ture, also known as Extreme Gradient Boosting (XGBoost),
yielded the best results in [Neto ef al., 2021]. Moreover, a
new architecture called Transformer and LSTM Entangled
(TLE) outperformed others when using only two geoloca-
tion points to predict the third point, as shown in [Macedo
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Figure 1. Stolen vehicles from Sao Paulo, Brazil.
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Figure 2. Speed radars mapped in Sdo Paulo, Brazil.
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et al., 2024]. Since this study intends to analyze architec-
tures for sequence prediction with few historical points, it
will focus on these three main state-of-the-art architectures:
LSTM, TLE and XGBoost.

Given that [Neto ef al., 2021] demonstrated superior per-
formance for XGBoost over LSTM, and that LSTM outper-
formed TLE with longer sequences yet underperformed com-
pared to TLE with shorter sequences in [Macedo et al., 2024],
while also considering the influence of geolocation represen-
tation changes highlighted in [Neto et al., 2021], this study
aims to explore how these findings apply across diverse con-
ditions. Specifically, we seek to address the following re-
search questions to identify the most suitable architecture
under varying sequence lengths and geographic representa-
tions:

* RQ1: Which architecture performs best with short se-
quence lengths for prediction?

* RQ2: Is there a shift point where the best-performing
architecture changes?

* RQ3: Does the format of geographic representation im-
pact the prediction results?

* RQ4: Can the geographic representation format alter
the shift point between the best-performing architec-
tures, if one exists?

Next, Section II presents the related works; Section III pro-
vides the problem definition for the prediction of the next
external sensor geolocation; Section IV describes the exper-
iments, including data preprocessing, architectures, method-
ology, and results with analysis; Section V discusses the con-
clusions and future work, followed by the acknowledgments,
funding, author’s contributions, competing interests, avail-
ability of data and materials, abbreviations, and references.

2 Related Work

Predicting the next external sensor trajectory, due to sparse
and discrete data, presents greater challenges than regular tra-
jectory prediction, particularly because the path between sen-
sors is unknown but still important to be represented. Figure
3 shows a real example of a trajectory mapped using records
from external sensors. It can be observed that the actual path
between the geolocation points cannot be defined, which is
why the vehicle’s trajectory is represented as a straight line
connecting the speed radar points in sequence, without de-
picting the actual intermediate route.

Most of the studies reviewed focus on LSTM architecture
for trajectory prediction, with less emphasis on other archi-
tectures like XGBoost. For instance, [Neto et al., 2021] is
notable for being the only work in this set to utilize XGBoost,
highlighting its potential in handling sparse and discrete data,
particularly in predicting the location of stolen vehicles and
achieving the best results. However, this study does not ex-
plore the impact of different geographic representations on
each architecture, which could potentially cause a shift in the
best-performing architecture.

[Macedo et al., 2024] stands out as it introduces the
new Transformer and LSTM Entangled (TLE) architecture
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alongside LSTM. This study observes a shift in the best-
performing architecture, but it lacks a detailed shift point
analysis and does not explore the effects of geographic rep-
resentation variation. This limits a deeper understanding of
how changes in input data representation might influence pre-
diction outcomes.

Similarly, although [Xu et al., 2023], [Cruz ef al., 2019]
and [Tsiligkaridis et al., 2020] observes a shift in the best-
performing architecture during the experiments, they do not
address the shift with a more detailed analysis. Moreover,
those studies do not use XGBoost or examine the impact of
different geographic representations. This limits the poten-
tial insights into how these variables interact.

Allof [Chenetal.,2022], [Bae et al.,2022], [Gaiduchenko
et al., 2020], [Tsiligkaridis et al., 2020], [Cruz et al., 2022],
[Cruzetal., 2019], [Cruzet al.,2021] and [Chen et al., 2024]
use LSTM, but not XGBoost or TLE, and none of them in-
clude an analysis of the shift point or geographic representa-
tion variation.

In [Capanema ef al., 2020], the authors have a significant
advantage as the training is based on the driver’s own histor-
ical data for predicting the next destination, whereas in most
other cases, the training data is sourced from other vehicles.
In [Hu ef al., 2022], the prediction focuses on short time in-
tervals and distances, up to 5 seconds ahead.

