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Abstract While Null Hypothesis Significance Testing (NHST) remains a widely used statistical tool,
it suffers from several shortcomings in its common usage, such as conflating statistical and practi-
cal significance, the formulation of inappropriate null hypotheses, and the inability to distinguish
between accepting the null hypothesis and failing to reject it. Recent efforts have focused on de-
veloping alternatives that address these issues. Despite these efforts, conventional NHST remains
dominant in scientific research due to its procedural simplicity and mistakenly presumed ease of
interpretation. Our work presents an intuitive alternative to conventional NHST designed to bridge
the gapbetween the expectations of researchers and the actual outcomes of hypothesis tests: REACT.
REACT not only tackles shortcomings of conventional NHST but also offers additional advantages
over existing alternatives. For instance, REACT applies to multiparametric hypotheses and does not
require stringent significance-level corrections when conducting multiple tests. We illustrate the
practical utility of REACT through real-world data examples.
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Introduction

Statistical hypothesis testing is a fundamental tool in scien-
tific research, offering a structured approach to tackling re-
search questions. In the field of clinical research, it goes be-
yond being amere recommendation and becomes a nearly-
mandatory requirement for publishing results and aiding
important decision-making. For example, for many years,
clinical trial design has remained heavily reliant on calcu-
lating sample sizes by evaluating the statistical power of hy-
pothesis tests.

However, there has been a growing wave of criticism
directed at conventional Null Hypothesis Significance Test-

ing1 (NHST) and p-values (Hays, 1963; Wasserman, 2013;
Trafimow et al., 2018; Pike, 2019; Greenland et al., 2016;
Kadane, 2016; Wasserstein et al., 2019; Diggle & Chetwynd,
2011). Much of this criticism arises from the misuse and
misinterpretation of statistical tests. Even in meta-analytic
studies, hypothesis tests often lead to misinterpretations
that have a high impact on public policymaking. As a re-
sult, many scientific journals have taken a position against
the use of conventional NHST, often discouraging its use
(Campo & Lichtman, 2008; Trafimow & Marks, 2015).

Despite the ongoing criticisms and the several alterna-
tives proposed (see Section “Connections to ExistingWork”
for a review), conventional NHST remains the widely ac-

1By “conventional NHST” we refer to the approach typically used by practitioners of NHST, which involves (i) the formulation of a null hypothesis
usually pointing to no effects (e.g., H0 : µA = µB in a two-sample tests problem), and (ii) the establishment of a statistical test with two outcomes for
H0 that controls the type I error at a predefined level of α.
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cepted standard in scientific research. This continued pop-
ularity can be explained by various factors, including its
operational simplicity. Additionally, though NHST results
are nuanced and complex, they often give a false impres-
sion of being easy to interpret.

It is therefore crucial to provide an alternative to con-
ventional NHST while keeping as much of its operational
simplicity as possible. This alternative should bridge the
gap between researchers’ expectations and the actual out-
comes of tests, preventingmisinterpretations. For instance,
distinguishing between accepting and failing to reject the
null hypothesis is essential in practice. Therefore, themain
goal of this work is to introduce a framework for hypoth-
esis testing, REACT, that better meets the needs of re-
searchers. REACT builds upon existing solutions that aim
to improve NHST, incorporating elements from three-way
tests and equivalence tests like Two One-Sided Tests (TOST;
Schuirmann, 1987). For a detailed comparison with these
and other methods, see Section “Connections to Existing
Work”. We also provide an R package that implements
REACT for common models.

Next, we revisit some of the major concerns of the stan-
dard approach to hypothesis testing. Section “REACT” then
introduces a simplified version of REACT for a single hy-
pothesis that only concerns one parameter. Section “Con-
nections to Existing Work” shows how REACT relates to
other methods in the literature. Section “REACT and its
properties” introduces our full procedure, and presents its
properties. Two applications are presented in Section “Ap-
plications”. Section “Implications of the REACTMethod for
Machine Learning and AI” discusses REACT in the context
of machine learning and artificial intelligence. Section “Fi-
nal Remarks” concludes the paper.

Review of some NHST issues

Issue 1: Statistical significance versus practical signifi-
cance. One of the primary challenges of NHST is the diffi-
culty in distinguishing between statistical significance and
practical significance (Wasserstein & Lazar, 2016). This has
been noted very early in psychology (Hays, 1963). Still, low
p-values are often used as a proxy for important practical
significance. As an example, a study on the effectiveness of
aspirin in preventing myocardial infarction (Bartolucci et
al., 2011; Sullivan & Feinn, 2012) found statistically signifi-
cant results (p-value < .00001), and therefore was stopped
early due to conclusive evidence. As a result, many peo-
ple were advised to take aspirin to prevent heart attacks.
However, upon further investigation, the effect size was
found to be practically insignificant, and the recommenda-
tion had to be revised (Sullivan & Feinn, 2012). This raises
important concerns about the practical relevance of the
output of such hypothesis tests and their implications for

public health.
Issue 2: Implausibility of the null hypothesis. There are
very few situations in which one expects precise null hy-
potheses to be exactly true (Edwards et al., 1963; Amrhein
et al., 2017; Lecoutre & Poitevineau, 2022). For example,
when comparing two medications, the primary concern is
typically whether they are practically equivalent, as it is
highly unlikely that any two medications will produce pre-
cisely the same effects. Therefore, establishingwhether the
medications have similar outcomes is often more relevant
than attempting to evaluate if they have the same effect
on average. Indeed, bioequivalence tests effectively mod-
ify the null hypothesis to align with practical equivalence
(refer to Section “Connections to Existing Work”). This is
also true in other domains. Indeed, Cohen (1992, page 1308)
mentions that

“The null hypothesis, taken literally (and that’s
the only way you can take it in formal hypoth-
esis testing), is always false in the real world. It
can only be true in the bowels of a computer
processor running a Monte Carlo study (and
even then a stray electronmaymake it false). If
it is false, even to a tiny degree, it must be the
case that a large enough sample will produce
a significant result and lead to its rejection. So
if the null is always false, what’s the big deal
about rejecting it?”

A consequence of this fact is that, provided that the sam-
ple size is large enough, in most problems one will always
reject the null hypothesis, making the results of NHST not
meaningful (Vaughan & Corballis, 1969; Cohen, 1992, 1994;
Gill, 1999; Faber & Fonseca, 2014).
Issue 3: Accept versus not-reject the null hypothesis.
The absence of evidence is not evidence of absence (Alt-
man & Bland, 1995), but NHST is not able to differentiate
between failure to reject the null hypothesis and its accep-
tance. Indeed, Edwards et al. (1963, page 235) point out that

“If the null hypothesis is not rejected, it re-
mains in a kind of limbo of suspended disbe-
lief.”

This is because a null may not be rejected either because
the test is not powerful enough to reject it (e.g. due to a
small sample size) or because H0 is indeed true. This has
major implications for public policymaking, especially dur-
ing times of crisis, such as the COVID-19 pandemic. It can
be challenging to interpret research findings on the effi-
cacy of interventions, such as the use of masks (Jefferson et
al., 2023) or hydroxychloroquine (Mehra et al., 2020), when
there is a lack of consensus onwhat constitutes evidence of
absence versus no evidence of an effect (Fidler et al., 2018).
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It is therefore very important for researchers to dis-
tinguish between “no evidence of effect” and “evidence of
no effect” when interpreting research results (Altman &
Bland, 1995; Keysers et al., 2020). Plain NHST cannot do
that on its own.

In this paper, we overcome these issues by introducing
the Region of Equivalence Agnostic Confidence-based Test
(REACT).

