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Sound waves can be used for trapping and manipulating objects immersed in liquids or air. However, 
most acoustic levitation techniques are limited to particles with diameters much smaller than the 
acoustic wavelength or require time-consuming optimisation-based methods that hinder the dynamic 
manipulation of objects. Here, we present an approach based on semidefinite programming to 
manipulate levitated objects in real time. To demonstrate this technique, a phased array consisting of 
256 ultrasonic transducers operating at 40 kHz is used for rotating a non-spherical Rayleigh object or to 
translate Mie spheres along various trajectories. In contrast to previous optimisation-based approaches, 
the proposed method can determine the emission phases of each transducer in real time, strongly 
facilitating the implementation of a model-based closed-loop control in future acoustic levitation 
systems. This is a fundamental step for manipulating levitated objects precisely and at high speeds.
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The acoustic radiation force is a non-linear physical phenomenon that results from the interaction of sound waves 
with the surface of objects1. In acoustic levitation, this force is used to counteract the gravitational force and to keep 
objects in stable suspension2–4. In comparison to other contactless handling methods that employ magnetic, electric, 
optical, or aerodynamic forces5, the biggest advantage of acoustic levitation is its ability to trap solid and liquid samples 
of different material properties6–12, sizes13–17, and masses12,14,18 in multiple media, such as air14, water19, and biological 
tissue20,21. This feature makes acoustic levitation a highly promising technique in numerous applications, e.g., in 
photogrammetry22, crystallography23, spectroscopy24, pharmacy2,25, and microassembly26.

In the past, Langevin-type transducers (LTs) were mostly employed for levitation27–29, but in recent studies15–17,30,31 
they have been replaced by phased arrays of transducers (PATs)3. This transition, which gained momentum with the 
studies of Ochiai et al.32,33 and Marzo et al.14, is due to the fact that PATs can create more complex sound fields through 
the individual control of the phase14, amplitude34, or frequency35 of each transducer. In contrast to approaches in 
acoustic holography that employ passive structures to modulate the phase36,37, the spatial resolution of pressure fields 
generated with PATs is still significantly lower. However, the crucial advantage of PATs is their ability to rapidly change 
the sound field, which is frequently used to move small and lightweight objects34,38. Here, objects are usually enclosed 
in an acoustic trap, a sound pressure field in which they are stably suspended due to an equilibrium of forces14.

In the Rayleigh regime, where particles are much smaller than the acoustic wavelength λ (diameter d ≪ λ), 
the manipulation capabilities of traps were limited to four degrees of freedom (DOF) on a single object14, or, in 
case of several objects, to certain arrangements39,40, in the past. In recent years, these restrictions could be mostly 
resolved by approaches employing singular value decomposition (SVD)22,41 for a single object or holographic 
acoustic elements14 and multi-point algorithms30,34,42 in case of multiple objects. In the Mie (d ≈ λ) and the 
geometric regime (d ≫ λ), the progress was much smaller. Although the PAT-based static levitation of a regular 
octahedron with a diagonal length of 5.9 λ15 and of spheres with λ16 or even multiple λ in diameter15,17,43 have 
been shown, a controlled dynamic manipulation of such objects has not been demonstrated yet due to many 
limitations. 

The key problem here is the lack of a real-time capable inverse model that would enable a model-based 
closed-loop control, see Fig. 1. Although several linear44–46 and non-linear models47,48 have been proposed to 
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predict the motion of Rayleigh objects based on a given control vector ϕ, it was pointed out in the work of Paneva 
et al.48 that it is usually not possible to invert these models due to the lack of differential flatness49. This means 
that the radiation force F rad(r, ϕ) exerted on an object placed at r can be obtained from a given ϕ, but the 
inverse projection is ambiguous, since a feasible ϕ∗ usually cannot be inferred directly from a desired force F ∗.
This problem is also evident in the few proposed approaches50–52, where crucial simplifications were exploited 
for controller design that only apply to their applications. As a consequence, there is currently no generalisable 
model-based closed-loop control that can be applied to various tasks in contactless handling. However, only 
such a control allows the compensation of unknown disturbances like acoustic streaming53,54, acoustic viscous 
torques55, and harmonic generation56, as these physical phenomena are often neglected in acoustic models26. 
Furthermore, its usage would improve current limitations of acoustic levitation systems such as low speed, 
undesired oscillations of the levitated object and reduced precision in positioning. Thus, a model-based closed-
loop control is a mandatory requirement to use PAT-based acoustic levitation systems not only in academic 
research, as it is the case today, but also reliably in future industrial applications. The keystone to its realisation is 
a generalisable and real-time capable inverse model, which is currently not available.

Here, we present such a model that allows the manipulation of acoustic traps in real time. The core element 
of the inverse model is an algorithm that is able to obtain a feasible ϕ∗ for the PAT in real time that shifts a 
given complex pressure field, sampled at certain control points, by a desired vector ∆r∗. Based on the work of 
Waldspurger et al.57, we approximate this phase retrieval problem by transforming it into a convex semidefinite 
program (SDP)58 called PhaseCut57, which is similar to the well-known MaxCut59 problem. This allows us to 
apply recent results for MaxCut to PhaseCut and to develop a greedy algorithm based on techniques like the 
Burer–Monteiro method60,61 and block-coordinate minimisation (BCM)62. As a result, our proposed algorithm 
provides both high convergence rate and low execution time, solving PhaseCut in up to 0.6 ms in our use case 
(256 × 26). Even for a high number of transducers N and control points M (e.g., N × M = 1024 × 38, see 
Table 2), the execution time is less than 11 ms on a single CPU core.

Furthermore, we show that the algorithm is able to largely restore the original radiation force distribution 
of a trap even for large total displacements, allowing the force distribution to be considered as constant for 
small trap shifts. This fact has significantly facilitated the creation of two multivariate polynomial models that 
unambiguously link an approximate resulting force F res acting on the object to a trap shift by ∆r (and vice 
versa). These models as well as the aforementioned algorithm essentially form the inverse model (see Fig. 1) that 
establishes the causal chain F ∗ → ∆r → ϕ∗. Moreover, we demonstrate how the proposed inverse model can 
be used together with a dynamics model of a levitated object. To achieve this, we apply a model predictive control 
(MPC) algorithm on a path-following problem to translate a Mie sphere along a given reference trajectory by 
means of a model-based optimal feed-forward control. This paves the road for the development of a model-
based closed-loop control for acoustic levitation systems.

In addition, we demonstrate the real-time capability and the precision of the proposed method in several 
experiments: In case of a pure kinematic open-loop control, we show the precise rotation of a non-spherical 
Rayleigh object in a twin trap as well as the translation of a Mie sphere in mid-air along a sinusoidal trajectory 
(see supplementary video 1). In contrast, the advantages of a model-based optimal feed-forward control are 
exemplary demonstrated for a linear (see supplementary videos 2 & 3), circular (supplementary video 4), infinite 
symbol (supplementary video 5), and a cross house trajectory (supplementary video 6). The fast linear trajectory 
achieved approximate velocities of up to 150 mm s−1, the circular, infinite symbol and cross house trajectories 
showed maximum position uncertainties of emax ≈ 1.0 mm, 0.8 mm, and 0.6 mm respectively.

Results and discussion
Structure of the inverse model
The structure of the inverse model is depicted in Fig.  2. Its task is to unambiguously determine a feasible 
activation ϕ∗ for the PAT that exerts a desired force F ∗ on the levitated object. The model is comprised of the 
components 1  (F ∗ → ∆r) and 2  (∆r → ϕ∗) to set up the necessary causal chain F ∗ → ∆r → ϕ∗, which 
ensures the usability of the inverse model for a closed-loop control, see Fig. 1. The first step of component 1  
is to determine an initial activation ϕopt for the PAT that stably suspends an object at ropt. To obtain ϕopt, 
most approaches rely on optimisation-based methods that employ accurate, but rather time-consuming force 
models15–17. In consequence, these approaches are not real-time capable, especially for big PATs consisting 
of 256 – 1024 transducers. This means that a valid update of ϕ to change the resulting sound pressure field 
cannot be calculated in a feasible time span for the control circuit. Consequently, we suggest to employ such 

Fig. 1.  Sketch of a position control loop. Based on a desired position r∗ ∈ R3×1 and a measured position 
r̂ = r̂xex + r̂yey + r̂zez, a controller will compute a desired force F ∗. From the input F ∗, an inverse model 
highlighted in green will determine a feasible control vector, here a vector of phase angles ϕ∗ ∈ RN×1, to 
individually control each of the N transducers of the PAT. Subsequently, the emitted wave fronts from the 
transducers will superimpose to an appropriate sound field. This field impinges on the surface of the levitated 
object, exerting the radiation force F rad(r, ϕ) that causes the object to move from its current position r to r̂. 
This quantity is obtained by a camera system and fed back to close the control loop.
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methods only a priori in an offline phase rather than iteratively execute them inside the closed loop during 
the online phase. After a feasible ϕopt for a given ropt has been calculated, we continue the offline phase by 
sampling the acoustic radiation force distribution around the generated trap to create a look-up table (LUT). 
This LUT is comprised of relative distances ∆r = r − rtrap of the position r of the levitated object from 
the centre of the acoustic trap rtrap and the corresponding resulting forces F res = F rad(∆r, ϕopt) + F g, 
where F g = mg, m is the mass of the levitated object, and g = gxex + gyey − gzez denotes the vector of 
gravitational acceleration. Depending on the object properties and the desired accuracy of the result, various 
approaches15–17,63–65 can be used to determine F rad. The offline phase ends with a polynomial regression (see 
section Polynomial regression in Methods for details), where, based on the LUT data, the coefficient matrices 
A ∈ Rα×3 and B ∈ Rβ×3 with α, β ∈ N+ of two polynomial models are determined. These models are used 
to unambiguously predict a resulting force F res = P (∆r, A) (used for model-based feed-forward control) 
acting on the levitated object for a given displacement ∆r as well as to obtain a feasible ∆r = P (F ∗, B) 
in order to exert a desired force F ∗ on the object. These predictions can be performed in real time, since the 
computational costs for the evaluation of polynomials are minimal. This approach provides a high prediction 
accuracy for a big volume V =

{
ri ∈ R3

∣∣ ∥ri − ropt∥2 ≤ ϵV
}

 centred around ropt, where ϵV ∈ R+ is in the 
range of several millimetres and ∥ri − ropt∥2 denotes the Euclidean norm between ri and ropt. Finally, if the 
levitated object leaves V  or the total working space W  should be increased by concatenating several volumes Vi, 
it is optionally possible (indicated by the rhomb and the question mark in Fig. 2) to trigger a parameter update, 
where the functions of the offline phase will be successively executed again.

After completing the linkage F ∗ → ∆r, we take a look at component 2  of the inverse model in Fig. 2 that 
establishes the relation ∆r → ϕ∗. Here, the task is to determine a feasible activation ϕ∗ that recreates a given 
acoustic trap, centred at ropt and defined by ϕopt, at a desired location r∗

trap. To achieve this, the simplest way 
is to keep the activations ϕopt and move the whole PAT by ∆r = r∗

trap − ropt, which is possible when the PAT 
is mounted on a robot arm66,67. Otherwise, ϕ∗ is only feasible when the original radiation force distribution 
of the trap is recreated at the new adjacent trap centre r∗

trap. As existing optimisation-based methods15–17 are 
currently too slow to be iteratively executed in a real-time closed-loop control, we propose a different approach. 
Since the acoustic radiation force F rad is directly linked with the complex acoustic pressure p̃ exerted on the 
object surface, a match of the radiation force distributions around these two locations can be obtained when the 
original acoustic pressure field of the trap, given by p̃ ∈ CP ×1 at locations ri ∈ V , can be recreated at positions 
si ∈ V  that result from si = ri + ∆r, i ∈ {1, 2, . . . , P }.