Another line of research, including [Brito et al., 2023],
[Ladeira et al., 2020], [Ladeira et al., 2019b], and [de Souza
et al., 2019], as well as [Almeida et al., 2022] for buses,
and [Ladeira et al., 2019a], which focuses on time windows,
in addition to [de Souza and Villas, 2020] and [Karimzadeh
et al.,2021], which use reinforcement learning architectures,
evaluates and predicts safer routes by avoiding areas with a
higher probability of crime. Since our aim is to predict where
a stolen vehicle will be, these studies take an approach oppo-
site to that of the present work.

An approach worth noting is MEDAVET [Reyna et al.,
2024], which focuses on detecting traffic anomalies on high-
ways by utilizing spatial and temporal structures through
video monitoring, aiming to ensure road safety. Although
MEDAVET’s context differs from our work, as it is based on
detecting anomalous behavior instead of predicting discrete
geolocation points, it presents a valuable perspective on man-
aging complex vehicle movement patterns which could com-
plement prediction tasks in urban traffic security by aiding in
the identification of potentially unusual movement patterns.

From a different perspective on trajectory prediction, rel-
evant to Autonomous Vehicles (AVs), studies such as [Geng
et al., 2023] and [Liao et al., 2024] predict trajectories over
just a few meters, using physics-based and other techniques.
However, given the large gaps between geolocation points of
speed radars, this approach is not suitable for the context of
this study.

In the context of the current study, which considers
XGBoost, LSTM, and the TLE architecture, we address
these gaps by thoroughly examining the shift in the best-
performing architecture, conducting a shift point analysis,
and exploring the impact of geographic representation varia-
tion. This comprehensive approach aims to improve the pre-
diction of the next external sensor’s trajectory, particularly in
the challenging context of sparse and discrete data associated
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with stolen vehicles. The comparative summary is presented
in Table 1.

3 Problem Definition

For predicting a vehicle’s geolocation in the context of the
next external sensor, there is an inherent margin of inaccu-
racy. On streets with multiple lanes, the same latitude and
longitude are recorded regardless of the lane in which the
vehicle was identified. For prediction purposes, consider-
ing a regression problem for the Artificial Intelligence (AI)
model, the predicted location may not correspond to an ex-
isting external sensor, requiring adjustment to align with the
latitude and longitude of a known external sensor. Addition-
ally, there is the imprecision in the complete actual trajectory,
as only discrete and sparse positions are recorded.

Figure 4 presents an example of next external sensor pre-
diction. In this image, the blue vehicle could turn left, where
it would be identified again by the external sensor at the top
of the image. Alternatively, it could proceed straight and be
identified by the sensor to the far right of the image. Lastly,
it could turn right and avoid being identified by any other ex-
ternal sensor close to the starting point. In the case illustrated
in Figure 4, the prediction concludes that the vehicle is most
likely to continue straight. This scenario demonstrates that
using street lane information, where the vehicle was identi-
fied, may assist in predicting the next external sensor, even
without exact knowledge of the intermediate route between
points [Macedo et al., 2024].

After visually understanding the problem situation, we
can more precisely define the problem. When a vehicle
passes by an external sensor capable of identifying it, a
record r = (p,s,t) is generated, where p represents the
unique identification data of the vehicle, s represents the
unique identification data of the sensor and ¢ represents the
record’s timestamp. Each sensor s records passages only
on a single street lane. However, each geographic location,

Figure 3. Example of a trajectory with 9 external sensor records in SP.
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geo = (lat,long), can correspond to a single sensor s or a
set of sensors (s1, S, ..., S5, ) located on different street lanes
in the same area. In other words, each sensor s has a cor-
responding geographic location, geo = (lat,long), which
may or may not be shared with other sensors s. Therefore,
s can be replaced with geo, meaning s = (lat,long). The
timestamps ¢ are used to ensure the correct chronological or-
der of records’ data. As shown by [Macedo et al., 2024], the
best approach is to use both pieces of location information
as input: r = (p, s,lat,long). This study will adopt that
approach accordingly.

For prediction, a sequence of records seq = (1,72, ..., )
is used as input, with the goal of predicting the actual loca-
tion of the next external sensor 7,41 as output. Therefore,
each architecture model is trained to find a regression func-
tion f(x) such that f(seq) = ry11.