Novelty

Numerous solutions have been proposed to tackle issues 1,
2, and 3; see Section “Connections to Existing Work” for a
detailed overview of how such approaches relate to our ap-
proach. In particular, REACT uses the strengths of equiva-
lence and three-way hypothesis testing. However, to the
best of our knowledge, REACT is the first approach that
simultaneously solves these and other issues. Specifically,
REACT:
• Is designed to work with meaningful null hypotheses
that encode practical significance

• Clearly distinguishes between “evidence of absence”
and “absence of evidence”

• Does not need ad hoc procedures to perform multiple
comparisons. In fact, REACT not only automatically
controls the Family-Wise Error Rate (FWER) of false
rejections at α (type I errors), but it also controls the
FWER of false acceptances at α (type II errors)

• Can be easily applied to hypotheses that involve several
parameters, such as in an ANOVA setting

• Leads to fully logically coherent solutions. For instance,
in amultiple comparison problem, if REACT rejects the
null µ1 = µ2, it will also reject the null µ1 = µ2 = µ3.
This level of coherence is not typically achieved with
standard procedures, resulting in epistemic confusion
that complicates the reporting of test results.
REACT requires the specification of two components:

(i) a confidence region for the parameters of interest, and
(ii) a null hypothesis that reflects a range of parameter
values considered to be practically equivalent (e.g., in an
ANOVA context, H0 : |µA − µB | ≤ ∆). Although part
(ii) involves more in-depth thought compared to regular
NHST, determining ∆ is essentially equivalent to deciding
the minimum effect size of scientific interest, as is com-

monly done in standard power analysis for sample size cal-
culations. Thus, while our approach attempts to keep the
operational simplicity of standard NHST, it directly meets
researchers’ needs.

REACT

To better illustrate how our approach builds upon existing
work, we first introduce it in a simplified version.

In its simplest form, REACT is composed by the follow-
ing steps:
1. [Establish the null hypothesis] Define a null hypoth-

esis H0 by establishing a pragmatic hypothesis, which
is a range of values considered to be practically equiv-
alent. For example, if µA and µB are the average ef-
fects of drugs A and B on a desired outcome, the prag-
matic null may be H0 : |µA − µB | ≤ ∆, where ∆ is
the smallest difference of practical interest (also known
as the smallest effect size of interest—SESOI (Lakens,
2017)). In this case, H0 is usually called the equiva-
lence range (Bauer & Kieser, 1996) or a region of prac-
tical equivalence (ROPE) (Kruschke, 2018) and is exten-
sively used in equivalence testing. The task of setting
this region may be complex, but it essentially parallels
the steps taken in standard power analysis, specifically
in pinpointing the significant portions of the alterna-
tive hypothesis that need high power. See Section “Con-
nections to Existing Work” for ideas on how ∆ can be
chosen. Similarly, one may want to test H0 : |ρ| ≤
∆, where ρ is the correlation coefficient between two
quantities of interest, orH0 : |βi| ≤ ∆, where βi is the
coefficient of the i-th covariate in a regression. For sim-
plicity, we now assume that the null hypothesis has the
shape

H0 : |ϕ| ≤ ∆

for someparameterϕ, although our test ismore general
(see Section “REACT and its properties”).

2. [Build a confidence set] Create C , a confidence set for
the parameter of interest, ϕ. That is, C contains values
of ϕ that are consistent with the dataset that was ob-
served.

3. [TestH0 usingC] Test the null hypothesis using the fol-
lowing three-way rule:

Decision =


AcceptH0 if all values of C are smaller than∆ in absolute value
RejectH0 if all values of C are larger than∆ in absolute value
Remain Agnostic otherwise
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Figure 1 Illustration of REACT to test hypotheses of the typeH0 : |ϕ| ≤ ∆. C is a confidence set built using the data; the
blue region represents the null hypothesis.

This procedure is illustrated in Figure 1.
Figure 2 shows an example of application of REACT to

the problem of investigating whether CAMCOG scores can
distinguish between three groups of patients: control (CG),
mild cognitive impairment (MCI), and Alzheimer’s disease
(AD). In each plot, the dashed line represents the precise hy-
pothesis of interest, which states that CAMCOG scores are
equally distributed among the compared groups. The blue
region represents the null hypotheses associated with each
pair of groups. We display the outcome of REACT as the
mean differences’ confidence intervals between each pair
of groups at a given sample size. In each comparison, we
start by randomly sampling two observations from each
group to derive the initial confidence interval. Then, in
each step, we randomly add a new observation from one
of the groups of interest and obtain a new confidence in-
terval. For small sample sizes, the test remains agnostic on
all three hypotheses. As the sample size increases, the prag-
matic hypothesis for AD vs Control is rejected, the one for
AD vsMCI is inconclusive, and the one for Control vs MCI is
accepted. We obtain the same conclusions when changing
the sorting order, with slight changes in MCI vs AD (Figure
A1 in Appendix). More details about this example can be
found in Section “Applications”.

Connections to Existing Work

Next, we investigate the relationship between REACT and
similar approaches.
Power Analysis and Severity Tests. Power analysis is
based on the following principle, suggested by J. Neyman

(Neyman, 1957, page 16):

“[If] the probability of detecting an appreciable
error in the hypothesis testedwas large, say .95
or greater, then and only then is the decision
in favour of the hypothesis tested justifiable in
the same sense as the decision against this hy-
pothesis is justifiable when an appropriate test
rejects it at a chosen level of significance.”

That is, according to this approach, if the power of the study
is large (at some specific point of the alternative of inter-
est, say Pϕ=∆(reject) in the setting presented above), then
a non-rejection can be interpreted as acceptance (see also
“severe testing” (Mayo&Spanos, 2006; Mayo, 2018)—which
uses a similar calculation to the p-value, though assuming
a point of the alternative as true instead, to verify if one
is warranted to accept the null hypothesis—for a related
approach). Thus, power analysis addresses issue 3 raised
in the introduction by distinguishing between “evidence of
absence” and “absence of evidence”.

Unfortunately, power analysis is often overlooked in fa-
vor of p-values, even when reported in the analysis. To ad-
dress this issue, REACT outputs a “accept”, “agnostic” or
“reject” decision, preventing any misinterpretation.
Scheffé’s method. Scheffé’s method (Scheffé, 1999) can be
viewed as a special case of REACT for an analysis of vari-
ance (ANOVA) model when testing hypotheses involving
only linear combinations (contrasts) of treatment effects.
Scheffé’s method constructs the usual confidence ellipsoid
for the treatment effects. To test the null hypothesis, it
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Figure 2 Confidence intervals for the average difference between groups, µi − µj as a function of the sample size. The
dashed line indicates the precise hypothesis considered in each figure, H0 : µi = µj . The blue regions delimit the null
hypotheses.

checks whether the line corresponding to the null hypoth-
esis intersects the confidence ellipsoid. If such an intersec-
tion exists, the null hypothesis is not rejected; otherwise, it
is rejected.

In contrast, REACT allows consideration of a broader
range of null hypotheses, including non-linear functions of
treatment effects and pragmatic hypotheses derived from
these functions. For pragmatic hypotheses, REACT refines
the “non-rejection” outcome into either “acceptance” or
“remain undecided.” Additionally, REACT can be applied
to various other models and is not restricted by the as-
sumptions of ANOVA. See Section “Cambridge Cognition Ex-
amination” for an application of REACT that is similar to
Scheffé’s method when setting ∆ = 0, with the difference
that REACT is controlling for multiple testing.
Effect size estimates. Effect sizes are an attempt to ad-
dress issues 1 and 2. They measure the strength of a re-
lationship and are often used to complement NHSTs. These
include the estimated coefficients β̂ of the regression func-
tion (Kutner et al., 2005), Cohen’s d (Cohen, 2013) and Pear-
son’s r (Pearson, 1920), among many others (Kirk, 2007; El-
lis, 2010; Fritz et al., 2012). If the null hypothesis is rejected,
one can check whether the effect size is large enough to
be practically significant. Although effect sizes can provide

valuable information, they are often overlooked in favor of
p-values.