A very popular approach for this task is the use of holographic acoustic elements, introduced by Marzo et 
al.14. Here, a given activation ϕ0 for the PAT that stably suspends an object at r0 is split up into a focal lens 
ϕfoc,0 and a trap signature ϕtrap,0 = ϕ0 − ϕfoc,0, where the components ϕfoc,0,j  with j ∈ {1, 2, . . . , N} of 
ϕfoc,0 ∈ RN×1 are given by ϕfoc,0,j = −k∥r0 − rt,j∥2, denoting by rt,j  the position of the j-th transducer 
of the PAT and by k the wave number. Next, a feasible activation ϕ1 ∈ RN×1 to shift the trap from r0 to 
r1 is obtained by refocusing the acoustic beam with the approximation ϕ1 ≈ ϕtrap,0 + ϕfoc,1. Since the 
computational costs of these two operations are minimal, the real-time capability of this approach is certainly 
ensured. Consequently, this method is frequently employed to establish a simple kinematic open-loop control. 
This is done by iteratively switching activations A = {ϕ0, ϕ1, ϕ2, . . . , ϕn} in ascending order at specific times 
ti in order to move an object safely from r0 to rn along a discretised trajectory T = {r0, r1, r2, . . . , rn} at 
a moderate velocity, ensuring a sufficiently small distance ∆rij = ∥rj − ri∥2 between two adjacent positions 
ri and rj , e.g., ∆rij ≤ 0.2 mm for small particles68. However, despite its simplicity and popularity, this 
approach has a significant drawback. Looking at the widely applied piston source model (see Eq.  (7) in the 
work of Marzo et al.14), it becomes clear that this method only approximates the phases of the total complex 
pressure at positions adjacent to the new trap centre, but does not take amplitude changes into account that 
are caused by the geometric refocusing of the beam. Consequently, this method can only be applied in a small 
working space W =

{
ri ∈ R3

∣∣ ∥ri − ropt∥2 ≤ ϵW
}

,where ϵW ∈ R+ is in the range of a few millimetres. If 
the total displacement from the original trap centre ropt exceeds ϵW , the accuracy of the algorithm, defined by 
the Euclidean distance between the new trap centre and the equilibrium position req of the object inside the 

Fig. 2.  Structure of the inverse model. The components 1  and 2  of the inverse model ( ), the real-time 
capable functions ( ) iteratively executed in the online phase, and the auxiliary functions ( ) executed only a 
priori in offline phases are highlighted.
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trap, decreases considerably (see Fig. 6), which is caused by a strong mismatch of the radiation force distribution 
of the shifted trap.

In consequence, the method of holographic acoustic elements14 cannot be applied to our problem and we 
instead opt to formulate a complex-valued phase retrieval problem. To quickly obtain a feasible ϕ∗, we relax 
this problem by approximating it with a semidefinite program (SDP) called PhaseCut57, for which we propose a 
real-time capable algorithm that is stated in Algorithm 3 (see section  Semidefinite programming in Methods for 
details). Its conceptual usage to realise a simple kinematic open-loop control is illustrated in Fig. 3(a). As it can 
be seen further from Figs. 3(b) and 3(c) as well as from the corresponding supplementary video 1, it is indeed 
possible to translate and rotate both spherical and non-spherical objects in the Rayleigh as well as in the Mie 
regime in real time by shifting the sampled sound pressure field distribution of a given acoustic trap by means 
of Algorithm 3.

Phase retrieval problem and semidefinite programming
The phase retrieval problem has many undesired properties such as non-convexity, numerous local minima, 
and the huge number of quadratic constraints that make it very difficult to obtain a valid solution in a feasible 
time span. Starting with the Gerchberg–Saxton algorithm in 197269, numerous methods such as Eigensolver42, 
IASA36,70, IBP30, GS–PAT34, Diff–PAT71,72, LSS73, and approaches based on a brute-force search74,75, the 
L-BFGS-B76 or the Levenberg–Marquardt (LM) algorithm77–79 have been presented to solve this problem. In 
addition, recently proposed data-driven solutions80–82 based on artificial neural networks (ANN) are becoming 
increasingly important. A detailed overview of current developments can be found in the work of Yang et al.83.

However, all the stated methods are of limited use for the present application. For instance, IASA gives 
accurate results, but usually requires too much computation time, whereas GS–PAT converges quickly to a 
result, but its accuracy decreases for an increasing number of control points M ≥ 834. In addition, ANN-based 
methods are certainly real-time capable, but have a major weakness due to their lack of adaptability. For example, 
if the transducer amplitudes are altered or the environmental conditions such as temperature, humidity or air 
pressure change, the only way to deal with this problem is to generate new data points and train the ANN again, 
which is usually a time-consuming process, depending on the size and layers of the ANN. Finally, some of these 
methods, e.g. Chen et al.73 and Suzuki et al. 74, have been exclusively developed for haptic applications, as they 
only take the amplitudes, but not the phases of p̃ into account74. However, the phases of p̃ have a non-negligible 
influence on the resulting acoustic radiation force distribution of the trap, see for example the methods section 
in the work of Marzo et al.14.

To enable the real-time shifting of traps with high accuracy, we employ the idea of Waldspurger et al.57, who 
proposed to approximate the phase retrieval problem by a tractable relaxation into a SDP58 called PhaseCut, 
see also84. This problem is very similar to the MaxCut problem62, although there are two notable differences: 
First, MaxCut is a maximisation problem, whereas in PhaseCut Eq. (13) is minimised to find an optimal Z∗.
Second, W  and Z  are real matrices in MaxCut62, whereas PhaseCut is an optimisation problem over the unit 
complex torus57. These observations imply that algorithms developed for MaxCut can very likely be adapted to 
solve PhaseCut. Since MaxCut is an extensively studied problem, there are numerous published methods for 

Fig. 3.  (a) Conceptual idea of the trap shift algorithm ( 2 ∆r → ϕ∗ in Fig. 2). To move a trap given by 
qopt = eiϕopt ∈ CN×1 from rT ,0 to rT ,1 = rT ,0 + ∆r, the following steps according to Algorithm 3 are 
conducted: 1  Sample the pressure field, specified by p̃ ∈ CP ×1 at locations P = {r1, r2, . . . , rP }, at nodes 
M = {r1, r2, . . . , rM }, M ≪ P , and calculate the propagator matrix G0 ∈ CM×N  ( 2 ) for a PAT consisting 
of N transducers. Then shift M by ∆r ( 3 ) and repeat 1  to obtain G1 ∈ CM×N  ( 4 ). Finally, solve the phase 
retrieval problem ( 5 ) to get a feasible q∗ = eiϕ∗

 for r1. (b) Translation of an expanded polystyrene (EPS) 
sphere of 8.1 mm in diameter. (c) Controlled rotation of an EPS particle. Supplementary movie 1 shows the 
translation of the Mie sphere and the rotation of an EPS particle.
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solving it, e.g., refs.57,59,62,73,84–87. Our investigations lead to the conclusion that among these a block coordinate 
minimisation (BCM) with a low-rank factorisation Z = V HV , Z ∈ C(N+1)×(N+1), called the Burer–Monteiro 
method60,61, is particularly suitable for solving Eq. (13). Thus, we mainly adapt the results from refs.59,62,86 to 
PhaseCut, which lead to the development of Algorithm 1. Its speed and the accuracy of recreated sound pressure 
field is affected by three selectable parameters: The number of rows L (1 ≤ L ≪ (N + 1)) of the low-rank 
matrix V ∈ CL×(N+1), the maximum number of iterations imax, as well as the number and placement of nodes 
ri with i = 1, 2, . . . , M  and M ≪ P  at which the original field p̃ ∈ CP ×1 is sampled to obtain p ∈ CM×1.

Without limiting the general case, we investigated the influence of these parameters on Algorithm  1 
(respectively Algorithm  3) in simulation by an exemplary shift of a twin tuning forks trap16 from 
ropt = (0 ex + 0 ey + 45 ez) mm to the position r1 = (0 ex + 0 ey + 50 ez) mm, see also Fig. 5. To quantify 
the quality of the optimisation result, we employed the position error epos = ∥req,1 − r1∥2 between the 
new trap centre r1 and the equilibrium position of the object inside the trap req,1. To determine req,1, we 
initially placed the Mie sphere at r1 in simulation and executed Algorithm 2 with req = r1, α = 20 × 10−3, 
Ftol = 1 × 10−19 N, rtol = 5 mm, and imax = 4000 as initial values, see section Characterising sound pressure 
fields in Methods for details. For this example, we observe a very good result as soon as the objective function 
J = tr

(
W V HV

)
 of Algorithm 1 reaches a value of less than approximately 4 × 103, which corresponds to an 

error of epos ≈ 0.125 mm, see also Figs. 5 and 6(e). Furthermore, we noticed that the randomised initialisation 
of the matrix V ∈ CL×(N+1) for different values of L only has an impact on J  at the start of the optimisation, 
but this influence decreases rapidly with an increasing number of iterations. Since this observation held true in 
further investigations on different trap types and displacements, we conclude that the parameter L neither has a 
quantifiable influence on the required number of iterations nor on the quality of the optimisation result. Thus, it 
is reasonable to use L = 1 in Algorithm 1 to improve its execution speed.

In addition to L, the quantity and locations of nodes in the grid M at which the pressure field of the trap is 
sampled can be adjusted in Algorithm 1. Thus, during the reconstruction of a field defined by ̃p ∈ CP ×1 at locations 
P = {r1, r2, . . . , rP }, one is faced with the task of choosing a set M = {r1, r2, . . . , rM } ⊂ P  with M ≪ P. 
Such a set M is feasible when three conditions are fulfilled. First, a valid activation q∗ ∈ CN×1 for the PAT can 
be obtained from Eq. (8). Second, q∗ creates p ∈ CM×1 at ri ∈ M and third, q∗ recreates p at rj ∈ P \ M 
sufficiently to preserve the proper characteristics of the field. This problem can be interpreted in the sense that the 
cumulative error eΩ defined as eΩ =

∫
Ω ∥Gq − p̃∥2 dΩ over a given surface Ω should be minimised.

A complicating aspect here is that this integral cannot be evaluated over the whole surface Ω due to 
computational costs. Thus, a few locations ri ∈ M ⊂ Ω have to be selected instead, for which a feasible q∗ exists 
that reduces eΩ to a sufficiently low value. To the best of our knowledge, this problem has not been discussed in 
literature so far. In our considered examples (see Figs. 3(b) and (c) as well as Figs. 6-9), especially those ri are 
suitable that are used as node points in common quadrature formulas. As a consequence, we suggest to use a 
point grid specified by a Gaussian interpolation scheme92 to sample and reconstruct a 2D rectangular acoustic 
pressure field. In the 3D case, we tested a spherical t - design88, a Gaussian88, and a Lebedev grid88,90, which are 
all depicted in Fig. 4. For their construction, we employed three toolboxes89,91,93 in MATLAB. The focus on 
spherical meshes has two reasons: First, the most prevalent objects in recent studies16,17,30,34 have been expanded 
polystyrene (EPS) spheres. In this case, the mesh could be directly applied to the object surface. Second, this grid 
type can be used to sample the edge of a volume that contains a desired acoustic pressure distribution that shall 
be reconstructed, e.g., an acoustic trap. Although it would be desirable to investigate other node distributions to 
be applied to non-spherical object surfaces, e.g., an octahedron15, a systematic investigation of such grid types 
is beyond the scope of this study. For our two examined cases, namely a twin tuning forks trap16 (see Fig. 3(b) 
and Figs. 6 – 9) and a twin trap14 (see Fig. 3(c)), only M = 26 nodes were sufficient to translate or rotate the 
corresponding sound pressure fields at high precision. Without further evidence, it was even possible to sample 
the pressure field at only M = 14 positions if a slightly lower accuracy (see Algorithm 2) of the shifted trap is 
acceptable and the total runtime of Algorithm 3 is of main concern. For low node numbers, we have achieved the 
best results with a Lebedev grid, followed by the spherical t - design. With an increasing number of points, the 
differences between all three grid types became smaller and they achieved a similar performance. In addition, 
a high number of nodes, e.g., M ≥ 100, did not significantly improve the positioning accuracy of the shifted 
trap. For a more detailed analysis of the accuracy of the recreated sound pressure fields, please refer to section 
Accuracy of the sound field recovery of component 2  (∆r → ϕ∗).