Moreover, in addition to the information about the street
lane, another factor that can impact prediction results is how
the geolocation of the external sensor is represented. For
instance, for the same geographic point, instead of using
latitude and longitude, it is possible to employ Northing
and Easting, potentially utilizing different reference systems.
This is because Al models, especially in regression problems
such as this one, process numerical data, and depending on
the relationships inherent to each geographic representation,
as well as the distribution and distances between geolocation
records, the model may capture patterns in the input data se-
quences better, equally well, or worse.

In the next section, the data preprocessing, Al architec-
tures (XGBoost, LSTM, and TLE), metrics, and experimen-
tal methodology will be defined, followed by the presenta-
tion of the results and analysis.

4 Experiments

To address the four primary research questions of this study,
the experiments were conducted as outlined below.
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Table 1. Comparative summary between Studies.
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Transformer | Sparse/ | Stolen Street Lane Shift in Shift Point Geographic
# Paper XGBoost | LSTM | and LSTM | Discrete | Vehicle Information best-performing Analysis Representation
Entangled Data Data Architecture Analysis
1 | [Gaiduchenko et al., 2020] X v X v X X X X X
2 | [Xuetal., 2023] X v X X X X v X X
3 | [Baeetal.,2022] X v X X X X X X X
4 | [Cruzetal.,2019] X v X v X X v X X
5 | [Cruzetal., 2021] X v X v X X X X X
6 | [Netoeral., 2021] v v X v v X X X v
7 | [Cruzetal., 2022] X v X v v X X X X
8 | [Tsiligkaridis et al., 2020] X v X X X X v X X
9 | [Chen et al.,2022] X v X X X X X X X
10 | [Chen et al., 2024] X v X X X X X X X
11 | [Macedo et al., 2024] X v v v v v v X X
12 | This Study v v v v v v v v v

Figure 4. Illustration of the prediction of the next external sensor.

4.1 Data Preprocessing

A database of speed radar records, from a non-public
anonymized database that we had access from government
for this study, containing data of external sensor records that
generated stolen or robbed vehicle alerts (e.g., cars, motorcy-
cles, trucks) in the state of Sao Paulo, Brazil, covering the pe-
riod from April 30, 2021, to May 23, 2024 was utilized. This
dataset includes anonymized license plate numbers, times-
tamps, and unique speed radar identification codes. By merg-
ing this data with another database containing the latitude and
longitude coordinates corresponding to each unique speed
radar identification code, we were able to determine the ge-
olocation for each record. The resulted dataset by merging
those two databases was called “df all”.

One of the objectives of this study is to investigate the im-
pact of changes in geographic representation. In addition to
latitude and longitude, we transformed the data and created
columns with two additional types of geographic representa-
tions for the same latitude and longitude points. The three
geographic representations used are as follows:

+ EPSG:4326, also known as Latitude and Longitude
in the latest version World Geodetic System 1984
(WGS84), which uses geographic coordinates latitude

and longitude in degrees.

* EPSG:3857, also known as Web Mercator, which uses
Easting and Northing measured in meters, rather than
degrees as in latitude and longitude.

« EPSG:32723, also known as Universal Transverse Mer-
cator (UTM),which also uses Easting and Northing mea-
sured in meters, but with different reference systems.

The European Petroleum Survey Group (EPSG) was the
original name of the organization responsible for establish-
ing a standardized set of coordinate reference systems. Each
EPSG code serves as a unique identifier used to define a
specific coordinate reference system. These codes specify
how geographic data is projected onto a flat surface, such as
a map, ensuring that different datasets align correctly when
combined [Wikipedia, 2024a].

The geographic representation systems EPSG:4326
(WGS84), EPSG:3857 (Web Mercator), and EPSG:32723
(UTM) differ in how they project Earth’s surface, which
can impact vehicle geolocation predictions. EPSG:4326
(WGS84) represents locations using latitude and longitude in
degrees, making it ideal for global coverage but less precise
for local predictions due to Earth’s curvature. EPSG:3857
(Web Mercator) projects geographic coordinates onto a flat
plane using meters, which distorts distances, especially near
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the poles, and is commonly used for web mapping, display-
ing geographic data on interactive digital two-dimensional
maps to visualize geographic information. EPSG:32723
(UTM) also uses meters but divides the Earth into zones,
providing more accurate local measurements, making it bet-
ter suited for regional-scale predictions. These differences
in precision and projection can influence the accuracy of
vehicle geolocation predictions [IBGE, 2016][Wikipedia,
2024b][GISGeography, 2016].