To address these limitations, REACT integrates both re-
jection of the null and practical significance into statisti-
cal inference. Moreover, if one designs null hypotheses us-
ing effect sizes (Kruschke & Liddell, 2018), REACT can be-
come fully integratedwith them. For instance, Cohen’sdbe-
tween two groups can be expressed as ϕ := σ−1(µA−µB),
where σ is the standard deviation of the response vari-
able. The equivalence region can be stated in terms of ϕ as
H0 : |ϕ| ≤ ∆. This hypothesis can then be tested using our
approach via the confidence set for ϕ, d± SEd× tnA+nB−2,
where d = s−1(x̄1 − x̄2) is an estimate of ϕ, t is the Stu-
dent’s t-distribution, nA and nB are the sample sizes for
each group, and SEd is an estimate of the standard error of
d (Goulet-Pelletier & Cousineau, 2018).

We note, however, that applying a test based on Cohen’s
dmay not be ideal. As Lakens (2022, page 280) puts it,

“Setting them [equivalence bounds] in terms
of Cohen’s d leads to bias in the statistical test,
as the observed standard deviation has to be
used to translate the specified Cohen’s d into
a raw effect size for the equivalence test (...)
[A]s equivalence testing becomes more popu-
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lar, and fields establish smallest effect sizes of
interest, they should do so in raw effect size dif-
ferences, not in standardized effect size differ-
ences.”

Equivalence Range. The idea of working with regions of
practical equivalence (instead of point null hypotheses) to
address issues 1 and 2 has been presented under many dif-
ferent names—such as good-enough belt (Keren & Lewis,
1993), equivalence range (Bauer & Kieser, 1996), indiffer-
ence zone (Hobbs & Carlin, 2007), effective null set (Gross,
2014), and even the ROPE (Kruschke, 2018) itself—but a def-
inition with sufficient generality to cover more complex
settings is more recent (pragmatic hypothesis, Esteves et al.
(2019)). Let ϕ0 be the point from which we wish to derive
the region of equivalence (that is, we are interested in cre-
ating a region of equivalence around H0 : ϕ = ϕ0), Θ be
the parameter space and d(·, ·) be a dissimilarity function.
Then, the pragmatic hypothesis will be represented by

Pg(ϕ0, d,∆) := {ϕ ∈ Θ : d(ϕ0, ϕ) ≤ ∆}.

The setting described in Section “REACT” corresponds to
choosing d(ϕ0, ϕ) = |ϕ0 − ϕ| and ϕ0 = 0. There are many
heuristics for choosing ∆ (Lakens, 2017, 2022; Wang et al.,
2023; Lassance et al., 2025). These include:
• Relating ∆ to another quantity in the literature about
which it is easier to obtain intuition; we use this in Sec-
tion “Meta-analysis”.

• Identifying positive results in the literature that eval-
uate the same (or a similar) effect as your own study
and choosing the smallest ∆ such that REACT would
lead to accepting the hypothesis in these previous cases.
While this strategy may downplay random variability
if few studies are used to derive ∆, it acts as a start-
ing point from which researchers can propose changes
later. Such anapproach is particularly useful in the con-
text of reproducibility studies since rejectingH0 in the
new study based on criteria that would have accepted
the same hypothesis in the old one can be interpreted
as a failure to reproduce the original finding.

• Setting ∆ as the smallest change such that patients re-
port an improvement from their original conditions.
This can routinely be obtained through the use of pa-
tient reported outcome measure (PROM) scores. Even
when the perception of improvement varies substan-
tially between patients, there is a selection process
available that ensures the optimality of the selected ∆
(Wang et al., 2023).

• Setting d(ϕ0, ϕ) to be a measure of effect size (such as
the standardized mean difference between two pop-
ulations) and taking ∆ to be the smallest effect size
that is practically significant. This approach parallels

traditional sample size calculations performed through
power analysis.
When there are no clear strategies for determining ∆,

there is available software that can help provide an auto-
mated suggestion (Makowski et al., 2019). REACT can be
used within any of these approaches.
Equivalence Tests, TOST and B-values. Equivalence tests
were originally developed to compare the bioequivalence
of two drugs to address issues 1 and partially issue 3.
Rather than testing the hypothesis of “no effect” (ϕ = 0),
the hypothesis is modified to “practically no effect” (|ϕ| <
∆) (Westlake, 1976; Schuirmann, 1987). Additionally, the
null hypothesis is set as the hypothesis of a practical ef-
fect, namely H0 : |ϕ| > ∆. Thus, under a Neyman-
Pearson interpretation of the test outcomes, rejecting the
null hypothesis would lead to the conclusion that there is
absence of practical effect, |ϕ| ≤ ∆. This makes equiva-
lence tests very useful in various fields including political
science (Rainey, 2014), communication research (Weber &
Popova, 2012), anthropology (Smith, 2020), sensory science
(Meyners, 2012), psychology (Lakens et al., 2018), and clini-
cal trials (Walker &Nowacki, 2011; Wellek & Blettner, 2012;
L. M. Friedman et al., 2015; Leung et al., 2020).

A popular method for conducting equivalence tests is
the Two One-Sided Tests (TOST (Schuirmann, 1987)). The
standard TOST procedure for two-sample testing involves
(i) constructing a (1 − 2α)-level confidence interval for
µA − µB , and (ii) rejecting the null hypothesis that indi-
cates the absence of a practical effect,H0 : |µA−µB | > ∆,
only if the confidence interval falls entirely within the in-
terval (−∆,∆). While this procedure is similar to REACT
in that it tests for equivalence using a confidence set, it
only yields two possible outcomes: either reject the null hy-
pothesis and conclude the absence of effect, or fail to reject
the null hypothesis. In fact, TOST corresponds to applying
REACT taking C to be a (1− 2α)-level confidence interval
and merging the decisions “accept” and “agnostic”. Thus,
REACT allows for a more nuanced approach by also per-
mitting acceptance of the hypothesis of a practical effect.

UnlikeREACT, TOST procedures require tailoring to ad-
dress each specific problem: utilizing any (1 − 2α)-level
confidence set does not necessarily control type I error
rates at α (Wellek, 2010). Indeed, Berger and Hsu (1996)
show several examples of TOST tests that do not control
type I error rates (Berger & Hsu, 1996). Some examples
of TOST methods include regression (Dixon & Pechmann,
2005; Robinson et al., 2005; Campbell, 2020; Alter & Coun-
sell, 2021), parametric and non-parametric paired sample
tests (Mara & Cribbie, 2012), and correlation coefficients
(Counsell & Cribbie, 2015). REACT, however, controls type
I error at α as long as C(D) is a (1 − α)-level confidence
set (Proposition 3). Furthermore, the null and alternative
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hypotheses can be interchanged without affecting the con-
clusions of the test: REACT is symmetric (Proposition 9).
REACT can also be easily used for hypotheses that involve
several parameters (see Section “Cambridge Cognition Ex-
amination” for an example), while TOST requires further
work (see e.g. Yang et al., 2015, for the development of TOST
to compare multiple groups).

Recently, a two-stage equivalence testing procedure
that has the advantage of deriving a region of equivalence
solely based on data, the empirical equivalence bound
(EEB), has been proposed (Zhao et al., 2022). Let [L0, U0]
and [L,U ] respectively be the symmetrical (1−α) and (1−
2α) confidence intervals for ϕ and set B := max{|L|, |U |}
(the largest deviation from 0 of the interval). The EEB is
given by

EEBα(β|C) = inf
b∈[0,∞]

{b : FB(b|C, ϕ = 0) ≥ β},

where C is either 0 ∈ [L0, U0] or 0 /∈ [L0, U0], FB is the
cumulative distribution of B and β is a fixed probability.
Therefore, [−EEB,EEB] is the smallest symmetrical re-
gion such that one would reject ϕ = 0 with probability β.