Using the results from these preliminary investigations we initialised V  with V =
(
(eiϕopt)⊤ 1

)
 and 

selected M = 26 and imax = 1000 for the runtime analysis depicted in Fig. 5. In this example, Algorithm 1 is 

Fig. 4.  Examples of node distributions on a spherical surface. Following the terminology in ref.88, a 
Gaussian grid with M = 441(a), a spherical t - design89 with M = 256(b), and a Lebedev grid90,91 with 
M = 266(c) are depicted.
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outperforming its competitors with a greedy coordinate selection strategy. The necessary time of topt ≈ 0.56 ms 
of Algorithm 1 to obtain an optimal solution is, for example, more than five times better that the approach 
presented in ref.76 when an L-BFGS algorithm94 is employed. Furthermore, the proposed approach by Chen 
and Goulart73 that uses the alternating direction method of multipliers (ADMM) in combination with the 
Burer–Monteiro method60,61, shows less optimisation progress for the same number of iterations while requiring 
considerably more computation time. Furthermore, for small trap shifts, as considered here, Algorithm 1 with a 
greedy selection strategy (see section Semidefinite programming in Methods for details) only needs approximately 
as much iterations as transducers N used in the PAT to converge to an optimal result. We presume that this is 
caused by the fact that in this case some phase angles of the vector ϕopt, especially those of transducers located 
at the edge of the PAT, do not necessarily have to be adjusted, as their contribution to the sound pressure field for 
a trap shift by ∆rz = +5 mm barely changes. This observation was also persistent in further investigations with 
bigger PATs or different object sizes, as long as small translations were maintained.

However, for larger trap shifts, Algorithm 1 with a greedy selection strategy can take between 2N and 4N 
iterations to converge to an accurate result. This decrease in convergence speed and the fluctuations in the 
required number of iterations were also partially observed when using the L-BFGS algorithm. Further research 
is needed to provide a thorough explanation for these observations which is, however, beyond the scope of this 
work. In addition, Fig. 5 shows that algorithms like block-coordinate descent (BCD)57,84 or Algorithm 1 with 
a cyclic or uniform selection strategy are clearly inferior to Algorithm 1 with a greedy strategy, since the former 
algorithms are not able to converge to an optimal result within imax = 1000 iterations. The low computational 
cost of Algorithm 1 has a simple reason: For instance, ADMM involves a matrix-vector product in each iteration, 
leading to a complexity of at least O(N2) in the number of transducers N. For the second-best method, the 
L-BFGS method, the complexity is at least O(N M) per iteration, where M denotes the number of control 
points. Our method, however, only requires a single matrix-vector product at its start-up, followed by updates of 
vectors from a single column in the coefficient matrix (see Algorithm 1 and the section Real-time capability in 
Methods for details). In case of L = 1, this leads to a reduced complexity of only O(N) operations per iteration. 
Since the identification of the selected row can be performed in O(1) (uniform, cyclic) or O(N) (greedy) steps, 
the complexity per iteration is only O(N) for the case of L = 1. This is illustrated by Table 1, in which the 
number of iterations, the mean run time per iteration, and the resulting total time of all algorithms for the 
corresponding example in Fig. 5 are listed. Here the total time includes the computation of the involved matrices 
from ∆r, which requires initial phase computations through Bessel functions (all methods) and a matrix-matrix 
multiplication (BCD and Algorithm 1), accounting for a significant share of the overall run time (see also Fig. 5). 
Additionally, the complexity analysis above shows that the proposed methods become even more favorable for 
higher N, potentially outperforming previous methods more significantly.

Real-time capability
To verify the real-time capability of the proposed method, Table 2 shows the runtime breakdown of an optimised 
implementation of Algorithm 3 in C++. Here, the computation of W = AHA (lines 4–7 in Algorithm 3) takes a 
larger share of run time than Algorithm 1 itself for many configurations, especially with 26 or 38 control points. 
Moreover, all cases were completed in less than approx. 11 ms, often below 10 ms, which can be considered 
real-time capable. To achieve this, two optimisations are necessary: First, the computation of the Bessel function 

Fig. 5.  Convergence speed of various algorithms for the phase retrieval problem. In this simulative 
analysis, we employed the parameters of the experimental setup in São Paulo. At first, we obtained a feasible 
activation ϕopt from an optimisation16,17 to suspend an EPS sphere with 8.1 mm in diameter and a density 
of ρ = 15 kgm−3 at ropt = (0 ex + 0 ey + 45 ez) mm, 45 mm above the PAT centre, see Fig. 3(b). The 
phase retrieval problem of a trap shift from ropt to rtrap = (0 ex + 0 ey + 50 ez) mm was used. To 
obtain p ∈ CM×1, we sampled p̃ ∈ CP ×1 at M = 26 nodes that were placed on the object surface using a 
Lebedev grid scheme90,91, see also Fig. 4(c). To ensure a fair comparison, all algorithms (BCD57,84, ADMM73, 
L-BFGS76,94, and Algorithm 1) with various coordinate selection strategies (see Eq. (22)) were implemented in 
C++ with a hardware-aware programming style, compiled with the gcc compiler version 13.2 with flags -O3-
march=znver4 and run on a single core of an AMD Ryzen 7840U CPU operated at 5.1 GHz. Here, we used 
imax = 400 for L-BFGS as well as L = 1 and imax = 1000 for the SDP-based algorithms. For this experiment, 
an optimal result is reached when the objective function J  yields values of ≲ 4 × 103, indicated by the dashed 
line. Algorithm 1 approximately reaches this value after 256 iterations in 0.56 ms, L-BFGS after 50 iterations in 
3.0 ms. These two points and the values of J  after 256 iterations for the other algorithms are marked in black.
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in Eq. (5) for G1 uses a polynomial approximation to degree 16, rather than C++’s built-in function, making 
use of the possible argument range with a guaranteed accuracy of 12 digits. Second, the code uses an optimised 
implementation of the complex matrix-matrix product for W  that runs above 60% of the processor’s peak 
arithmetic performance, using the best single-instruction / multiple-data (SIMD) capability of the processor. 
Note that a custom implementation, following matrix-matrix multiplication with intrinsics described in ref.96, 
Sec. 3.2, on a array-of-struct-of-array layout is used to ensure contiguous loads of real and imaginary parts. This 
approach avoids the data rearrangement costs necessary by BLAS-3 zgemm implementations97 for the given 
small column size and with W  exceeding the cache capacity. In addition, Table  2 shows a deviation of run 
time of Algorithm 1 for different values of M slightly larger than the statistical noise, even though it should not 
depend on M. This is because Algorithm 1 picks columns in W̃  in slightly different orders, leading to a different 
run-time behaviour due to different cache access patterns despite the same amount of computations.

Accuracy of the sound field recovery of component 2  (∆r → ϕ∗)
After evaluating the computational performance and real-time capability of Algorithm 3, we now investigate its 
accuracy with respect to the recovery of sound fields. Shifting a given trap by ∆r at high precision is a mandatory 
requirement for the inverse model in Fig. 2, since the assumption of a static radiation force distribution by the 
component 1  (F ∗ → ∆r) strongly relies on the accuracy of 2  (∆r → ϕ∗). The results of this simulative study 
are depicted in Fig. 6, where we compared Algorithm 3 with the popular holographic acoustic elements approach14 
described on p. 6. As our focus lies on acoustic levitation and contactless manipulation, we evaluate the precision 
of both methods in shifting complex pressure fields with the metric epos = ∥req − rtrap∥2, denoting by rtrap 
the new trap centre and by req the equilibrium position of the Mie sphere inside the shifted trap. Thus, a 
value of epos = 0 means in this case that the acoustic trap can be perfectly shifted from its initial location 
ropt to the new location rtrap by a total displacement of ∆r = ∆rxex + ∆ryey + ∆rzez = rtrap − ropt, 
whereas values of epos ≥ 0.5 mm indicate a low recovery precision at rtrap, resulting in a high mismatch 
of rtrap and req. It should be noted that an acoustic trap usually cannot be shifted by ∥∆r∥2 ≥ 1.5 mm in 
a single step in any control strategy, as high and immediate trap displacements are very likely to cause the 
levitated object to be ejected out of the trap. Therefore, the result depicted in Fig. 6 is not intended for an 
analysis of the dynamic behaviour of the object, but rather for a comparison of the feasible workspaces W  
that can be safely passed by the levitated object at moderate velocities, using either an open-loop control 

size G1, p0 W Algorithm 1 finalise total

N × M lines 4–6 line 7 l. 8–10 l. 11–14 time

imax = N  iterations

256 × 14 0.07 ms 0.08 ms 0.24 ms 0.01 ms 0.40 ms

 256 × 26 0.14 ms 0.15 ms 0.24 ms 0.01 ms 0.54 ms

 256 × 38 0.26 ms 0.22 ms 0.24 ms 0.01 ms 0.73 ms

 512 × 14  0.15 ms 0.31 ms 0.98 ms 0.01 ms 1.45 ms

 512 × 26 0.30 ms 0.56 ms 0.98 ms 0.01 ms 1.85 ms

 512 × 38 0.47 ms 0.78 ms 0.97 ms 0.01 ms 2.23 ms

1024 × 14 0.29 ms 1.16 ms 3.98 ms 0.03 ms 5.46 ms

 1024 × 26 0.57 ms 2.06 ms 4.02 ms 0.03 ms 6.68 ms

1024 × 38 0.86 ms 3.05 ms 4.05 ms 0.03 ms 7.99 ms

imax = 2048 iterations

1024 × 14 0.29 ms 1.21 ms 7.04 ms 0.03 ms 8.57 ms

 1024 × 14 0.57 ms 2.06 ms 7.05 ms 0.03 ms 9.71 ms

1024 × 38 0.86 ms 3.04 ms 7.07 ms 0.03 ms 11.00 ms

Table 2.  Run time in ms of Algorithm 3 on a single core of an AMD Ryzen 7 7840U CPU operated at 5.1 GHz 
and compiled with the gcc compiler version 13.2 with flags -O3 -march=znver4. The main steps of 
Algorithm 3 are indicated with lines of the algorithm statement, using the block-coordinate minimisation 
of Algorithm 1. All run times are the statistical mean of 50 runs rounded to two significant digits (statistical 
variations are around 2%).