Although this study uses three different geographic rep-
resentations, they share a common structure: two compo-
nents of information are used, one for horizontal distance,
either Longitude or Easting, and one for vertical distance, ei-
ther Latitude or Northing. Notably, Easting is typically men-
tioned first because, in projected coordinate systems, it fol-
lows the convention of treating Easting as the x-coordinate
and Northing as the y-coordinate, following the (x, y) for-
mat. In contrast, for Latitude and Longitude, geographic co-
ordinates are generally listed as (Latitude, Longitude), with
latitude appearing first, in accordance with the geographic
convention of (Latitude, Longitude).

4.2 Architectures

Three architectures were employed for training and predic-
tions: XGBoost; LSTM; and Transformer and LSTM Entan-
gled (TLE). These architectures are presented and detailed in
subsections 4.2.1, 4.2.2, and 4.2.3, respectively.

Since the machine learning process is highly experimental
[Lima, 2022], the “Root Mean Squared Error” (RMSE) loss
function was adopted for the LSTM and TLE architectures,
as it yielded better results in several exploratory analysis tests
compared to “Mean Squared Error” (MSE), “Mean Absolute
Error” (MAE), and other custom metrics tested. For XG-
Boost, however, “Mean Squared Error” (MSE) was used as
the default and optimal loss function.

4.2.1 XGBoost Architecture

The XGBoost (Extreme Gradient Boosting) architecture is
a highly efficient and scalable implementation of Gradient
Boosted Regression Trees (GBRT), designed for structured
data, including sequential data. It constructs an ensemble of
decision trees in a sequential manner, where each tree aims to
correct the errors made by the previous ones [Kundu, 2023].
XGBoost is effective for tasks such as classification and re-
gression, where it can handle large datasets and complex fea-
ture interactions with remarkable performance.

The XGBoost architecture used was based on the GBRT ar-
chitecture described in [Neto et al., 2021] configured with the
following parameters: max_depth = 3; learning rate =
1; n_estimators = 100; min_child weight = 1; and
scale_pos weight = 1. One instance of this model is
used to predict part 1, for example latitude or northing, and
another is used for part 2, for example longitude or east-
ing. Two instances of the XGBoost architecture were em-
ployed because this architecture is designed to handle two-
dimensional input data, while LSTM and TLE can han-
dle three-dimensional input data (batch_size, time_steps,
n_features). This XGBoost model, when created, consists
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of approximately 3 thousand splits (the equivalent a about 3
thousand trainable parameters) and is illustrated in Figure 5.

4.2.2 LSTM Architecture

The Long Short-Term Memory (LSTM) architecture is
specifically designed to tackle the challenges of sequential
learning. The key feature of LSTM is its ability to “remem-
ber” information over long sequences, enabling it to capture
temporal dependencies and patterns over time. By process-
ing data step by step, it ensures that the order of events is
considered during learning. This makes it highly effective
for tasks involving temporal data, such as time series and tra-
jectory predictions.

The Long Short-Term Memory (LSTM) architecture used
in this study follows the state-of-the-art model described in
[Gaiduchenko et al., 2020] and [Macedo et al., 2024], config-
ured with the following parameters: AdamW optimizer with
the learning rate = 0.001, betal = 0.9, beta2 = 0.98,
and epsilon = 1078, This LSTM model, when created,
comprises approximately 3.4 million trainable parameters
and is illustrated in Figure 6.

4.2.3 TLE Architecture

Self-Attention Learning, as utilized in the Transformer ar-
chitecture [Vaswani et al., 2017] [Macedo et al., 2024], al-
lows the model to capture global dependencies across the en-
tire sequence without requiring to process the data in a se-
quential order. This mechanism enables the model to focus
on different parts of the sequence simultaneously, capturing
long-range relationships and complex patterns that may oc-
cur at any point in the data series. On the other hand, Se-
quence Learning, represented by LSTMs, specializes in mod-
eling temporal dependencies by processing data step by step.
LSTMs retain information over time through internal mem-
ory, enabling the model to learn patterns dependent on event
order and maintain a history within its memory cells.

By entangling these two mechanisms in the Transformer
and LSTM Entangled (TLE) architecture, the model has
the potential to leverages the strengths of both approaches.
The Transformer captures global dependencies within the
sequence, while the LSTM adds a layer of temporal learn-
ing that preserves the order of events. This combination en-
ables TLE to learn both global patterns and structural rela-
tionships as well as detailed temporal dependencies, result-
ing in a model capable of capturing more complex nuances
in sequential data.