This serves as yet another suggestion for deriving ∆
and, once its value is fixed, REACT reaches the exact same
conclusions as the two-stage testing procedure in Zhao et
al. (2022) when using the 100(1− 2α)% confidence set for
testing.
Non-inferiority and Superiority Tests. REACT is closer
in spirit to tests that combine superiority, non-inferiority
and equivalence tests, such as Julious (2004) and other vari-
ations (Tryon, 2001; Goeman et al., 2010; L. M. Friedman et
al., 2015; Zhao, 2016; Lakens et al., 2018; Zhao et al., 2022).
While these approaches are highly informative and gain-
ing in popularity, they are specific to certain tests and hy-
potheses, and require tailoring to fit each individual prob-
lem. Therefore, there is no guarantee that they will con-
trol type I error at α (Berger & Hsu, 1996) for any given
problem (indeed, they are not designed to have type I error
control globally). In Section “Applications”, we provide ex-
amples of scenarios where it may be difficult to adapt such
an approach, whereas our approach,REACT, remains user-
friendly. Moreover, as shown in Proposition 4, REACT au-
tomatically controls the Family-Wise Error Rate (Lehmann,
1957; Wang & Shen, 1999; Gupta & Huang, 1981) (FWER);
there is no need to use procedures such as Bonferroni cor-
rection to account for multiple testing.
HDI+ROPE, GFBST and S-values. The HDI+ROPE (High-
est Density Interval+Region of Practical Equivalence) (Kr-
uschke, 2010, 2018; Keysers et al., 2020) represents a spe-
cific instance of REACT. Indeed, its definition (see e.g. Kr-
uschke, 2010, page 291)) directly corresponds to REACT
with the confidence setC as the (1−α)-level BayesianHigh-
est Density Credible Interval.

In a similar vein, the GFBST (Stern et al., 2017) (General-
ized Full Bayesian Significance Test) corresponds to choos-
ing C as the (1− α)-level Bayesian Highest Posterior Den-
sity Region (HPD), given by

C(D) = {θ ∈ Θ : f(θ|D) ≥ t1−α},
where t1−α is chosen so that P(θ ∈ C(D)|D) = 1 − α,
and f(θ|D) is the posterior distribution of θ given data D.
New theoretical guarantees regarding the average cover-
age probabilities of such procedures are provided in Sec-
tion “Statistical properties” and in the Appendix (Theorem
3). Furthermore, the approach presented by Patriota (2013)
can also be viewed as a specific instance of REACT, where
the sets C are constructed using s-values.
Three-way hypothesis tests. Three-way tests provide a
more nuanced approach to hypothesis testing (Jones &
Tukey, 2000; Rice & Krakauer, 2023) and were suggested
en passant by J. Neyman, who argued that “The phrase ‘do
not reject H’ is longish and cumbersome ... (and) should
be distinguished from a ‘three-decision problem’ (in which
the) actions are: (a) accept H, (b) reject H, and (c) remain
in doubt” (Neyman, 1976, page 749). Neyman however did
not develop this approach. To the best of our knowledge,
Hays (1963) was the first one to present a formal three-way
approach to hypothesis testing under a decision-theoretic
framework.

Three-way hypothesis testing has several benefits. It
can address concerns about replication and the limited
publication of null results (Campbell & Gustafson, 2018)
and is essential to the evolution of scientific theories (Es-
teves et al., 2019). Recent research has explored the many
advantages of three-way tests. For example, Berg (2004)
showed that three-way tests can control both types I and II
error probabilities when both the null and the alternative
hypotheses are precise. This is in contrast to two-way tests,
where only one error can be controlled. Subsequently, Co-
scrato et al. (2020) generalized this approach to composite
alternative hypotheses. REACT controls both type I and
type II error probabilities to be nomore than the same level
α (Property 3). In addition, Esteves et al. (2016), Stern et
al. (2017), and Esteves et al. (2023) showed that three-way
tests can address logical inconsistencies that occur in stan-
dard two-way tests (Izbicki et al., 2012; Da Silva et al., 2015;
Izbicki & Esteves, 2015; Fossaluza et al., 2017). This is one
of the arguments made by Kruschke (2018) to justify why
HDI+ROPE should be preferred over TOST+NHST.

A three-way testing approach that is very closely related
to REACT is the PASS-test (Gross, 2014), which uses a re-
gion of equivalence combined with confidence intervals to
reach decisions. The main differences between the meth-
ods is that REACT is more general (it can derive regions of
equivalence and tests to combinations of parameters, in-
stead of only uniparametric hypotheses) and has a series of

The Quantitative Methods for Psychology 492

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.21.2.p043


¦ 2025 Vol. 21 no. 2

Figure 3 Illustration of REACT to test a generic hypothesis H0 : θ ∈ Θ0. C(D) is a confidence set built using data D;
the blue region represents the null hypothesis. Whenever C(D) is a subset of Θ0 (left), all plausible values for θ are in
Θ0. Hence, Θ0 is accepted. Whenever C(D) lies outside of Θ0 (middle), no plausible value for θ is in Θ0. Therefore, Θ0

is rejected. Finally, if some points of C(D) are inside Θ0 and others are outside, then some plausible points for θ are
compatible withΘ0 and others are incompatible. In this situation,Θ0 remains undecided.

useful properties particular to it (see Section “REACT and
its properties”). One of them (logical coherence, Property 8)
guarantees that no contradictory conclusions are reached
when REACT is applied to multiple tests. The main advan-
tage of using three-way tests such as these is that, since they
are based on intervals instead of p-values, they provide
greater intuitive appeal than p-value-based tests (Rainey,
2014).
Tests based on posterior probabilities and Bayes Fac-
tors. An alternative approach to testing hypotheses is the
Bayesian framework. Under this perspective, one typically
computes either the posterior probability of the null hy-
pothesis,P(H0|D), or the Bayes Factor,P(D|H0)/P(D|H1),
and rejects the null if the values are small (Berger, 1985).
This approach solves many of the issues associated with
NHST. For instance, Bayesian tests can accept the null hy-
pothesis (Rouder et al., 2009; Kelter, 2020).

Furthermore, within a Bayesian framework, it is cus-
tomary to formulate null hypotheses that are not precise
(Edwards et al., 1963; Good, 2009; Berger, 1985), thereby
circumventing the challenge of exclusively dealing with
implausible hypotheses (Schervish, 1995). This, however,
remains mostly restricted to uniparametric hypotheses,
such as H0 : |ϕ − ϕ0| ∈ [δL, δU ], where δL ≤ 0 ≤ δU are
known beforehand (Hobbs & Carlin, 2007; Kruschke, 2018).
The more popular alternative remains to assign probabil-
ity masses to precise hypotheses (Jeffreys, 1961; Kass, 1993;
Migon et al., 2014), donemostly due to practical reasons in-
stead of a true representation of the researcher’s beliefs.

Moreover, tests based both on posterior probabilities
and on Bayes factors are not fully logically coherent in
the sense described in Section “REACT and its properties”

(Lavine & Schervish, 1999; Izbicki & Esteves, 2015). REACT
can be used within a Bayesian context, although it is not
based on computing posterior probabilities of the null hy-
pothesis (see Section “REACT and its properties”).

REACT and its properties

Next, we introduce the general version of REACT. Our goal
is to test one or more hypotheses regarding parameters θ,
which assume values in Θ, a subset of Rd. In this context,
a null hypothesis is of the form: H0 : θ ∈ Θ0, where
Θ0 is a subset of Θ and the alternative hypothesis, H1, is
H1 : θ ∈ Θc0. Whenever there is no ambiguity, Θ0 is used
instead of H0. All definitions and proofs of the properties
stated in this section are found in the Appendix.

In order to test H0, REACT requires one to construct a
region of values for θ. One possible region is obtained by
using data,D, to construct a confidence region for θ,C(D).
If a frequentist approach is used, then one requires that

Pθ (θ ∈ C(D)) = 1− α, for all θ ∈ Θ,

where 1−α is the confidence level ofC(D). Notice that the
randomness of this probability is on the data D; once the
data is observed there is no randomness left. For a Bayesian
implementation of REACT one could use a (1 − α)-level
credible region (Berger, 1985), that is, a region such that

P (θ ∈ C(D)|D) = 1− α,

where the probability’s randomness stems from the poste-
rior distribution of θ given the dataD.

REACT testsH0 using the following rule (illustrated in
Figure 3):
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Decision =


AcceptH0 if C(D) ⊆ Θ0,
RejectH0 if C(D) ⊆ Θc0,
Remain Agnostic if C(D) intersects with bothΘ0 andΘc0.