 

Method L-BFGS ADMM BCD Algorithm 1

Strategy uniform cyclic uniform cyclic greedy

iterations 50 256 256 256 256 256 256

time/iter. 53 µs 109 µs 5.0 µs 5.4 µs 0.3 µs 0.3 µs 0.8 µs
total time 3.0 ms 28.2 ms 14.2 ms 14.3 ms 0.50 ms 0.49 ms 0.56 ms

Table 1.  Number of iterations, mean run time per iteration, and the resulting total time of the algorithms 
L-BFGS76, ADMM95, BCD57,84, and Algorithm 1 for the example in Fig. 5.
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strategy like in refs.48 ,68 with ∥∆r∥2 ≤ 0.2 mm between two adjacent trap positions ri and rj  or a closed-loop 
control strategy. As it can bee seen from Figs. 6(a,d), the holographic acoustic elements approach14 guarantees 
a recovery of the original trap at high precision (epos ≤ 0.25 mm) only in a volume V{(a),(d)} that is given 
by V{(a),(d)} =

{
∆r

∣∣ ∆rx ∈ [−4, 4] mm, ∆ry ∈ [−4, 4] mm, ∆rz ∈ [−4, 8] mm
}

. If the Mie sphere is 
translated from ropt to positions ri /∈ V{(a),(d)}, there are higher position errors which indicate a stronger 
mismatch of the radiation force distribution around the new trap centre, compared to the original distribution 
at positions ri adjacent to ropt. Consequently, a dynamic manipulation of the Mie sphere in these regions 
along a discretised trajectory T = {r0, r1, . . . , rn} with an iterative refocusing strategy14 is strongly inhibited. 
Each trap shift from ri to a subsequent adjacent position rj  by a feasible ∆rij = rj − ri will cause a strong 
mismatch between the predicted force F̂ res = P (∆rij , A) (see 1  (F ∗ → ∆r) in Fig. 2) and the actual force 

Fig. 6.  Comparison of the sound field recovery accuracy of the holographic acoustic elements approach 
[(a),(d)] of Marzo et al.14 described on p. 6. with Algorithm 3 [(b),(c),(e),(f)]. In this simulative analysis, 
the settings from the experimental setup in Augsburg were used, starting with a twin tunings forks 
trap16 defined by ϕopt to levitate a EPS sphere of d = 8.5 mm in diameter and a mass of m = 7.4 mg 
at ropt = (0 ex + 0 ey + 50 ez) mm. From ropt, the sound pressure field of the trap was translated by 
∆x, ∆y ∈ [−10, 10] mm in the xy-plane [(a), (b), (c)] as well as by ∆x, ∆y ∈ [−10, 10] mm in the xz-
plane [(d), (e), (f)]. To compare the accuracy of both algorithms, the position error epos = ∥req − rtrap∥2 
(see Eq. (24)) was used as a metric, denoting by rtrap the new trap centre and by req the equilibrium 
position of the Mie sphere inside the shifted trap. To obtain req for each rtrap, we initialised sphere position 
at rtrap and ran Algorithm 2 with req,0 = rtrap, α = 20 × 10−3, Ftol = 1 × 10−19 N, rtol = 5 mm,
and imax = 4000 as initial values. In(b) and (e), Algorithm 3 was executed with G ∈ RM×N , whereas 
in (c) and (f), Algorithm 3 employed Ĝ ∈ R4M×N , Ĝ =

(
G⊤G⊤

x G⊤
y G⊤

z

)⊤ (see Eqs. (4)–(7)), also 
taking the spatial derivates of the pressure p ∈ CM×1 at the locations M = {r1, r2, . . . , rM } of the 
M = 26 selected nodes into account. In this case, we applied a balancing on W  by W = AHΛA, where 

Λ = diag
([

11×M (1 / k) · 11×3M
]⊤

)
, Λ ∈ R4M×4M  and k denotes the wave number. Finally, in 

[(b),(c),(e),(f)], Algorithm 3 used L = 1 and imax = 1024.
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F res. This disturbing force F err = F res − F̂ res exerted on the sphere is likely to cause the sphere to be ejected 
out of the trap on its course on T .

In contrast, Figs.  6(b,e) shows that Algorithm  3 has a significantly higher precision in 
V{(a),(d)} and enables a larger workspace, providing a volume V{(b),(e)} =

{
∆r

∣∣ ∆rx

∈ [−10, 10] mm, ∆ry ∈ [−10, 10] mm, ∆rz ∈ [−10, 5] mm} at the same accuracy of epos ≤ 0.25 mm as the 
approach presented by Marzo et al.14. It should be noted that epos increases up to 0.45 mm as the trap is shifted 
vertically by ∆rz ≥ 8 mm, indicating that the original acoustic trap around ropt cannot be reconstructed 
exactly for such large displacements, either in terms of the absolute pressure or its spatial distribution. This 
is probably caused by the decreasing contribution to the pressure field by each transducer as the distance to 
the object increases for all transducers of the PAT (compare Eq.  (4)). This reduction usually cannot be fully 
compensated by an improved radiation characteristic, taken into account by the directivity Df(θj) in the piston 
source model, see Eq. (5). To tackle this issue, Figs. 6(c,f) show the result of a modified version of Algorithm 3 

where Ĝ =
(
G⊤G⊤

x G⊤
y G⊤

z

)⊤ with Ĝ ∈ R4M×N , see Eqs. (4)-(7), instead of G ∈ RM×N  was used. Here, the 
spatial derivatives p̃i ∈ CP ×1, i ∈ {x,y,z} of the acoustic pressure p̃ at the locations M = {r1, r2, . . . , rM } 
of the nodes were also taken into account. This modification apparently strongly facilitates the precise recovery 
of the complex pressure field of the trap. This idea is motivated by the fact that the acoustic radiation force 
F rad ∈ R3×1 exerted on a levitated object depends both on ̃p and the spatial derivatives ̃pi on the object surface15. 
Using this approach, epos still does not drop below 0.10 mm for large parts of the considered areas, depending 
on the specific total trap displacement. We presume that this error is mainly caused by the low spatial resolution 
of the PAT98 and the present transducer directivity. Another possible reason could be that we do not consider the 
scattered sound field of the object to ensure the real-time capability of the approach. To reduce epos even further, 
it might be necessary to directly map ̃p and ̃pi according to the term given in Eq. (4) in ref.15 for the computation 
of F rad instead of considering only their linear contributions. However, this modification would lead to a non-
linear problem of 4th order, which to the authors’ best knowledge cannot be solved using the proposed technique 
of semidefinite programming. Although there are clear indications that by simply reconstructing the complex-
valued sound pressure field of the acoustic trap, its force distribution is also recovered to a large extent, there is 
no strong evidence for this. In consequence, no generalisable statement can be made as on how accurately an 
arbitrary configuration of an acoustic trap can be reconstructed at another location. Regarding this question, we 
thus have limited the scope of this work to the following simulative analysis.

Accuracy of the linkage F ∗ ↔ ∆r of component 1
In this analysis, we compare the force distribution recovery accuracy of the holographic acoustic elements 
approach14 with component 1  that establishes the linkage F ∗ ↔ ∆r. To ensure a fair comparison, we restricted 
the feasible workspace W  in this example to W = V(ropt, 6.25 mm), since both algorithms yielded similar 
position errors epos in this volume, see Fig. 6 for further details. Figs. 7(a,d) shows the method of holographic 
acoustic elements which presents high recovery accuracies (emean ≤ 30 µN) of the resulting force distribution 
of the translated acoustic trap only in a small volume V{(a),(d)} =

{
∆r

∣∣ ∆ri ∈ [−2, 2] mm, i = {x, y, z}
}

. 
In contrast, the identified model F̂ res = P (∆r, A) in Figs. 7(b,e) provides the same prediction accuracy in 
a much bigger volume, namely V{(b),(e)} =

{
∆r

∣∣ ∆ri ∈ [−4, 4] mm, i = {x, y, z}
}

. As it can be seen by 
supplementary Fig. S1, the advantage of component 1  over the holographic acoustic elements approach becomes 
even clearer if instead of 16 Vpp only 10 Vpp are used to excite the transducers of the PAT. Furthermore, it can be 
inferred from Figs. 7(c,f) and Figs. S1(c,f) that including the spatial derivatives ̃pi in Algorithm 3 apparently does 
not improve the recovery accuracy of the force distribution significantly. This is in contrast to the improvement 
of the position errors epos = ∥req − rtrap∥2 in Fig. 6. Finally, it is noteworthy that a bigger workspace W  for 
component 1  can be generated by simply concatenating several volumes Vi, in which corresponding polynomial 
models have been identified. In this case, an additional criteria in the dynamic model based on the current 
position r of the levitated object has to be defined to properly switch between these polynomial models.

Manipulation capabilities of the algorithm
The real-time capability of the presented method was first investigated in an experiment conducted in the 
laboratory in São Paulo, see section Experimental setup for details. Here, an EPS particle of d = 8.1 mm in 
diameter (d/λ ≈ 0.93) was first suspended at r = (5 ex + 0 ey + 45 ez) mm and then manipulated by 
altering the trapping position in rx at various speeds using a kinematic open-loop control. This terminology 
means that only the component 2  (∆r → ϕ∗) with Algorithm 3 was used to directly shift the given acoustic 
trap along the reference trajectory, not taking the resulting forces or the dynamic behaviour of the levitated Mie 
sphere inside the acoustic trap into account. The experimental results for a slow and a fast horizontal motion 
are presented in Figs. 8(a,d,g) and Figs. 8(b,e,h), respectively. The motion of the sphere can also be seen in the 
supplementary movie 2. Figs. 8(d,e) show a top speed of the sphere of vmax ≈ 50 mm s−1 for the slow motion 
and vmax ≈ 100 mm s−1 for the fast motion. In Fig. 8(a), the sphere follows the reference trajectory at slow 
motion and presents almost no oscillation when it reaches rx = 5 mm at t ≈ 1.3 s. However, for the fast motion 
depicted in Fig. 8, the sphere displays a small horizontal oscillation after two manipulation cycles. Despite this 
small oscillation, this experiment clearly indicates that Algorithm 3 is able to manipulate a Mie sphere with 
sufficient precision in real time.

To improve these results, similar experiments were conducted in Augsburg. Instead of a kinematic open-loop 
control, an EPS sphere of d = 8.5 mm (d/λ ≈ 0.97) was manipulated by means of an optimal feed-forward 
control to follow given paths, taking the dynamic behaviour of the Mie sphere into account. To obtain such 
a control, we first determined a feasible ϕopt for the PAT using a non-linear optimisation16,17, creating a twin 
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tuning forks trap16 which stably suspends the sphere at ropt = (0 ex + 0 ey + 50 ez) mm. Subsequently, by 
applying a polynomial regression, we approximated the force distribution of the trap in a cubic volume

	 V(ropt, Rλ) =
{

ri ∈ R3 ∣∣ |rj,i − rj,opt| ≤ Rλ, Rλ ∈ R+, j ∈ {x,y,z}
}

� (1)

centred around ropt with an edge length 2Rλ = 2.50 mm. Next, the resulting multivariate polynomial models 
F res = P (∆r, A) and ∆r = P (F res, B) with total degree δ = 3 were validated in V(rW , RΩ − Rλ) ⊂ W, 
where the workspace W = V (rW , RΩ) centred at rW = (0 ex + 0 ey + 50 ez) mm had an edge length of 
2RΩ = 25 mm (see section Training and validation of the polynomial models for details).

To obtain an optimal feed-forward control for the given reference trajectories, we applied a model prective 
control (MPC)99 algorithm on the corresponding path-following problems. Finally, an obtained sequence of trap 
shifts by ∆ri is fed to component 2  (∆r → ϕ∗) of the inverse model in Fig. 2 to calculate a feasible control 
sequence of activations ϕi with Algorithm 3 for the given trap at ropt which is defined by ϕopt.

After stating the necessary steps of implementing an optimal feed-forward control, we now take a look 
at the results obtained in Augsburg. Comparing Figs.  8(c,f) with Figs.  8(b,e), the model-based optimal 

Fig. 7.  Comparison of the force distribution recovery accuracy of the holographic acoustic elements 
approach [(a),(d)] of Marzo et al.14described on p. 6. with Algorithm 3 [(b),(c),(e),(f)]. In this simulative 
analysis, the same settings as in Fig. 6 were used. From ropt = (0 ex + 0 ey + 50 ez) mm, the sound 
pressure field of the optimised trap was translated by ∆x, ∆y ∈ [−5, 5] mm in the xy-plane [(a), (b), (c)] 
as well as by ∆x, ∆z ∈ [−5, 5] mm in the xz-plane [(d), (e), (f)]. To compare the accuracy of both 
algorithms, we employed Algorithm 4 and the prediction error emean (see Eq. (32)) as a metric. For the 
training of F̂ res = P (∆r, A), we selected δ = 3, rW = ropt, RΩ = 6.25 mm for W = V(rW , RΩ) 
and Rλ = 1.25 mm for B = V(ropt, Rλ) ⊂ W , see Eq. (1). Sampling B and V(0, Rλ) in cubic grids 
with spacings of 0.125 mm and 0.25 mm respectively resulted in I = 9261 data tuples and J = 1331 
relative displacements ∆rj ∈ V(0, Rλ), j = {1, 2, . . . , J}, where the local force distribution was 
evaluated. To calculate F rad, we used the approach in17. To evaluate F̂ res = P (∆r, A), we sampled 
V(rW , RΩ − Rλ) ⊂ W  with a cubic grid with 0.2 mm spacing, resulting in L = 2601 test positions. In 
(b) and (e), Algorithm 3 was executed with G ∈ RM×N , whereas in (c) and (f), Algorithm 3 employed 

Ĝ ∈ R4M×N ,  (see Eqs. (4)-(7)). Finally, in [(b),(c),(e),(f)], Algorithm 3 was 
executed with L = 1 and imax = 1024.