The Transformer and LSTM Entangled (TLE) architec-
ture, which the results have been compared against the
other two architectures, is the innovative model described
in [Macedo ef al., 2024]. It uses the following configuration:
num_layers = 4, embed_dim = 64, num_heads = 4,
and ff dim = 64. In that study, LSTM and TLE exhibited
a shift point where the best-performing architecture changed,
which is the focus of this study. The TLE model, when cre-
ated, has approximately 1 million trainable parameters and
is illustrated in Figure 7.
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4.3 Methodology

In this study, three different architectures are compared: the
state-of-the-art LSTM (Figure 6), an XGBoost architecture
(Figure 5), and a TLE architecture (Figure 7). In addition
to these architectures, three different geographic representa-
tions are also compared: WGS84, Web Mercator, and UTM.
The data and architectures are applied within this context as
a regression problem.

Each of these architectures was trained using the resulted
dataset “df all” mentioned in 4.1. Considering this infor-
mation, the strategy developed to address the four Research
Questions is outlined as follows.

To address RQ1 (Which architecture performs best with
short sequence lengths for prediction?) and RQ2 (Is there a
shift point where the best-performing architecture changes?),
and based on findings from [Macedo et al., 2024], where
TLE and LSTM exhibited a performance shift between se-
quence lengths of 2 and 10, this study, using WGS84 geo-
graphic representation, began with a sequence length of 1
and continued incrementally to find a possible shift point and
to ensure it did not reverse. This process covered sequence

lengths from 1 to 8 historical points, training, predicting, and
adding one point at a time.

Next, to address RQ3 (Does the format of geographic rep-
resentation impact the prediction results?) and RQ4 (Can
the geographic representation format alter the shift point
between the best-performing architectures, if one exists?),
the study trained and predicted using sequence lengths at
the identified shift point boundaries (observed in RQ1 and
RQ?2), but this time using Web Mercator and UTM repre-
sentations. The primary goal was to determine if the ge-
ographic representation consistently influenced the results,
while the secondary goal was to assess whether the shift point
remained between the same sequence lengths, which were
identified as 5 and 6.

To assess the results, the metrics used were Mean Squared
Error (MSE) and R-Squared (R?). MSE is a standard met-
ric for regression problems [Brownlee, 2021] [Botchkarev,
2018], while R-Squared, or the coefficient of determination,
is commonly used in machine learning as an evaluation met-
ric for regression models. It helps determine how well a
model fits the data [Onose, 2023a]. The value of R? ranges
from 0 to 1, where 0 indicates that the model explains none
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of the variation, and 1 indicates that the model explains all
observed variation [Onose, 2023b] [Oliveira, 2021]. There-
fore, for MSE, lower values indicate better performance, and
for R?, higher values indicate better performance.

The dataset “df all” were split into 80% for training and
20% for testing, which is a common division for training
machine learning models [Raschka, 2018] [Brownlee, 2020].
Unlike studies such as [Cruz et al., 2022] and [Macedo et al.,
2024], which used sliding windows to increase the number of
sequences, this study, with a greater focus on RQ1 (Which
architecture performs best with short sequence lengths for
prediction?), used only the first n_seq records of each vehi-
cle for each day as the input sequence for the models, where
ngeq represents the sequence length. Additionally, to ensure
robust result analysis, the dataset were first ordered by the
unique vehicle identifier and then by timestamp to reduce
potential temporal biases.

Evaluations were conducted twice for each set of (architec-
ture, n_seq, geographic representation): first using the last
20% of the dataset as the test set, and then using the first 20%,
with the final metric value taken as the average of results ob-
tained in each test. This approach is like a partial k-fold cross-
validation, ensuring a robust yet efficient experiment analy-
sis. The full k-fold cross-validation was not performed due
to its high computational cost. However, we believe our ap-
proach is sufficient for the study’s objectives. Additionally,
we have made the full databases and source code available
in the “Availability of Data and Material” section, allowing
researchers who wish to conduct further validations to do so.
Considering all aspects, a total of 168 executions were per-
formed in this study, comprising: 42 scenarios, 84 training
executions, and an additional 84 prediction executions.

We did not perform a runtime and computational cost com-
parison because the significant differences occur primarily
during the training phase, which is typically conducted in a

non-critical period. For prediction, the time difference is neg-
ligible, as all architectures complete the next external sensor
prediction in less than a second.