In what follows, fREACT denotes a REACT procedure
based on a (1−α)-level frequentist region, while bREACT
denotes a REACT procedure based on a (1 − α)-level
Bayesian credible region. We use REACT to refer to scenar-
ios where the property in question holds for any version
of C(D). fREACT can also be obtained using standard p-
values for point null hypotheses:

Property 1. [Computation of fREACT using p-values]
Let p-valD(θ0) be a p-value for the hypothesisH0 : θ = θ0.
The procedure

AcceptH0 ifmaxθ∈Θc
0
p-valD(θ) ≤ α,

RejectH0 ifmaxθ∈Θ0
p-valD(θ) ≤ α,

Remain Agnostic otherwise.

is equivalent to calculatingfREACT through the (1-α)-level
confidence set: C(D) := {θ ∈ Θ : p-valD(θ) > α} .

Oftentimes, the parameter space can be decomposed as
Θ = Φ×Ψ, where ϕ ∈ Φ are parameters that will be tested
and ψ ∈ Ψ are nuisance parameters. Theorem 1 in the
Appendix shows that, as long as a confidence (or credible)
set for the parameters of interest ϕ is available, REACT can
easily handle nuisance parameters. Moreover, Theorem 4
shows howfREACT can be computed using p-values in this
setting, and Theorem 5 shows its Bayesian counterpart.

In many problems, one is interested in testing differ-
ent hypotheses, each one dealing with a different set of pa-
rameters. For example, in a linear regression model where
β0 + β1x1 + . . . + βdxd, one is often interested in testing
H0 : βi = 0 for each i at a time. REACT for such hypothe-
ses can be obtained at a low computational cost as long as
a confidence set for all parameters is available:

Property 2. [Easy computation of REACT for low-
dimensional hypotheses] Assume that the parameter
space can be decomposed as Θ = Φ × Ψ and letH0 : ϕ ∈
Φ0, Φ0 ⊂ Φ, be the hypothesis of interest. Also, let C(D)
be a region estimator onΘ andCΦ(D) be the projection of
the confidence region C on the parameters ϕ, that is,

CΦ(D) := {ϕ ∈ Φ : ∃ψ ∈ Ψ such that (ϕ, ψ) ∈ C(D)}.

Then, REACT can be computed via

Decision =


AcceptH0 if CΦ(D) ⊆ Φ0,
RejectH0 if CΦ(D) ⊆ Φc0 = Φ− Φ0,
Remain Agnostic otherwise.

Inwords,REACT only requires evaluatingwhether the pro-
jection of the confidence set belongs to the null hypothesis.

In the context of multiple testing, Theorem 1 in the Ap-
pendix ensures that one only needs to build a confidence
region for the parameters of interest, while Property 2
guarantees that using projections of such region will not
affect the conclusions or harm the properties of REACT. If
there are nuisance parameters, using Property 2 directly
on CΘ(D) is not advised, as projections often lead to tests
with a lower level of significance than the nominal one, po-
tentially having lower statistical power.

The importance of Property 2 is illustrated in Section
“Cambridge Cognition Examination”, where we show how
to implement REACT for multiple pairwise comparisons.

REACT has desirable statistical and logical properties
which we explore in what follows.

Statistical properties

Whenever C(D) is a confidence region, REACT has de-
sirable frequentist statistical properties. For instance,
fREACT controls not only the type I error rate but also the
type II error rate:

Property 3. [Type I and Type II error rate control]
fREACT has Type I and Type II errors rates of at most α.

Although the control of type I error rate is a standard
criterion for hypothesis tests at point nulls, such control is
seldom obtained for the type II error rates. fREACT ob-
tains the latter by remaining undecided when the data is
not sufficiently informative about the null hypothesis.

Next, we show that when conducting multiple hypoth-
esis tests, fREACT controls a strong version of family-wise
error rate (FWER), in the sense that it controls the proba-
bility of making at least one Type I or Type II error. This
is more stringent than the standard notion of FWER, which
typically focuses only on controlling Type I errors.
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Property 4. [Family-wise error rate (FWER) control] If
several hypotheses are tested, fREACT controls a general-
ized version of the Family-Wise Error Rate (FWER (Tukey,

1953)) over multiple hypothesis tests. That is, for every
θ ∈ Θ,


FWERI := Pθ(At least one correct hypothesis is rejected) ≤ α,

FWERII := Pθ(At least one false hypothesis is accepted) ≤ α,

Pθ(At least one correct hypothesis is rejected or one false hypothesis is accepted) ≤ α.

Remarkably, this control is achievedwithout necessitat-
ing the correction of significance levels formultiple testing.
See Theorem3, in the Appendix, for a Bayesian counterpart
of this result using bREACT.

Next, we show that REACT is typically consistent in the
sense that, as the sample size increases,REACT rejects each
hypothesis that is false and accepts each one that is true.
Thus, REACT does not have the issue in which the null hy-
pothesis is rejected as the sample size increases.

Property 5. [Consistency as n increases] If the confi-
dence set C(D) converges to the true value of the param-
eter (fixed), θ, (see Definition 11), and θ does not lie on the
boundary of thenull hypothesisΘ0, then, as the sample size
increases, the probability thatREACT acceptsH0 when it is
true goes to one, and the probability that it rejectsH0 goes
to zero. This property is illustrated in Figure 2.

Besides the above properties, one might also be inter-
ested in the “best” confidence set to be used in step 2 of
REACT. In the following, we discuss a first development of
theory for answering this question.

As a first challenge, one must answer what is a “best”
test in the context of REACT. Since fREACT controls both
type I and type II errors, a possible generalization of stan-
dard theory is to seek a test that minimizes the type III er-
ror, that is, the probability of remaining undecided. How-
ever, it can be hard to find such a test that minimizes this
error uniformly among all parameter values and hypothe-
ses that can be tested.

The following property provides a first answer when
one restricts attention to interval confidence sets and uni-
lateral and bilateral hypotheses. A formal mathematical
development is presented in Appendix B.

Property 6. Consider that one wishes to test solely unilat-
eral and bilateral hypotheses regarding the parameters of
interest. Also, consider that there exists a standard uni-
formly most powerful (UMPU) test for each point hypoth-
esis. If fREACT uses the confidence set obtained from in-
verting the UMPU tests, then the probability that it remains

undecided is uniformly lower than that of every region test
based on an interval confidence set that has the same type
I and type II error rates.

Notice, however, that in more general settings there is
no single best UMPU solutions.

Finally, under a Bayesian perspective, accepted hy-
potheses have high posterior probability, while rejected hy-
potheses have low posterior probability:

Property 7. [Posterior probability of the null hypothe-
sis] If bREACT accepts H0, then the posterior probability
ofH0 is larger than 1−α. Moreover, if bREACT rejectsH0,
then the posterior probability ofH0 is smaller than α.

Notice however that the reverse is not true: bREACT
may not accept a hypothesis with large posterior probabil-
ity. One example is when bREACT remains agnostic be-
cause at least one element of H0 does not intersect with
the credible region, due to it residing in an area with very
small posterior probability.

Logical properties

Besides having good statistical properties,REACT is also co-
herent from a logical perspective:

Property 8. [Logical coherence]REACT is logically coher-
ent in the sense described in Definition 2.

That is, if one treats accepted hypotheses as true and re-
jected hypotheses as false, then no logical contradiction is
obtained. For example:
• If H0 : |µA − µB | < ∆ is accepted, then so is H0 :
|µA − µB | ≤ ∆ .

• If both H0 : µA − µB ≤ 1 and H0 : µA − µB ≥ 0 are
accepted, thenH0 : 0 ≤ µA − µB ≤ 1 will be as well.

• Consider pairwise null hypotheses of the form Hi,j
0 :

|µi−µj | ≤ ∆, where µi’s are parameters of the model,
and a global null hypothesisH0 : maxi,j{|µi − µj |} ≤
∆. If all Hi,j

0 ’s are accepted, so is H0. Similarly, if at
least oneHi,j

0 is rejected, so isH0.
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Figure 4 Pairwise group comparisons given by REACT for the Cambridge Cognition Examination example. The ellipses
are projections of themultivariate confidence set of Equation 2 on each pair of parameters (µi, µj), while the blue regions
represent the null hypotheses |µi − µj | ≤ ∆ for the various groups. Property 2 guarantees it is enough to evaluate these
projections to test these hypotheses.