 

Ĝ =
(
G⊤ G⊤

x G⊤
y G⊤

z

)⊤
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feed-forward control enables a faster horizontal manipulation of the Mie sphere, which reaches a top speed 
of vmax ≈ 150 mms−1 in this experiment, see also Fig.  8(f). Despite the high velocities, the Mie sphere 
displays minimal oscillations when reaching its final position r = (−8 ex + 0 ey + 50 ez) mm at t ≈ 0.4 s. 
The horizontal motion of the sphere can also be seen in the supplementary movie 3. In further experiments, 
we translated the levitated Mie sphere along more complex trajectories, namely a circular (Figs.  9(a,d,g)), 
an infinite symbol (Figs. 9(b,e,h)) and a cross house (Figs. 9(c,f,i)) trajectory. The path of the sphere for the 
experiments depicted in Fig. 9 can also be seen in the corresponding supplementary videos 4-6. Starting from 
r0 = (0 ex + 0 ey + 45 ez) mm, the reference circular trajectory depicted in Figs. 9(a,d,g) is given by

	

rx(t) = A sin (π (1 − cos (ωt))) and
rz(t) = rz,0 + A − A cos (π (1 − cos (ωt))) ,

� (2)

where t ∈ [0, 3] s, A = 7.5 mm, and ω = π/3. For the infinite symbol trajectory starting at 
r0 = (12 ex + 0 ey + 50 ez) mm, rx(t) and rz(t) are in turn defined by the following two equations:

	

rx(t) = A cos (π (1 − cos (ωt)))
rz(t) = rz,0 + 0.5A sin (2π (1 − cos (ωt))) .

� (3)

In Eq. (3), the parameters A, ω, and t are given by A = 12 mm, ω = π/3.5 and t ∈ [0, 3.5]. Finally, for the cross 
house trajectory, the reference trajectory begins at r0 = (−3 ex + 0 ey + 50 ez) mm at the lower left corner 

Fig. 8.  Comparison of a kinematic and an optimal feed-forward control for a horizontal translation 
of a Mie sphere at various speeds. In the experiments conducted in São Paulo [(a),(b),(d),(e),(g),(h)], 
an expanded polystyrene (EPS) sphere of d = 8.1 mm in diameter (d /λ ≈ 0.93) was first suspended at 
r = (5 ex + 0 ey + 45 ez) mm in a twin tuning forks trap16 and then manipulated with Algorithm 3 by 
altering the trapping position in rx according to rx(t) = A cos(ωt) using a kinematic open loop control, 
where A = 5 mm is the translation amplitude and the angular frequency ω was set to ω = 9.64 rad s−1

[(a),(d),(g)] for a slow and to ω = 19.28 rad s−1 [(b),(e),(h)] for a fast motion. In addition, a similar 
experiment was conducted in Augsburg [(c),(f),(i)]. Here, an EPS sphere of 8.5 mm in diameter (d /λ ≈ 0.97) 
was first suspended at r = (−8 ex + 0 ey + 50 ez) mm in a twin tuning forks trap16 and then manipulated 
in x-direction along the given reference trajectory with a model-based optimal feed-forward control. 
Furthermore, the black dashed lines in [(a)-(i)] indicate the last change of the activation ϕ of the PAT. 
Supplementary videos 2 and 3 show the manipulation of the Mie sphere using a kinematic ([(a),(d),(g)] & 
[(b),(e),(h)]) and a model-based optimal feed-forward control [(c),(f),(i)], respectively.
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and the Mie sphere is iteratively commanded to each corner of the house (see Fig. 9(i)) along the path depicted in 
Figs. 9(c,f), reaching the final position rT = (3 ex + 0 ey + 50 ez) mm at t ≈ 8.75 s. To obtain the reference 
trajectory, we simply concatenated consecutive corner positions by polynomials with minimal curvature.

Taking a look at the obtained experimental results, it can be seen from Fig. 9(a,d,g) that the Mie sphere 
moves smoothly along the circular path, reaching top speeds of vmax ≈ 30 mm s−1 and presenting maximum 
position errors of emax ≈ 1 mm during its motion. Considering the long manipulation horizon and the 
numerous unknown disturbances caused by typical acoustic phenomena like acoustic streaming53,54, acoustic 
viscous torques55, and harmonic generation56, which are all not considered in our dynamic model, these are 
very good results. It is noteworthy that the results of our model-based optimal open-loop control are achieved 
without any position feedback by a camera system. Furthermore, these initial impressions are confirmed by the 
experiment presented in Figs. 9(b,e,h), where the Mie sphere moves along an infinite symbol trajectory defined 
by Eq. (3), reaching a maximum velocity of vmax ≈ 50 mm s−1. Here, the sphere moves smoothly along the 
given reference trajectory with minimal oscillations, resulting in a maximum position error of epos ≈ 0.8 mm. 
The main oscillatory behaviour of the sphere occurs around the position r = (−8 ex + 0 ey + 44 ez) mm 
at t ≈ 1.4 s during a sharp change in acceleration, which apparently cannot be fully reflected by our chosen 
dynamic model. If such changes in acceleration are smaller, for example when the sphere is passing the point 
r = (8 ex + 0 ey + 44 ez) mm at t ≈ 2.6 s, the sphere presents significantly smaller oscillations, indicating 
a good agreement between the chosen dynamic model and the experimental results. Finally, after two smooth 
trajectories, the sphere is moved along a path with sharp bends, namely the cross house trajectory depicted 
in Figs. 9(c,f,i). In this experiment, the Mie sphere reaches a top speed of vmax ≈ 25 mm s−1 and maximum 
position error of epos ≈ 0.6 mm. Similar to the infinite symbol trajectory the sharp changes in acceleration 
pose minor problems for the optimal model-based feed-forward control, resulting in a slight jitter during the 
movement of the sphere. However, these small oscillations are common for acoustic levitation systems that are 
driven by a (model-based) open-loop control. In general we show that the proposed algorithm is capable of 
moving a Mie sphere along the chosen trajectories inside the working space with minimal position error. The 
optimal model-based feed-forward control is able to improve these results even further by taking the dynamic 
behaviour of the Mie sphere into account.

Fig. 9.  Manipulation of an EPS sphere of 8.5 mm in diameter along various trajectories using an optimal 
feed-forward control. Similar to the experiment presented in Fig. 8(c,f,i), a MPC algorithm99 was employed 
to solve the corresponding path-following problems. Supplementary movies 4-6 show the manipulation of 
the Mie sphere using the experimental setup in Augsburg along the circle [(a),(d),(g)], the infinite symbol 
[(b),(e),(h)], and the cross house trajectory [(c),(f),(i)], respectively.
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Conclusion
This work presents a real-time capable inverse model that allows the unambiguous determination of a feasible 
activation ϕ∗ for a PAT from a demanded control F ∗ (see Fig. 1), paving the road for model-based closed-loop 
control to overcome current limitations of acoustic levitation systems such as low speed, undesired oscillations 
of the levitated object or reduced precision in positioning. To establish the relation F ∗ → ϕ∗, the inverse model 
in Fig. 2 is comprised of the components 1  (F ∗ → ∆r) and 2  (∆r → ϕ∗). To obtain such an inverse model, 
the following steps must be carried out. At first, a feasible activation ϕopt for an initial trap at ropt is obtained 
in the offline phase using a non-linear optimisation approach15–17. Subsequently, the radiation force distribution 
of the trap is approximated by a polynomial regression, identifying the parameter matrices A and B of the the 
two real-time capable models F res = P (∆r, A) and ∆r = P (F ∗, B). The models in turn are used in the 
online phase to trace back the desired force F ∗ on the levitated object to a displacement ∆r of the trap centre 
from the current position r of the object and vice versa. Since F rad is related to the complex pressure exerted 
on the object surface14,15, a trap is exactly shifted to a new location if its original pressure distribution can be 
recreated there. Besides the prediction of F res and ∆r, this insight reduces the remaining tasks in the crucial 
online phase (see Fig. 2) to one. This task is obtaining a feasible activation ϕ∗ for the PAT in real time in order 
to shift the trap from its last position by ∆r. For this purpose, we employ the results of Waldspurger et al.57 and 
relax the phase recovery problem to an SDP called PhaseCut, which is very similar to the MaxCut problem. This 
enables the adaption of recent approaches for MaxCut for PhaseCut, leading to the development of the real-
time capable Algorithm 3 that is based on a block-coordinate minimisation (BCM) algorithm and the Burer-
Monteiro method. We identify that BCM with a greedy coordinate selection strategy is an excellent choice for 
the associated linear SDP, as it comes with a very favourable complexity and run-time behaviour. Furthermore, 
our proposed method comes with exceptionally low computational costs (see Fig. 5), since it only requires a 
single matrix-vector product at startup, followed by updates of a single column, which results in a favourable 
complexity of O(N) operations per iteration when using a single-vector strategy (L = 1) in Algorithm 1. Even 
for big PATs with N = 1024 transducers, the phase retrieval problem can be solved in less than approximately 
11 ms on a single core of a modern CPU in our examples in Table 2, strongly facilitating its usage in future real-
time applications. Furthermore, even larger setups are conceivable when using parallel implementations of the 
algorithm and more powerful hardware such as GPUs.

For applications such as model-based open or closed-loop control, our proposed inverse model provides a 
sound basis, whether directly being employed in the loop or as knowledge basis for the design of an optimal 
feed-forward control. The latter was demonstrated by our experimental investigations, in which we were able to 
precisely manipulate a Mie sphere along different complex paths such as a circle, an infinite symbol, and cross 
house trajectory (see Fig. 9) at high velocities using an optimal feed-forward control. Finally, due to the clear 
inference from F ∗ to ϕ∗ in real time (see Fig. 1) provided by our proposed inverse model, the present work 
makes a noteworthy contribution to the design of closed-loop circuits for future acoustic levitation systems, not 
only allowing the precise contactless handling of Rayleigh objects, but also the dynamic manipulation of objects 
in the Mie regime.

Methods
Acoustic pressure field
To calculate the acoustic pressure pj(r) at r = rxex + ryey + rzez that is created by a single acoustic 
transducer at rt,j = rt,x,jex + rt,y,jey + rt,z,jez emitting waves with a constant frequency f0, we employ the 
piston source model in the far-field100 that is given as

	
pj(r) = PjAjeiϕj

∥r − rt,j∥2
Df(θj)eik∥r−rt,j ∥2 ,� (4)

where ∥ · ∥2 denotes the Euclidean distance, i  is the imaginary unit, Pj  denotes the sensitivity of the transducer, 
Aj  and ϕj  are the transducer’s amplitude and phase angle, and k = 2πf0

c0
 is the wave number where c0 is the 

speed of sound. The directivity function is taken as

	
Df(θj) = 2J1(krp sin(θj))

krp sin(θj) ,� (5)

where J1 is the first-order Bessel function of the first kind, rp is the radius of the piston, and θj  denotes the angle 
between the transducer normal nj = nx,jex + ny,jey + nz,jez and the vector r − rt,j . Owing to linearity, the 
total acoustic pressure p̃(r) that is created by a transducer array of N sources can be calculated by superimposing 
the contributions of all emitted waves:  ̃p(r) =

∑N

j=1 pj(r). This relation is also valid for the spatial derivatives of 
p̃(r) that are given by p̃h(r) =

∑N

j=1 ph,j(r), h ∈ {x, y, z}14. The pressure field p ∈ CM×1 that is represented 
by a set of points M = {r1, r2, . . . , rM } is thus given by p = Gq, where the activation of the transducers with 
respect to their phase angles is denoted by q ∈

(
eiϕ1 eiϕ2 . . . eiϕN

)⊤ ∈ CN×1. The propagator matrix 
G ∈ CM×N  has the elements

	
Gi,j = G(ri, rt,j) = PjAjDf(θi,j)

∥ri − rt,j∥2
eik∥ri−rt,j ∥2 ,� (6)
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which describe the wave propagation from each transducer to each point of the sound pressure field. Consequently, 
the spatial derivatives p̃h can be written as p̃h = Ghq, where the elements Gh,i,j  of Gh ∈ CM×N  are given by

	
Gh,i,j = ∂Gij

∂h
, h ∈ {x, y, z} .� (7)

Note that in Eqs. (6,7) we assume that all transducer amplitudes remain constant and the phase angles are solely 
used to create different pressure fields. This limitation is motivated by the fact that our hardware98 only supports 
phase modulation, which is common for several transducer arrays that were presented in the last years, see also 
Table 1 in101.