Data processing, point plotting, and trajectory visualiza-
tion on maps were carried out using the Python programming
language and OpenStreetMap within a JupyterLab platform,
running on a notebook configured with a 12th-generation i7
processor, 16GB RAM, and a 1TB solid-state drive (SSD).

4.4 Results and Analysis

For the analysis, this study investigates four main research
questions based on the results from three architectures
(LSTM, XGBoost, and TLE) combined with three geo-
graphic representations (WGS84, Web Mercator, and UTM).
The aim was to evaluate each architecture’s performance
with various short sequence lengths and geographic represen-
tations, as well as to identify potential shift points between
the best-performing architectures.

For the first research question RQ1: Which architecture
performs best with short sequence lengths for prediction?,
the models were tested with sequence lengths ranging from
1 to 8 using the WGS84 geographic representation. The re-
sults indicated that the TLE architecture performed best with
the shortest sequence lengths (1 to 5), while LSTM began
to outperform TLE as the sequence length increased beyond
5 (6 to 8). This suggests that TLE is more effective at cap-
turing information from shorter sequences, whereas LSTM
benefits from longer historical data. The XGBoost architec-
ture consistently underperformed compared to both LSTM
and TLE in all these scenarios. Table 2 demonstrates these
results using MSE and R? metrics. These values represent
the output results of the Al models without denormalization,
ensuring better comparability, considering that variations in
geographic representation formats will be applied.
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Table 2. Comparison of MSE and R? values across different sequence lengths for XGBoost, LSTM, and TLE architectures.

Sequence Length XGBOOST LSTM TLE
MSE R? MSE R? MSE R?
1 0,0004848 0,9034 0,0004809 0,9047 0,0004741 0,9059
2 0,0003932  0,9104 0,0003841 0,9141 0,0003473 0,9217
3 0,0003845 0,9061 0,0003468 0,9172 0,0003353 0,9197
4 0,0003725 0,9083 0,0003490 0,9150 0,0003237 0,9208
5 0,0004016 0,8995 0,0003278 0,9153 0,0003121  0,9200
6 0,0004310 0,8918 0,0002852 0,9223  0,0002948 0,9193
7 0,0004227 0,8797 0,0002884 0,9186 0,0003099 0,9127
8 0,0004395 0,8788 0,0003001 0,9114 0,0003286 0,9030

Additionally, for the second research question, RQ2: Is
there a shift point where the best-performing architecture
changes?, in line with the findings from [Macedo et al.,
2024], TLE performed better for sequence lengths 1 to 5, but
a shift point was identified between sequence lengths 5 and
6, where LSTM began to outperform TLE. XGBoost showed
comparatively lower performance than the other two archi-
tectures across both sequence length ranges, 1 to 5 and 6 to 8.
Figure 8 also demonstrates the shift point in the results, us-
ing the WGS84 geographic representation along with MSE
and R? metrics, showing where the LSTM line crosses the
TLE line between sequence lengths 5 and 6.

To answer RQ3: Does the format of geographic represen-
tation impact the prediction results?, in addition to WGS84
geographic representation, the performance of each archi-
tecture was evaluated converting geolocations from WGS84
to Web Mercator and to UTM representations. Using the
same metrics, MSE and R? this study compares Web Mer-
cator over WGS84, UTM over WGS84, and UTM over Web
Mercator. For interpreting the graphics, it is important to
note that lower MSE indicates better performance, as does a
higher R2. Considering this, and analyzing the comparisons
for each architecture, we identify three possible scenarios for
each metric when comparing the results of two distinct geo-
graphic representations:

1. MSE representation A over MSE representation B < 1.0:
This indicates that representation A has an advantage
over representation B in terms of MSE.

2. MSE representation A over MSE representation B> 1.0:
This indicates that representation A has a disadvantage
compared to representation B in terms of MSE.

3. MSE representation A over MSE representation B =1.0:
This indicates that changing the geographic representa-
tion had no impact on MSE.

4. R?representation A over R? representation B > 1.0: This
indicates that representation A has an advantage over
representation B in terms of R2.

5. R?representation A over R? representation B < 1.0: This
indicates that representation A has a disadvantage com-
pared to representation B in terms of R2.

6. R?representation A over R? representation B=1.0: This
indicates that changing the geographic representation
had no impact on R2.