Most statistical procedures do not satisfy this property,
which makes their outcomes hard to interpret (Izbicki &
Esteves, 2015). The reader is referred to Hansen and Rice
(2023) for other types of coherence.

A consequence of Property 8 is that, unlike standard
tests, where it is crucial to determine which hypothesis is
labeled as the “null” and which one is labeled as the “al-
ternative,” REACT is indifferent to this choice. In other
words, the choice of whether the null hypothesis is H0 :
|µA−µB | ≤ ∆ orH0 : |µA−µB | > ∆ does not materially
affect the conclusions. If the former is rejected, it means
that the latter is accepted and vice versa:

Property 9. [No need to specify which one is the null hy-
pothesis] The null and the alternative hypotheses can be
exchanged without materially affecting conclusions, and
therefore there is no need to distinguish the labels “null”
and “alternative” hypothesis.

Applications

Cambridge Cognition Examination

The Cambridge Cognition Examination (Roth et al., 1986)
(CAMCOG) is a widely-used questionnaire for measuring
the extent of dementia and assessing the level of cogni-
tive impairment. We analyze data from Cecato et al. (2016)
to investigate whether CAMCOG scores can distinguish be-
tween three groups of patients: control (CG), mild cogni-

tive impairment (MCI), and Alzheimer’s disease (AD). We
assume that the score of the k-th patient in group i is given
by Yi,k = µi + ϵi,k , where µi is the population average for
group i and ϵi,k is a Gaussian random variable with mean
0 and variance σ2

i . Our analysis focuses on testing the hy-
pothesis

H0 : |µi − µj | ≤ ∆ (1)

for all pairs of groups.
An initial approach to address this problem involves

constructing confidence sets for individual parameters,
specifically ϕ := |µi − µj |. The process of building these
confidence sets is illustrated in Figure 2, where we explore
how the sample size influences the test results. The confi-
dence intervals are constructed using the standard confi-
dence set for the difference between two means, assuming
a Gaussian distribution (Diez et al., 2012), where each dif-
ference may have a different variance.

The value of∆was determined using the classification
dissimilarity introduced by Esteves et al. (2019). When the
pragmatic hypothesis does not hold, there exists a classifier
based on the CAMCOG score which is able to discriminate
the groups under comparison with an accuracy (that is, a
probability of predicting the correct class) of at least 80%.

Although the previous approach is sensible, it is tech-
nically not a fully-REACT approach: REACT requires a
single confidence set C(D) to be used to test all hypothe-
ses. A full-REACT can be obtained by using the following
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Figure 5 Forest plots for themeta-analyses described in Section “Meta-analysis”, alongwith the decisionsmadebyREACT.
The point estimate sizes are proportional to the inverse of the variances of each study. Our approach indicates that treat-
ment is no better than control in the follow-up studies (that is, the null hypothesis is accepted), while it remains agnostic or
is rejected in the pharmacotherapy studies, depending on the choice of the poolingmethod. The null region of equivalence
was obtained using the Number Necessary to Treat (NNT).

100(1−α)% confidence region for the vector ofmeansµ =
(µCG, µMCI , µAD) (Johnson & Wichern, 2002; Meeker &
Escobar, 1995):

(x− µ)′Σ̂−1
x (x− µ) ≤ χ2

p(α), (2)

where x is the sample mean, Σ̂x is the estimate of the co-
variance matrix of X , p is the size of µ and χ2

· (·) is the
quantile function of the χ2-distribution. Moreover, Σ̂x is a
diagonal matrix in this case because the data on each sub-
ject was collected independently.

Once the confidence region has been derived, any hy-
pothesis can be tested through the REACT framework by
checking if the confidence region is contained inH0. While
evaluating if C(D) is contained inH0 is feasible, Property
2 ensures that the same conclusions can be reached by us-
ing the projection (in this case, the ellipses of Figure 4) of
C(D) on (µi, µj), requiring fewer calculations than using
C(D) and allowing for graphical visualization of the results
in two dimensions. By projection, we mean the set{

(µi, µj) ∈ R2 : ∃µk ∈ R with (µi, µj , µk) ∈ C(D)
}
.

In Figure 4, the blue area represents the region of equiv-
alence and each ellipse is a confidence region whose color
implies the result of the test (yellow for remaining unde-
cided, green for acceptance and red for rejection). While

there is not enough evidence to conclude if MCI patients
can be discriminated from those with AD (absence of evi-
dence of a practical effect), the CAMCOG is unable to dif-
ferentiate between MCI and the control group (evidence
of absence of a practical effect). This is not the case when
comparing AD and CG groups, supporting the idea that
the CAMCOG is able to differentiate between them (evi-
dence of presence). Finally, Property 8 and the fact that
|µAD − µCG| ≤ ∆ was rejected implies that the hypoth-
esis of no relevant difference between all groups (H0 :
max {|µMCI − µAD|, |µMCI − µCG|, |µAD − µCG|} ≤
∆) is also rejected. A Bayesian version of this analysis
is presented in Figure A2 and leads to the same conclusion.

Meta-analysis

This application is an adaptation of the meta-analysis orig-
inally performed by da Silva Teixeira et al. (2022) and uses
the Number Necessary to Treat (NNT) as a means to obtain
the desired region of equivalence for the risk differences.
The NNT is the expectation of the least people required for
the treatment to present better results than the control and
thus is commonly used in the literature as an indicator of
clinical significance and its value can be easily provided
(Citrome, 2011).

The original study evaluates patients’ adherence to
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tobacco cessation protocols comparing traditional ap-
proaches combined with computer-assisted health tech-
nologies to traditional approaches themselves. The treat-
ments are compared by twomain outcomes: the adherence
to the follow-up period of treatments without any drug (la-
beled as “Follow-up”) and the adherence to the pharma-
cotherapy, on studies that used any drug besides nicotine
replacement (labeled “Pharmacotherapy”). Since the study
evaluates the adherence to treatment, not the efficacy of
the treatment itself, the NNT of interest should be at least
smaller than the best treatments recommended by the lit-
erature (Cahill et al., 2016; Stead et al., 2012), which leads
to NNT < 11.

Figure 5 presents the forest plot for both treatments,
with the blue area representing the region of equivalence
substituting the hypothesis that the risk difference is less or
equal to 0 (treatment no better than control), the X-axis pro-
viding the confidence intervals obtained from each study
and the “pooled” label representing the interval that results
from aggregating all studies. The aggregation was done ei-
ther through (i) a Random Effects Model (REM) with ran-
dom intercepts (Bakbergenuly & Kulinskaya, 2018)—which
mirrors the pooling strategy of the original study—on the
risk difference of each study or (ii) a fixed effects model,
which assumes that the samples fromall studies come from
exactly the same population.

Unlike da Silva Teixeira et al. (2022), in this case, the dif-
ference between the probabilities of success of treatment
and control was used instead of the relative risk. This was
due to the fact that the NNT is the inverse of such a differ-
ence, so one can be directly translated into the other. Since
the interest is to evaluate clinical significance, the region of
equivalence chosenwas [−1, 1/6], meaning that theNNT of
the study has to be less than 6 for its results to be practically
significant (treatment better than control). A Bayesian ver-
sion of this analysis is presented in Figure A3 and leads to
the same conclusion.

For the follow-up outcome studies, most of the inter-
vals are contained in the region of equivalence, leading to
the acceptance of the hypothesis that treatment is no better
than control. In particular, the pooled results leads to the
conclusion that the treatment is not worth pursuing.

On the other hand, the pharmacotherapy studies are
scarcer and do not agree with each other. This discrepancy
results in a poor estimate for the REMpooled interval, lead-
ing to the decision of remaining agnostic, i.e., more studies
need to be conducted to then reach an assertive conclusion.
The fixed effects pooled interval leads to rejection, as the
study that rejected the hypothesis is considerablymore pre-
cise than the others. Therefore, the decision to remain un-
decided or reject the hypothesis depends on which pooling
strategy the researcher finds more appealing for this case.