Semidefinite programming
To create a desired pressure field p ∈ CM×1, a feasible q∗ ∈ CN×1 fulfilling p = Gq∗ has to be found. To 
determine q∗, a complex least squares problem with quadratic constraints can be formulated:

	

min
q

∥Gq − p∥2

s.t. |qi| = 1 ∀i ∈ {1, 2, . . . , N} .
� (8)

This problem can be effectively solved by semidefinite programming58. For this purpose, we add a variable s ∈ C 
that is subject to the same constraint as the elements qi:

	

min
q,s

∥Gq − sp∥2

s.t. |qi| = 1 ∀i ∈ {1, 2, . . . , N} ,

|s| = 1.

� (9)

This does not alter the character of q∗, since, if q∗ and s are both feasible, s is only a constant added to each 
phase angle. Thus, a solution for Eq. (8) can easily be derived from a solution q∗ for Eq. (9). By introducing 
z =

(
q⊤s

)⊤ ∈ C(N+1)×1 and A = (G − p) ∈ CM×(N+1), the optimisation problem in Eq.  (9) can be 
reformulated as follows:

	

min
z

∥Az∥2

s.t. |zi| = 1 ∀i ∈ {1, 2, . . . , N + 1} .
� (10)

If z∗ is a feasible solution to Eq.  (10), q∗ for Eq.  (8) is determined by selecting the first N components of 
z∗, z∗

(1:N), and dividing each element by z∗
(N+1):

	
q∗ =

(
z∗

(1:N)

z∗
(N+1)

)
.� (11)

The problems in Eqs. (8, 10) are non-convex with quadratically constrained variables and therefore 
difficult to solve. To simplify them, we use the relation ∥Az∥2

2 = tr(AHAzzH) = tr(W Z), where 
W = AHA ∈ C(N+1)×(N+1), Z = zzH ∈ C(N+1)×(N+1), tr(W Z) is the trace of W Z  and AH is 
the conjugated transpose of A. Similar to ref.102, we can employ the relation for ∥Az∥2

2 to reformulate the 
optimisation problem that is stated in Eq. (10) as

	

min
Z

tr (W Z)

s.t. Z ⪰ 0,

Zi,i = 1 ∀i ∈ {1, 2, . . . , N + 1} ,

rank(Z) = 1,

� (12)

where the positive semi-definiteness of Z  is ensured by Z ⪰ 0. This problem is equivalent to Eq. (10), although 
the quadratic objective function is transformed into a linear one. If Z∗ is a feasible solution to Eq. (12), Z∗ 
can be written as Z∗ = z∗ (z∗)H where the condition |z∗

i | = 1, 1 ≤ i ≤ N + 1 is fulfilled. This is taken into 
account by the constraints in Eq. (12). The idea of semidefinite programming is to omit the non-convex rank 
constraint, see ref.57, and to solve

	

min
Z

tr (W Z)

s.t. Z ⪰ 0,

Zi,i = 1 ∀i ∈ {1, 2, . . . , N + 1} .

� (13)

Since Eq. (13), unlike the problems in Eqs. (8–10 , 12), is a convex problem, every local optimum Z∗ is also a 
global optimum. However, since rank(Z∗) = 1 cannot be ensured, Z∗ can only be regarded as an approximate 
solution to Eq. (12). Thus, a suitable z∗ based on Z∗ has to be determined that satisfies the constraints for Z∗ 
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in Eq. (12) as good as possible. For this purpose, the eigenvector λ of Z∗ with the highest eigenvalue λmax is 
used, as it is the optimal rank-one approximation of Z∗ in the L2-norm103. Subsequently, each element of λ is 
normalised to obtain a feasible solution for the components

	
z∗

i = λi

|λi|
∀i ∈ {1, 2, . . . , N + 1} ,� (14)

which can be used with Eq. (11) to determine a feasible q∗ for Eq. (8). Finally, the key problem is solving Eq. (13) 
quickly and reliably. This semidefinite program is similar to the well-known MaxCut problem104, for which 
several algorithms were presented in recent years57,59,62,73,84–87. Among these, a block coordinate minimisation 
(BCM) with a low-rank factorisation of Z  is suitable for Eq. (13). The idea of low-rank factorisation, pioneered 
by Burer and Monteiro60,61, is to write Z  as Z = V HV , where V ∈ CL×(N+1) is a low-rank matrix with 
1 ≤ L ≪ (N + 1) By this choice, the condition Z ⪰ 0 is fulfilled and the problem stated in Eq. (13) can be 
rewritten as

	

min
V

tr
(
W V HV

)

s.t. ∥V :,j∥2 = 1 ∀j ∈ {1, 2, . . . , N + 1} ,
� (15)

where each column norm ∥V :,j∥2 of V  must add up to one to ensure Zi,i = 1, i = 1, 2, . . . , N + 1. It is 
noteworthy that by this low-rank factorisation, the convex problem in Eq.  (13) is transformed back into an 
unfavourable non-convex problem in Eq. (15), which appears to be a step back on first sight. However, it has 
been shown that the non-convexity of Eq.  (15) does not cause any major problems in practice59,60,62,105. In 
contrast, the transformation Z = V HV  significantly reduces the number of variables from (N + 1)2 in Z  to 
L(N + 1) in V , since L is chosen as 1 ≤ L ≪ (N + 1). Barvinok106 and Pataki107 proved that if Eq. (15) has 
an optimum and N + 1 constraints, it admits optimal results of rank L such that L(L + 1)/2 ≤ (N + 1)62,85.

Using this result, it was shown in refs.60,61,108 that for L >
√

2(N + 1), the optimal solution V ∗ to Eq. (15) 
can recover Z∗ for Eq. (13)59,62. However, it is also possible to select even smaller values for L that are suitable 
for the individual application in order to improve the execution speed, since storage requirements and the costs 
for matrix-vector multiplications would drop significantly from O

(
(N + 1)2)

 in Eq. (13) to O (L(N + 1)) in 
Eq. (15)85. Although Eq. (15) is a non-convex problem59, it was shown in ref.62 that BCM is able to converge to 
a solution with accuracy ϵ in time O

(
1
ϵ

)
 for L >

√
(2(N + 1)), see also ref.85. The idea of BCM is to optimise 

tr
(
W V HV

)
 with respect to one column V :,j  and to consider all other columns of V  as constant. Thus, BCM 

solves the problem

	

min
V :,j

tr
(
W V HV

)

s.t. ∥V :,j∥2 = 1
� (16)

in each iteration, which has an analytic solution. A closer look at tr
(
W V HV

)
 and the constraints 

V H
:,jV :,j = 1, j ∈ {1, 2, . . . , N + 1} reveals that the diagonal terms of W  do not affect the optimal result of 

Eq. (16)59. Consequently, the overall performance of the algorithm can be improved by optimising the following 
objective function instead, where these constant terms are omitted:

	

tr
(
W V HV

)
−

N+1∑

i = 1
i ̸= j

N+1∑

l = 1
l ̸= j

Wi,lV
H
:,iV :,l − Wj,jV H

:,jV :,j

= V H
:,j




N+1∑

i = 1
i ̸= j

Wi,jV :,i




︸ ︷︷ ︸
:= gj

+




N+1∑

i = 1
i ̸= j

Wj,iV
H
:,i




︸ ︷︷ ︸
:= gH

j

V :,j

= 2ℜ
{

gH
j V :,j

}
, where ℜ {a + ib} = a.

� (17)

Hence, minimising Eq. (16) is, up to a constant, equivalent to the problem

	

min
V :,j

2ℜ
{

gH
j V :,j

}

s.t. ∥V :,j∥2 = 1.
� (18)

Similar to refs.59,62, the unique solution to the problem in Eq. (18) is
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	 V ∗
:,j = − (gj / ∥gj∥2) .� (19)

Inserting Eq. (19) in Eq. (18) results in

	 2ℜ
{

gH
j V ∗

:,j
}

= 2ℜ
{

−gH
j (gj / ∥gj∥2)

}
= −2∥gj∥2.� (20)

Algorithm 1.  Block coordinate minimisation.

By subtracting Eq. (20) from Eq. (18), the objective function is reduced by

	 2
(
ℜ

{
gH

j V :,j
}

+ ∥gj∥2
)

.� (21)

Based on the obtained results, we can now state the implementation of the BCM algorithm in Algorithm 1, 
where we took hints given in62 into account. For example, by caching the vectors gj  in a matrix G̃ to keep the 
changes after each step, the total number of operations in one iteration can be reduced to O (L(N + 1))85. To 
select the column index j in line 5, we implemented four different strategies to investigate their performance in 
solving Eq. (15):

•	 Uniform sampling62: Select j randomly with probability pj = 1 / (N + 1).
•	 Importance sampling62: Select j with pj = ∥G̃:,j∥2

/ ∑N+1
k=1 ∥G̃:,k∥2.

•	 Cyclic update59,87: Update all columns of G̃ cyclically in ascending order.
•	 Greedy coordinate selection62: Evaluate 

	
argmax

1≤j≤N+1
2

(
ℜ

{
G̃

H
:,jV :,j

}
+ ∥G̃:,j∥2

)
� (22)

and select that column j leading to a maximal improvement of tr
(
W V HV

)
. The BCM algorithm terminates 

after imax column updates. This value can be set by the user to meet requirements that may be imposed in terms 
of the quality of the resulting sound pressure field and the real-time capability of the algorithm. In addition to 
this hard criterion, soft threshold-based termination criteria like 2

(
ℜ

{
gH

j V :,j
}

+ ∥gj∥2
)

≥ ζ  to enforce a 
minimum convergence rate ζ ∈ R+ of BCM or tr

(
W V HV

)
≤ ξ, ξ ∈ R, to ensure a certain quality of the 

reconstructed sound pressure field can also be considered. Finally, it is worth noting that Algorithm 1 requires 
∥G̃:,j∥2 ̸= 0 for each selected column j in each step. Although the case ∥G̃:,j∥2 = 0 did not occur in any of 
our investigations, we cannot completely exclude its occurrence. Hence, as proposed in Sec.  3.1 in ref.86 for 
the strategy cyclic update, no column update is performed in this case. If another selection strategy is used, we 
suggest to take the second most appropriate element according to the chosen selection strategy or to simply 
heuristically pick another column.