Table 3 shows that across all comparisons, none of the
geographic representation conversions maintained the same
MSE or R? values. This finding indicates that the geoloca-
tion representation format does indeed impact the results. Al-
though this was not a primary research question, we further
analyzed whether the impact was positive or negative, as it
remains an intriguing and relevant aspect of the study. One
of the reasons that may explain these impacts is that, unlike
converting a measurement from inches to meters, for exam-
ple, where only the unit of measurement changes while main-
taining the same way of measuring, changing the geographic
representation format alters not only the unit (e.g., from de-
grees to meters) but also the way measurements are taken and
their reference systems. This fundamental difference poten-
tially leads to the observed impacts.

For this in-depth evaluation, it is essential to combine
MSE and R? to ensure consistent conclusions. If a change in
geographic representation led to improvements in both MSE
and R?, it was classified as a positive change. Conversely, if
the change resulted in declines in both metrics, it was deemed
a negative change. Finally, if one metric improved while
the other declined, regardless of which one, the impact was
considered inconclusive. Using this approach and observing
Figure 9, Figure 10, and Figure 11, which illustrate the com-
parison impact of each geographic representation change, we
can construct the summary Table 4 that presents the results
of the comparisons.

In conclusion, changing to the Web Mercator format did
not exhibit a consistently positive or negative impact in this
study, whereas adopting UTM over WGS84 or Web Mer-
cator had a positive effect on XGBoost and LSTM across
the three sequence lengths analyzed (4, 5, and 6). For TLE,
UTM showed a positive impact at ngeq = 4, but a negative
impact at sequence lengths 5 and 6. These results demon-
strate that geographic representation does impact the predic-
tion outcomes and that the effect may vary with sequence
length, resulting in either a positive or negative influence.

For the final research question, RQ4: Can the geographic
representation format alter the shift point between the best-
performing architectures, if one exists?, this study analyzed
the shift point identified in RQ1 and RQ2. Using the same
range of sequence lengths (4, 5, and 6) was sufficient to ob-
serve that, with the WGS84 representation format, the shift
point between LSTM and TLE, initially occurring from se-
quence lengths 5 to 6, was displaced to between sequence
lengths 4 and 5 with the adoption of UTM representation for-
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Table 3. Comparison of changes in geolocation representation formats.

Representation Sequence XGBOOST LSTM TLE
Comparison Length MSE R? MSE R? MSE R?

Web Mercator / WGS84 4 0,9940054 1,0007 1,0036207 1,0001 1,0160543 0,9989
Web Mercator / WGS84 5 1,0040891 1,0002 1,0116758 0,9993 1,0040741 1,0009
Web Mercator / WGS84 6 1,0950706 0,993  1,0023664 1,0003 0,9985159 1,0008
UTM / WGS84 4 0,9630129 1,0015 0,9769478 1,0005 0,9723658 1,0009
UTM / WGS84 5 0,9333241 1,0037 0,9772796 1,0009 1,0482563 0,9932
UTM / WGS84 6 0,9882064 1,0001 0,9724874 1,0011 1,0024658 0,9995
UTM / Web Mercator 4 0,9688205 1,0008 0,9734234 1,0005 0,9570018 1,0021
UTM / Web Mercator 5 0,9295231 1,0035 0,9660008 1,0015 1,044003 0,9924
UTM / Web Mercator 6 0,9024135 1,0072 0,9701915 1,0007 1,0039557 0,9987

mat. Based on these results, it is concluded that, depend-
ing on the geographic representation used, the shift point be-
tween the best-performing architectures can indeed vary, as
illustrated in Figure 12.

Comparing this study’s results with prior research, it is ob-
served that the Transformer and LSTM Entangled (TLE) ar-
chitecture performs best with short sequences, while LSTM
becomes more effective as the sequence length increases.
This finding aligns with [Macedo et al., 2024], which iden-
tified a shift point between these architectures for certain se-
quence lengths.

In terms of geographic representation, this study provides
amore detailed and comprehensive analysis of how different
coordinate systems impact prediction accuracy, a topic less
extensively discussed in prior studies, such as [Neto et al.,
2021]. These comparisons are presented in Table 2 and Ta-
ble 3 and illustrated in Figure 9, Figure 10, and Figure 11,
which synthesize the performance of the XGBoost, LSTM,
and TLE architectures across various geographic representa-
tions and sequence lengths.