Implications of the REACT Method for Machine Learn-
ing and AI

While this work has focused on formulations more adher-
ent to Statistics, REACT can also be extended to contexts
akin to Machine Learning and AI. By addressing limita-
tions of NHST, REACT provides a principled way to evalu-
atemodels, handlemultiple comparisons, and quantify un-
certainty in automated decision-making systems. Here, we
present a few of its advantages in this context.

Sample Size Sensitivity in Large-Scale Machine
Learning In modern machine learning applications,
datasets are often massive, which can lead traditional null
hypothesis significance testing (NHST) to flag even neg-
ligible differences as statistically significant. This sensi-
tivity to sample size is especially problematic when the
goal is to assess whether a difference is practically rele-
vant. REACT addresses this issue by testing pragmatic
rather than point-null hypotheses. Instead of evaluating
whether two models have exactly the same performance
(e.g.,H0 : µ1 = µ2), it testswhether the difference iswithin
a region of equivalence (e.g.,H0 : |µ1−µ2| ≤ ∆), where∆
reflects a threshold of practical significance. This prevents
trivial differences from leading to misleading conclusions
and promotes more meaningful comparisons. The bene-
fits of REACT are especially evident in supervised learning
tasks, where µi could represent a performancemetric such
as AUC, F1 score, or accuracy. In A/B testing, it might rep-
resent the conversion rate of a strategy, while in reinforce-
ment learning, it could be the expected value of a policy.
By focusing on whether an observed effect is large enough
to matter, rather than merely detectable, REACT provides
a robust framework for inference that remains consistent
and interpretable even as sample sizes grow (Biecek et al.,
2024a; J. Friedman et al., 2001).

Three-Way Decision Framework in Model Selection
and EnsemblesModel selection in machine learning is of-
ten based on significance testing, information criteria, or
validation set performance. However, these methods do
not account for practical equivalence. REACT’s three-way
decision framework (accept, reject, remain agnostic) of-
fers a more nuanced alternative: when models are practi-
cally indistinguishable, selection can prioritize other crite-
ria like interpretability or computational efficiency; when
one model outperforms another by a meaningful margin,
the better model is preferred (Biecek et al., 2024b; Domin-
gos, 2012); and when results are inconclusive, further data
collection or ensemble approaches may be warranted. In
ensemble learning, REACT can improvemodel diversity by
selecting models that are practically different rather than
merely statistically distinct, weighting ensemble compo-
nents based on their unique predictive contributions, and
organizing models hierarchically by clustering those that
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are practically equivalent. The logical coherence of REACT
ensures that these selection processes remain internally
consistent, avoiding contradictions inmulti-hypothesis set-
tings.

Error Rate Control and AutoML Reliability Auto-
mated Machine Learning (AutoML) systems make numer-
ous decisions regarding feature selection, hyperparame-
ter tuning, and model architecture. NHST-based methods
typically focus only on controlling Type I errors, often at
the expense of Type II errors. REACT improves AutoML
reliability by controlling both Type I and Type II errors
at level α, preventing the inclusion of irrelevant features
(Type I errors) and the exclusion of relevant ones (Type
II errors), avoiding incorrect conclusions about model su-
periority when comparing architectures, and maintaining
statistical power despite multiple testing corrections. By
allowing an “agnostic” decision, REACT provides AutoML
systemswith a principledway to defer decisions until more
data is available, reducing overconfidence in uncertain
cases (Zöller & Huber, 2022).

Fairness and Bias inMachine Learning Fairness eval-
uations in AI often rely on NHST to compare model perfor-
mance across demographic groups. However, NHST-based
fairness testing has notable limitations: large datasets
make even small, practically irrelevant differences statis-
tically significant; failing to reject a null hypothesis of “no
difference” does not imply fairness; and multiple com-
parisons across demographic categories necessitate strin-
gent corrections, reducing statistical power. REACT ad-
dresses these challenges by defining fairness through prac-
tical equivalence (H0 : |µA − µB | ≤ ∆), where ∆ rep-
resents an acceptable level of disparity; allowing three-
way decisions, i.e., accepting fairness when evidence sup-
ports equivalence, rejecting fairness when disparities ex-
ceed meaningful thresholds, and remaining agnostic when
evidence is inconclusive; handling multiple demographic
comparisons with built-in FWER control; and ensuring log-
ical consistency, preventing contradictory fairness conclu-
sions (Mitchell, Shankar, et al., 2021; Mehrabi, Morstatter,
et al., 2021). By shifting the focus from statistical signifi-
cance to practical significance, REACT enables more inter-
pretable and actionable fairness assessments in AI.

Technical Challenges and Future Directions. While
REACT offers clear benefits, its application to machine
learning settings presents notable technical challenges.
Many relevant performance metrics—such as AUC and F1
score—are aggregate, making the construction of valid con-
fidence sets difficult. Existing approaches often rely on
asymptotic approximations or resampling methods, which
maynot yield accurate coverage, especially in small-sample
scenarios. Moreover, in such cases with small samples, the
resulting sets tend to be overly wide, leading frequently to

agnostic outcomes. Another difficulty lies in specifying a
meaningful threshold∆ for practical equivalence. Formet-
rics like the F1 score, this choice is not straightforward and
typically requires strong domain-specific knowledge. Fur-
thermore, ∆ may not scale linearly across different tasks
or metrics. This motivates the development of more gen-
eral dissimilarity functions that flexibly capture meaning-
ful performance differenceswhile being easier to calibrate.
These challenges point to important directions for future
research: designing computationally efficient procedures
for constructing confidence sets around interpretable, task-
specific metrics, and developing principled methods for
choosing∆ in practice.

Final Remarks

We have shown the effectiveness of REACT in overcom-
ing numerous difficulties with traditional NHSTs. A note-
worthy aspect of REACT is its ability to differentiate be-
tween “evidence of absence” and “absence of evidence”
of a practical effect, a crucial factor for conducting meta-
analyses and comparing effects among different groups.
Also, REACT does not lead to an automatic rejection when
the sample size is large.

We have argued that REACT, building upon equiva-
lence tests and three-way decision procedures, possesses
numerous advantages over other approaches aimed at re-
solving NHST-related challenges. Once the null hypothesis
of practical interest is specified,REACT only requires a con-
fidence region to reach a decision, and thus researchers
from diverse domains can readily apply our approach.
Moreover, REACT seamlessly integrates with confidence
sets, which are widely regarded as more informative than
hypothesis tests and p-values (Wasserstein & Lazar, 2016).
If setting an equivalence region is feasible, this integration
results in a framework that surpasses traditional NHST, en-
hancing the interpretability of statistical inferences. Fi-
nally, REACT can be used both within the frequentist and
Bayesian frameworks.

Defining the threshold associated to the pragmatic re-
gion,∆, is a delicate and domain-specific task. Poor choices
of ∆ may compromise the practical interpretation of re-
sults. To address this, we recommend conducting sensi-
tivity analyses over a range of ∆ values to assess the ro-
bustness of conclusions. This anchors the choice of ∆ in
expert judgment and its observed consequences. In partic-
ular, it can be helpful to identify the smallest and largest∆
values for which the decision is non-agnostic. Moreover,
the quality of REACT’s conclusions critically depends on
the properties of the confidence or credibility set. If C is
constructed under violated assumptions (such as normality
or independence), or if it is overly wide due to low power,
the resulting decisions may be flawed or agnostic. In this
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sense, REACT inherits the limitations of the underlying in-
ferential machinery used to build C . Notice however that
although REACT does not eliminate low power issues, it
surfaces them transparently, avoiding misleading dichoto-
mous conclusions.