Characterising sound pressure fields
To evaluate the reconstruction quality with respect to a given sound pressure field, it is necessary to formulate 
an objective based on the present application. As acoustic holograms and levitation techniques are widely 
used in numerous and heterogeneous applications, we introduce three separate metrics. If the focus lies on the 
exact reconstruction of pressure amplitudes at positions ri ∈ M, as in case of haptic interfaces42 or acoustic 
holograms36, it is useful to calculate the relative errors

	
eSDP =

√
tr (W V HV )

∥p∥2
and ep,rel =

∥Gq∗ − p∥2
∥p∥2

. � (23)

In Eq. (23), eSDP compares the solution of the SDP in Eq. (13) with the exact pressure, whereas ep,rel describes 
the actual relative pressure error after rounding the optimal solution Z∗ to rank one to obtain z∗ and q∗, see also 
Eqs. (11, 14). However, these metrics are of limited use for the contactless manipulation of objects, where the 
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force distribution of the acoustic trap is more significant. Therefore, for a given q∗, we evaluate the displacement 
error

	 epos = ∥req − rtrap∥2� (24)

that is determined by the norm between the position rtrap, at which the pressure field of the acoustic trap 
was reconstructed, and the actual equilibrium position req of the object inside the trap. To obtain req, we 
employed the Levenberg-Marquardt algorithm77,78 in Algorithm  2, which interpolates between the gradient 
descent method and the Gauss-Newton algorithm, whose individual influence can be adjusted by the damping 
parameter α. First, starting from req,0 = rtrap, the resulting force F res was determined in each iteration. 
According to line 7 in Algorithm 2, this force can be calculated from the sum of the acoustic radiation force 
F rad (req,i−1) and the gravitational force F g = −mg acting on the levitated object with a mass m at req,i−1, 
where g = gxex + gyey + gzez denotes the vector of gravitational acceleration. To determine F (req,i−1) , 
appropriate force models such as Gor’kov63, Acoustokinetics65, the boundary element method15 as well as 
approaches based on spherical harmonics16,17 or the angular spectrum method64 can be used. In this case, we 
employed the equations stated in17 to calculate the acoustic radiation force on the Mie sphere. Subsequently, the 
position shift ∆r is calculated in line 11 in Algorithm 2, where I3×3 ∈ R3×3 is the identity matrix, ∇F (req,i−1) 
is the Jacobian matrix of the acoustic radiation force F  at req,i−1, and A−1 denotes the inverse of A. Finally, 
∆r is used to update the current equilibrium position req,i−1 in line 12. The iterative search in Algorithm 2 is 
executed until either a possible equilibrium position satisfies the abort criterion F ⊤

resF res ≤ Ftol in line 8, the 
maximum number of iterations imax is exceeded, or the domain of attraction defined by rtol (see line 4) is left. 
This occurs if the acoustic trap had an unstable force distribution.

Algorithm 2.  Determine equilibrium position req.

Shifting acoustic pressure fields
Algorithm 3 presents our approach to shift a desired sound pressure field ̃p ∈ CP ×1 at P = {r1, r2, . . . , rP } to a 
new position or orientation, taking into account the activation q ∈ CN×1 of a transducer array with N elements. 
At first, important features of the sound field are extracted by means of a point grid M = {r1, r2, . . . , rM } 
with M ≪ P . Picking ri ∈ M can be done using a 2D Gaussian grid, one of the spherical grids in Fig. 4, or 
simply in a heuristic manner. After calculating the reduced representation p0 of the sound field p̃ by using 
Eqs. (4-6), the whole grid M is translated or respectively rotated to a different pose. This is accomplished by 
applying a corresponding transformation rule, e.g., a translation by a vector v ∈ R3×1 or a rotation according to 
a given matrix R ∈ R3×3, to each point ri ∈ M in order to obtain the corresponding positions si ∈ N  of the 
new grid N = {s1, s2, . . . , sM }. Subsequently, by using Eqs. (4-6), the propagator matrix G1 ∈ RM×N  can be 
calculated for N , which can be used together with p0 to obtain W ∈ C(N+1)×(N+1).
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Algorithm 3.  Shifting acoustic pressure fields.

After choosing a suitable column selection rule for BCM as well as appropriate hyper parameters V 0, L, and 
imax, Algorithm 1 is executed to obtain an optimal solution V ∗ for the semidefinite program in Eq. (15). Due 
to the low-rank factorisation of Z , Z∗ is defined as Z∗ = (V ∗)HV ∗, which makes it possible to obtain the 
optimal rank-one approximation of Z∗ by selecting the Eigenvector λ of (V ∗)HV ∗ with the highest eigen-
value λmax. Finally, the optimal activation q∗ for the phased array can be calculated from λ by employing 
Eqs. (14) and (11). To evaluate q∗, one can employ Eqs. (23, 24) together with Algorithm 2. In addition, other 
criteria, such as the execution time of Algorithm 3, with respect to a required real-time capability in the pres-
ent application, could also be taken into account. If q∗ is feasible, Algorithm 3 can be terminated. Otherwise, 
the quantity M of points in M or their positions ri ∈ M may have to be changed. Furthermore, one can also 
try a modification of the parameters V 0, L, and imax before executing Algorithm 1 again.

Real-time capability
To show the real-time capability of the proposed method, we investigated the run-time cost of Algorithm 1 
when run as part of Algorithm 3. Before the start of the iteration, the matrix W̃  is computed, which in turn is 
constructed as W = AHA from the matrix G of Eq. (6) and one additional column. For N transducers and 
M control points, computing G involves O(NM) arithmetic operations and memory accesses. The matrix-
matrix multiplication to compute W  involves O(N2M) arithmetic operations. Note that in the limit of very 
large N and M, the complexity can be lowered somewhat, see refs.109,110. The final step of the setup phase, line 
3 of Algorithm 1, is the computation of G̃, which involves O(LN2) arithmetic operations in case L vectors are 
kept in the matrix V . All other operations in the setup phase purely work on vectors and are of cost O(N) and 
O(M), respectively. Each iteration of the loop in Algorithm 1 involves the identification of a suitable index j 
for the update, which is O(LN) for importance sampling and the greedy algorithm and O(1) for the uniform 
sampling or cyclic update. Lines 6 − 8 in the algorithm update the matrix column V :,j  at O(L) operations and 
eventually update G̃ at O(LN) arithmetic operations. Overall, the complexity of the optimisation loop then 
becomes O(imaxLN). The main advantage of the algorithm is the linear complexity per iteration, since our 
algorithm only works with a column of the matrix W̃  at a time to compute the update to G̃. By comparison, 
many algorithms from the literature, such as the one given in ref.34, involve a dense matrix-vector product in 
inner iterations, albeit with smaller matrix dimensions M.

Regarding the actual run time when executed with an optimised code on contemporary hardware, we assume 
that imax ∼ N  (see Fig. 5), which implies a cost for the optimisation loop of O(LN2). Then, the following 
three observations can be made: First, the formally most expensive operation, the matrix-matrix multiplication 
AHA, is of BLAS-3 type and can be highly optimised on modern CPU or GPU processors due to the high 
operational intensity97,111. In addition, the resulting matrix is Hermitian, such that only the upper triangular 
part needs to be computed. Taking as an example N = 1024, M = 26 for a single core of an AMD Ryzen 7 Pro 
7840U core running at 5.1 GHz, which offers an arithmetic throughput of 81.6 Gflops s−1, the ideal run time 
would be 10252 · 26 · 8/2/(81.6e9) = 1.34 ms. Note that the measured time in Table 2 is 2.06 ms. Second, 
since M and N take relatively low values in practice, the proportionality constants and especially the evaluation 
of the Bessel function of first kind for Eq. (5) can be significant. However, for the chosen range of arguments, a 
Taylor expansion with 10 − 15 terms typically suffices, making the evaluation cost lower than for the matrix-
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matrix multiplication for N > 100. Third, the vector updates and column selection in the optimisation iteration 
are akin to BLAS-1 type (operations on vectors). These have low arithmetic intensities and are limited by the 
memory access. Since the values of N and L are often very low, the vector G can fit into fast level-1 or level-2 
caches, making the access to W̃  the only expensive step at O(N) operations.

Polynomial regression
The goal of this polynomial regression is to obtain the parameters A ∈ Rα×3 and B ∈ Rβ×3 with α, β ∈ N+ 
of the models ∆r = P (F res, B) and F res = P (∆r, A) (see Fig.  2) in such way that the conditions 
∆r

!= P (F res, B) and F res
!= P (∆r, A) are fulfilled. To train these models P  of multivariate polynomials, 

a look-up table (LUT) is created based on an activation ϕopt that ensures a stable trapping of the object at 
ropt by the PAT. Each data tuple (∆ri, F res,i) of the LUT with i ∈ {1, 2, . . . , P } is comprised of distances 
∆ri = (∆rx,i ∆ry,i ∆rz,i)⊤ = ri − ropt and resulting forces F res,i = F rad,i(∆ri) + F g. These forces 
F res(∆ri) will be exerted on the object due to trap displacements by ∆ri. Depending on the object and the 
target accuracy of the result, various methods can be applied to calculate F rad,i(∆ri)15–17,63–65.

In both cases, A or B will be considered as optimal when they minimise the resulting Euclidean norm of the 
errors between the given LUT data and the corresponding predicted values. Denoting P (X) as general model 
of multivariate polynomials with total degrees Grad(P ) = δ, an optimal result can be obtained by solving the 
following optimisation problem:

	
min

P
∥Y − P (X)∥F with Grad(P ) = δ.� (25)

In Eq.  (25), ∥C∥F =
√∑

i,j
C2

i,j  denotes the Frobenius norm, given by the square root of the sum of the 

squares of all elements Ci,j  of the matrix C . Furthermore, the input X  and the output Y  are obtained by 
concatenating the corresponding data points of the LUT. In case of F res = P (∆r, A), the matrices X ∈ RP ×3 
and Y ∈ RP ×3 are given by X = (∆r1∆r2 . . . ∆rP )⊤ and Y = (F res,1 F res,2 . . . F res,P )⊤, whereas 
in case of Y = (F res,1F res,2 . . . F res,P )⊤, X  and Y  are swapped. Since both vectors F res(∆r) and ∆r are 
defined in Cartesian space, it is necessary to setup corresponding polynomials in (x, y, z) with coefficients hl,m,n 
and total degree δ ∈ N+:

	
p(x, y, z) =

∑
l+m+n≤δ

hl,m,nxlymzn.� (26)

As ∆r and F res(∆r) have three spatial components, polynomials pi(x, y, z) with coefficients hi,l,m,n, 
i ∈ {x, y, z}, are needed in total for each case. Consequently, the evaluation of the model P (X) of the three 
multivariate polynomials can be written in matrix notation as follows:

	

P (X) = Ŷ =




1 x1 y1 z1 . . .
1 x2 y2 z2 . . .
...

...
...

...
. . .

1 xP yP zP . . .




︸ ︷︷ ︸
M




hx,0,0,0 hy,0,0,0 hz,0,0,0
hx,1,0,0 hy,1,0,0 hz,1,0,0
hx,0,1,0 hy,0,1,0 hz,0,1,0
hx,0,0,1 hy,0,0,1 hz,0,0,1

...
...

...




︸ ︷︷ ︸
H

� (27)

In Eq.  (27), Ŷ ∈ RP ×3 denotes the prediction of P (X), M ∈ RP ×γ  is the matrix of monomials and the 
matrix H ∈ Rγ×3 is comprised of all polynomial coefficients. Here γ = α for F res = P (∆r, A) and γ = β 
for ∆r = P (F res, B). Inserting Eq. (27) in Eq. (25) yields

	
min

H
∥Y − MH∥F .� (28)

The modified optimisation problem stated in Eq. (28) has an analytical solution, namely H∗ = M†Y , with 
M† = (M⊤M)−1M⊤ denoting the pseudo-inverse of the matrix M . Thus, the parameter sets A and B can 
simply be obtained by solving Eq. (28) with the corresponding matrices M  and Y .

Training and validation of the polynomial models
In the previous section Polynomial Regression, the necessary steps were explained to obtain two polynomial 
models F̂ res = P (∆r, A) and ∆r̂ = P (F res, B) with parameter matrices A ∈ Rα×3 and B ∈ Rβ×3 based 
on a LUT comprised of tuples (∆ri, F res,i(∆ri)) with i ∈ {1, 2, . . . , P }. To train our models and validate 
their quality, we defined a cubic volume centred at ropt with edge length 2Rλ:

	 V(ropt, Rλ) =
{

ri ∈ R3 ∣∣ |rj,i − rj,opt| ≤ Rλ, Rλ ∈ R+, j ∈ {x,y,z}
}

.� (29)

Using an activation ϕopt for the PAT that stably suspends an object at ropt, the samples for the LUT were obtained 
from V(ropt, Rλ). For the polynomial models, we assumed that the radiation force distribution around a given 
trap centre rtrap is constant in a corresponding volume V(rtrap, Rλ). As a consequence, the radiation force 
distribution can be considered as invariant with regard to trap shifts in a certain workspace W = V(ropt, RΩ), 

Scientific Reports |        (2025) 15:17523 19| https://doi.org/10.1038/s41598-025-93153-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


compare with Eq. (29), with edge length 2RΩ ≫ 2Rλ. This means that when a trap is shifted from ropt to rtrap, 
the resulting force F res shall depend exclusively on the relative distance ∆r between object and actual trap 
centre, but not on the absolute position of the trap centre in the workspace W :

	 F res (∆r, ropt)
!= F res (∆r, rtrap) ≈ F res (∆r)� (30)

To validate this assumption, we defined a volume V (ropt, RΩ − Rλ) in which the prediction quality of 
the polynomial models shall be evaluated. After shifting a trap defined by ϕopt at ropt to a position rtrap 
by Algorithm 3, we can compare the force F res,j (∆rj , rtrap) calculated with approaches like15–17 with the 
prediction F̂ res,j  by the polynomial model P (∆rj , A) for displacements ∆rj  at positions rj = ∆rj + rtrap, 
j = {1, 2, . . . , J} in a corresponding volume V (rtrap, Rλ). For each of these J positions, we can define an error 
ej = ∥F̂ res,j − F res,j∥2 and store them in a corresponding set E(rtrap). Finally, to quantify the prediction 
quality of the polynomial model at rtrap, we use the maximum and mean error as metrics:

	
emax (rtrap) = max

ej ∈E(rtrap)
ej � (31)

	
emean (rtrap) = 1

J

J∑
j=1

ej , ej ∈ E(rtrap) � (32)

Following this idea, we can define similar metrics for the evaluation of ∆r̂ = P (F res, B) to quantify the 
prediction quality of ∆r̂. Finally, this workflow is summarised in Algorithm  4 for the polynomial model 
F̂ res = P (∆r, A).