Unlike previous works that focus solely on using differ-
ent architectures or additional information, this study con-
tributes significantly by demonstrating that both sequence
length and representation format play essential roles in defin-
ing the ideal architecture. This broader analysis can translate
into cost savings for law enforcement agencies and increased

effectiveness in police interventions.

5 Conclusion

In this study, two criteria were evaluated for their influence
on selecting the best-performing architecture for predicting
the next external sensor in the context of stolen vehicles: the
length of historical sequence data and the format of geoloca-
tion representation.

The results highlight the importance of considering these
two criteria, as there is a shift point where the optimal archi-
tecture changes depending on the length of the historical se-
quence data. Additionally, geographic representation format
changes were observed to have a positive, negative or incon-
clusive impact on predictions, depending on the architecture
and the historical sequence length. Furthermore, a change in
geolocation representation format displaced the position of
this shift point.

In the context of this study, with geolocation represented
in latitude and longitude values (WGS84), the Transformer
and LSTM Entangled (TLE) architecture demonstrated su-
perior performance over LSTM and XGBoost for historical
sequence lengths from 1 to 5. The LSTM architecture be-
gan to outperform for historical sequence lengths from 6 to
8. This indicates a shift in the optimal architecture as the his-
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torical sequence length increases from 5 to 6 for prediction
purposes. When using the Universal Transverse Mercator
(UTM) geographic representation, this shift point between
the best-performing architectures occurs at sequence lengths
4 and 5.

Therefore, it is concluded that when selecting the most
suitable architecture for predicting the next external sensor in
stolen vehicles, the length of the historical sequence and the
format of geographic representation format should be consid-
ered to achieve optimal results.

From a broader perspective, the results achieved in the con-
text of stolen vehicles can provide insights for optimizing the
allocation of public resources and refining highway monitor-
ing strategies, as well as enhancing the deployment of law en-
forcement forces in public security operations. In this regard,
this study presents a potential efficiency gain for public se-

curity institutions and contributes to the recovery of citizens’
vehicles, as well as mitigating various subsequent crimes.
Additionally, insurance companies may benefit from this pre-
dictive capability to assess risk more accurately, refine policy
pricing, and develop proactive fraud detection mechanisms.
By integrating these advancements into decision-making pro-
cesses, both sectors can improve their strategic planning and
contribute to broader public safety and financial sustainabil-

ity.

While this study contributes significantly to understanding
how historical sequence length and geolocation representa-
tion affect the selection of the optimal prediction architec-
ture, certain limitations must be noted. Firstly, the dataset
is limited to records of stolen vehicles, potentially restrict-
ing the generalizability of results to other trajectory predic-
tion contexts. Additionally, the analysis is based on discrete
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Table 4. Impact of relative changes in geographic representation formats across sequence lengths.

Geographic Representation XGBoost Impact LSTM Impact TLE Impact
Comparison n_seq=4 n_seq=5 n_seq=6 n_seq=4 n_seq=5 n_seq=6 n_seq=4 n_seq=5 n_seq=6
Web Mercator / WGS84 Positive  Inconclusive Negative Inconclusive Negative Inconclusive Negative Inconclusive  Positive
UTM / WGS84 Positive Positive Positive Positive Positive Positive Positive Negative Negative
UTM / Web Mercator Positive Positive Positive Positive Positive Positive Positive Negative Negative
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and sparse sequences from external sensors, a context that
may not capture the complex movement patterns present in
continuous trajectories. Another limitation is related to the
impact of changes in geographic representation and the archi-
tecture transition point. Depending on the dataset and other
geographic representation formats, the transition may occur
at different historical sequence lengths than those identified
in this study, considering a possible margin of variability.

In future research, restricting the time frames of records
for training and prediction could enhance the accuracy of pre-
dicting the next external sensor by capturing more significant
patterns in the flow of stolen vehicles. Furthermore, we rec-
ommend expanding the dataset to include other vehicle track-
ing situations and exploring the feasibility of adapting the
model to continuous trajectories. These adjustments could
enhance the model’s applicability and prediction accuracy,
supporting its implementation across a broader array of ve-
hicle tracking contexts. In addition, a more comprehensive
analysis of the data in the databases would be valuable. Also,
it would be worthwhile to conduct further validation exper-
iments to verify whether the shift point observed between
LSTM and TLE remains consistent with broader sequence
lengths.
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