Algorithm 4.  Validation of F̂ res = P (∆r, A).

Dynamic model of the Mie sphere
The motion of the Mie sphere through quiescent air can be described by the non-linear state space model

	

ẋ =
(

ṙ
v̇

)
=

(
v

M (F rad + F d + F g)
)

y = r,
,� (33)

where the state vector x ∈ R6×1 of the model is comprised of the position r = rxex + ryey + rzez and the 
velocity v = vxex + vyey + vzez of the sphere. The time-dependency of the state x(t), input u(t), and output 
y(t) are omitted for brevity. In addition, we assumed that r, taken as output y of the system, is measurable. 
In Eq. (33), F g = mg = − 4

3 πρPa3gzez denotes the gravitational force, where a and ρ are the radius and the 
density of the sphere, respectively. Furthermore, F rad ∈ R3×1 denotes the acoustic radiation force to be exerted 
on the sphere at its current position r. Instead of employing common approaches like refs.15–17 to calculate 
F rad(r, ϕ), we solely used the polynomial model P (∆r, A) to predict F res = F rad + F g for a displacement 
∆r = r − rtrap between the sphere and the centre of the trap at rtrap, see sections Polynomial Regression and 
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Training and validation of the polynomial models. Similar to our previous work16, we adapted the formula used 
by Fushimi et al.47 to calculate the drag force F d ∈ R3×1 by the formula

	
F d =

{
− 1

2 Cdπa2ρ0 ∥v∥2 v, Re > 0,
0, Re = 0.

� (34)

In Eq.  (34), ρ0 denotes the density of the fluid, ∥v∥2 =
√

v2
x + v2

y + v2
z , and the Reynolds number Re is 

calculated by

	
Re =

2a ∥v∥2 ρ0

η
,� (35)

where η denotes the dynamic viscosity of the fluid47. In contrast to our previous work16, we used a more complex 
model for the drag coefficient Cd from refs.112,113, namely

	
Cd = 24

Re
+

2.6
(

Re
5.0

)

1 +
(

Re
5.0

)1.52 +
0.411

(
Re

2.63×105

)−7.94

1 +
(

Re
2.63×105

)−8.00 +
0.25

(
Re
106

)

1 +
(

Re
106

) .� (36)

In addition, without further evidence, the added mass mI = 4
3 πa3ρ0 of the sphere and history force F h ∈ R3×1 

must be taken into account to reproduce the dynamic behaviour of the Mie sphere in the experiment adequately. 
Consequently, for the state space model in Eq. (33), this results in a matrix

	

M =




1
m+mI−mh,x

0 0
0 1

m+mI−mh,y
0

0 0 1
m+mI−mh,z


 ,� (37)

where we use the formula for F h given in Eq.  (13) in the work of Pantaleone and Messer114 and chose 
B = 0.5τCdρ0πa2 with τ ≈ 0.3 s. This yields

	 mh,i = 0.5τCdρ0πa2vi, i ∈ {x, y, z} .� (38)

Trajectory planning by model predictive control
To improve the contactless manipulation of levitated objects, it is reasonable to use model-based trajectory 
planning. Similar to our previous work for the one-dimensional case115, this control problem can be formulated 
as the determination of a feasible trajectory u(t) ∈ R3×1 for the centre position rtrap(t) of the acoustic trap 
such that the position r(t) of the sphere, taken as measurable output y(t) of the system (see Eq. (33)), follows 
a given reference trajectory w(t). The optimisation problem can then be stated as minimising the control error 
e(t) = ∥w(t) − y(t)∥2. Considering the constraints of the non-linear system, we first had to ensure that the 
prediction F̂ res = F̂ rad + F g of the polynomial model P (∆r, A) for a given displacement ∆r = r − rtrap 
was feasible. Since we limited these predictions to a corresponding cubic volume V (rtrap, Rλ) centred at rtrap 
with edge length 2Rλ, see Eq. (29), we had to ensure that the acoustic trap was always kept sufficiently close to 
the levitated object, which results in the following constraints:

	 |ui(t) − xi(t)| − Rλ ≤ 0, i = {1, 2, 3} .� (39)

In addition, the input u(t) of the system was restricted by the serial communication interface between the PC 
and the FPGA. For the experimental setup in Augsburg, u(t) could only be changed every Tc = 2.82 ms and 
remained constant between two consecutive activation updates. This constraint can be interpreted as a zero-
order hold circuit with a sampling frequency of fc = 1/Tc which converts the input u(t) into a piecewise-
constant signal:

	 u(t) = u[n], n = ⌊t/Tc⌋.� (40)

To simplify matters, we further assumed that after an update of the activation ϕ the resulting radiation force 
F rad(r, ϕ) is immediately exerted on the surface of the object placed at r. The transient oscillations of the 
transducers during a phase change and the subsequent propagation of the emitted wave fronts were neglected by 
this assumption. We assumed that the resulting error in each time interval [nTc, (n + 1)Tc) is quite small and 
thus negligible in practical experiments due to the high influence of unknown disturbances. Moreover, to the 
best of the authors’ knowledge, it is currently unclear how the transient behaviour of F rad during a switch of the 
control variables of the PAT can be modelled with low computational costs and sufficient accuracy. Additionally, 
the PAT cannot generate ϕ with arbitrary resolution. For the PAT in Augsburg, this limit is π/64 rad, causing 
a slight mismatch of the radiation force due to quantization errors of up to π/128 rad. As it can be seen from 
Fig. (2b) in the supplementary material of the work of Andersson17, force magnitude errors of approximately up 
to 1% can be expected for an EPS sphere of 8.5 mm in diameter when each phase angle is randomly perturbed up 
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to 2◦. Although this error can be considered as significant, we decided to neglect its influence in our application, 
mainly to avoid the formulation of highly complicated mixed-integer problems.

Using the non-linear model in Eq.  (33) and the constraints on u(t) described above, we formulated an 
optimal control problem (OCP)48 for a given reference w(t) with t ∈ [0, T ] and T ≫ Tc, where ξ ∈ R+ is a 
positive hyper-parameter, see Eq. (41).

	

min
u(t)

ξ

∫ T

0
∥w(t) − y(t)∥2

2 dt

s.t. ẋ(t) =
(

v(t)
M (P (r(t) − u(t), A) + F d)

)
, x(0) = x0,

y(t) = r(t), x(T ) = xT,

u(t) = u[n], nTc ≤ t < (n + 1)Tc, n ∈ Z,

|ui(t) − xi(t)| − Rλ ≤ 0, i = {1, 2, 3} , Rλ ∈ R+, n ∈ [ 0, ⌊T/Tc⌋ ].

� (41)

Furthermore, x0 and xT denote the initial and the terminal state of the dynamic system in Eq. (33) in the interval 
t ∈ [0, T ], T ∈ R+. To solve the OCP, we decided to employ the model predictive control (MPC) toolbox in 
MATLAB. As MPC99 is mainly an optimal control strategy for discrete systems, the continuous OCP stated in 
Eq. (41) was discretised by the MPC toolbox using an implicit trapezoidal rule with a specified sample time 
of Ts = Tc/100. Furthermore, we chose Tc as sample time of the controller and a zeroth-order interpolation 
scheme in each time interval [nTc, (n + 1)Tc) between two consecutive steps to reflect the restriction to the 
input u(t) caused by the serial communication interface. Subsequently, we selected δ = 500 and Tp = 10Tc 
as prediction horizon and let the MPC toolbox determine a feasible u∗(t) for the OCP. Finally, we employed 
Algorithm 3 with L = 1 and imax = 512 from component 2  (∆r → ϕ∗) of the inverse model (see Fig. 2) to 
obtain a valid sequence of activations ϕ∗(t) from the trajectory u∗(t) of the trap.

Experimental setup
The experiments for this study were performed partially in São Paulo and partially in Augsburg. For the 
experiments in São Paulo, which are shown in Fig. 3(b,c), we used the Sonic Surface98, a 16 × 16 phased array 
that is equipped with 40 kHz ultrasonic transducers (Manorshi MSO-P1040H07T) with a diameter of 9.8 mm 
that are driven by square wave signals generated by a Field-programmable gate array (FPGA) (Altera Cyclone 
IV-EP4CE6). We used 8 bit shift registers (Texas Instruments 74HC595) to convert the 32 outputs of the FPGA 
into 256 independent signals, which are amplified to up to 20 Vpp by 128 dual low-side MOSFET gate drivers 
(Microchip MIC4127). Although square wave signals are used to drive the transducers, the emitted acoustic 
waves are sinusoidal due to the narrow bandwidth of the transducers116. To control their phase with a resolution 
of π/16 rad, commands from MATLAB were transferred to the FPGA via a serial interface using a data transfer 
rate of 250 kbit s−1. For the calibration of the phased array, we used a calibrated microphone (Brüel  & Kjaer, 
type 4138-A-015), which was moved by a 3 - axis XYZ translation stage (NRT150/M Thorlabs stages and BSC203 
Thorlabs motor controller) to measure the emitted ultrasound waves (amplitudes and phases) of all transducers. 
These signals were amplified by a conditioning amplifier (Brüel  & Kjaer, Nexus 2690-A-0S2) and captured by an 
oscilloscope (Keysight DSOX2014A), which communicated with the PC via USB. During levitation experiments, 
the motion of the levitated objects was recorded with a high-speed camera (Photron FASTCAM Mini UX50) 
with a spatial resolution of 28 pixels mm−1 and a frame rate of 500 fps. Subsequently, a tracking algorithm was 
used to extract the objects position from the videos.

The experimental setup in Augsburg was similar, in that it used the Sonic Surface98 and the same electronics 
for generating the driving signal for the ultrasonic transducers. A difference were the transducers used to generate 
the signals (Murata MA40S4S), which have the same dimensions and resonance frequency. Additionally, fans 
were mounted below the array to cool the MOSFET gate drivers and stabilise the operating conditions for 
the PAT, strongly facilitating the long-term stable trapping of levitated objects. Serial communication from 
MATLAB to the FPGA was set up with 922 kbit s−1 and transferred phases with a resolution of π/64 rad. For 
the experiments shown in Figs. 8 and 9, a twin tuning forks trap16 was created using an amplitude of 16 Vpp for all 
transducers. The polystyrene sphere used in these experiments had a mass of 7.4 mg and a diameter of 8.5 mm. 
The trajectories were filmed using a Photron FASTCAM Nova 6 with a spatial resolution of 20 pixels mm−1 and 
a frame rate of 500 fps. The sphere positions were extracted using the same tracking algorithm as above and the 
motion accuracy was determined between the given reference trajectory and recorded positions.

Data availability
The data that support the findings of this study are provided within the article or supplementary information 
files and are available from the corresponding authors upon reasonable request.
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