Our examples and discussion focus on parametricmod-
els, where confidence intervals for means or differences
are standard. Extending REACT to non-parametric or semi-
parametric models presents additional challenges, particu-
larly in constructing appropriate confidence/credibility re-
gions and the associated computational costs. For the for-
mer, several strategies have been proposed to build re-
gions with good properties (Genovese & Wasserman, 2005;
Robins & van der Vaart, 2006; Davies et al., 2009; Park et
al., 2023), especially in the Bayesian context, such as in Pha-
dia (2016, Section 6.3) and Lassance et al., 2024. As for the
latter, the computational cost can be circumvented when
the delta method is available, but for more complex pa-
rameters using bootstrap or MCMC procedures might be
required, which may be unreliable or too slow in certain
contexts. In future work we will adapt REACT to these set-
tings accounting for such setbacks.

Adopting REACT may contribute to increased confi-
dence in scientific findings by making the decision-making
process in hypothesis testing more transparent and by
clearly presenting outcomes, including those cases where
evidence is inconclusive. This is particularly pertinent in
the realms of meta-science and replication studies, which
hold significant importance in the current scientific land-
scape.

To support the practical implementation of REACT,
we have developed an R package (available at
github.com/Monoxido45/REACT) that simplifies its appli-
cation for commonmodels. This user-friendly package em-
powers researchers to efficiently implement our approach,
fostering broader adoption and advancing scientific inves-
tigations. Embracing such tools and methodologies can
contribute to more rigorous and reliable research prac-
tices, benefitting the scientific community as a whole.
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Ärzteblatt International, 109(41), 674. doi: 10 . 3238 /
arztebl.2012.0674.

Westlake, W. J. (1976). Symmetrical confidence intervals
for bioequivalence trials. Biometrics, 741–744. doi: 10.
2307/2529259.

Yang, C., Bartolucci, A. A., & Cui, X. (2015).Multigroup equiv-
alence analysis for high-dimensional expression data.
Cancer Informatics, 14, CIN–S17304. doi: 10.4137/cin.
s17304.

The Quantitative Methods for Psychology 612

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.21.2.p043
https://doi.org/10.1093/treephys/25.7.903
https://doi.org/10.1192/bjp.149.6.698
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.1007/978-1-4612-4250-5
https://doi.org/10.1007/bf01068419
https://doi.org/10.1002/ajpa.24092
https://doi.org/10.1002/14651858.cd000146.pub4
https://doi.org/10.1002/14651858.cd000146.pub4
https://doi.org/10.1093/jigpal/jzx024
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.3389/fpsyg.2018.00699
https://doi.org/10.3389/fpsyg.2018.00699
https://doi.org/10.1080/01973533.2015.1012991
https://doi.org/10.1080/01973533.2015.1012991
https://doi.org/10.1037/1082-989x.6.4.371
https://doi.org/10.1037/h0027878
https://doi.org/10.1007/s11606-010-1513-8
https://doi.org/10.1007/s11606-010-1513-8
https://doi.org/10.1109/ROBOT.1999.770415
https://doi.org/10.1109/ROBOT.1999.770415
https://doi.org/10.1136/bmj-2022-073822
https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2019.1583913
https://doi.org/10.1080/00031305.2019.1583913
https://doi.org/10.1080/19312458.2012.703834
https://doi.org/10.1201/EBK1439808184
https://doi.org/10.1201/EBK1439808184
https://doi.org/10.3238/arztebl.2012.0674
https://doi.org/10.3238/arztebl.2012.0674
https://doi.org/10.2307/2529259
https://doi.org/10.2307/2529259
https://doi.org/10.4137/cin.s17304
https://doi.org/10.4137/cin.s17304


¦ 2025 Vol. 21 no. 2

Zhao, G. (2016). Considering both statistical and clinical sig-
nificance. International Journal of Statistics and Prob-
ability, 5(5), 16. doi: 10.5539/ijsp.v5n5p16.

Zhao, Y., Caffo, B. S., & Ewen, J. B. (2022). B-value and empir-
ical equivalence bound: A new procedure of hypoth-

esis testing. Statistics in Medicine, 41(6), 964–980. doi:
10.1002/sim.9298.
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Appendix A: Additional Figures and Experiments

Figure A1 Confidence intervals for the average difference between groups as a function of the sample size for three
different resamplings. All conclusions as the sample size increases are the same as the original sorting from Figure 2,
with slight differences in AD vs MCI for resampling 3.

Figure A2 Bayesian pairwise group comparisons of REACT for the CAMCOG application. The prior for each pair (µi, σ2
i )

is a Normal-inverse gamma with parameters (80, 1, 3, 3). The credible regions are the HPD region of (µAD, µCG, µMCI)
projected on each pair (µi, µj) (dashed border for prior, solid for posterior). The blue regions represent the null hy-
potheses |µi − µj | ≤ ∆ for the various groups. The conclusions obtained from the posterior are the same as those in
Figure 4.
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Figure A3 Bayesian REACT using the Jeffreys priorBeta(1/2, 1/2) for the proportion of successes for the meta-analyses
described in Section “Meta-analysis”. The intervals represent the 95% HPD region, while the point estimates are the
posterior means and their respective sizes are the inverse of the posterior variances. The pooled model assumes a hi-
erarchical structure, where the i-th study with the j-th intervention (control or treatment) has probability of success
θi,j |θj ∼ Logit-Normal(logit(θj), 0.1), while θj ∼ Beta(1/2, 1/2). The conclusions are similar to those obtained in Fig-
ure 5.

Appendix B: Additional Theorems and Definitions

Theorem 1. [Computation of REACT in problemswith nuisance parameters]Assume that the parameter space can be
decomposed as Φ×Ψ, where ϕ ∈ Φ denote parameters of interest and ψ ∈ Ψ are nuisance parameters. Let Cϕ(D) ⊆ Φ
be a region estimator of ϕ only. Consider the following procedure to testH0 : ϕ ∈ Φ0, where Φ0 ⊂ Φ:

Decision =


AcceptH0 if Cϕ(D) ⊂ Φ0

RejectH0 if Cϕ(D) ⊂ Φc0
Remain Agnostic otherwise.

This is a proper REACT procedure.

Definition 1. A hypothesis test for a hypothesis H ⊂ Θ is a function RH : X −→ {0, 1/2, 1}, where X is the sample
space, such that 0 represents the acceptance ofH , 1 its rejection, and 1/2 is the agnostic decision.

Definition 2. Let σ(Θ) be a subset of Θ with several hypotheses to be tested. For each H ∈ σ(Θ), let RH denote a test
forH . The collection of hypothesis tests (RH)H∈σ(Θ) is defined to be logically coherent if
1. (Propriety)RΘ ≡ 0,
2. (Monotonicity) IfH ⊆ H∗,RH∗ ≤ RH ,
3. (Invertibility) For everyH ,RH ≡ 1−RHc ,
4. (Intersection consonance) IfH is a collection of hypothesis such thatRH(D) = 0, for everyH ∈ H, thenR∩H∈HH(D) =

0.

Definition 3. A region testR, has level (α, β) if supH0
supθ∈H0

Pθ(RH0
= 1) ≤ α and supH0

supθ/∈H0
Pθ(RH0

= 0) ≤ β,
that is the test controls the type I error by α and the type II error by β.
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Definition 4. Let R be a region test. The decisiveness function of R, βR, determines how frequently the test does not
remain undecided, for each value of θ and each hypothesisH0, that is,

βR(θ,H0) = Pθ
(
RH0

̸= 1

2

)
.

Definition 5. A (α, α)-level region test,R, is unbiased if infθ,H0
βR(θ,H0) ≥ α.

Definition 6. An interval region estimator, C, is a region estimator such that there exist real-valued functions, a(D) and
b(D) and for everyD C(D) = (a(D), b(D)).

Definition 7. A region test,RC is an interval region test if C is an interval region estimator.

Definition 8. LetR be an unbiased interval region test andH be a collection of hypotheses. R is uniformly most decisive
onH among unbiased (α, α)-level region tests based on intervals if, for every unbiased, (α, α)-level, interval region test,
R∗,

βR(θ,H0) ≥ βR∗(θ,H0), for every θ andH0 ∈ H.

Lemma 1. If R∗ is an unbiased, (α, α)-level test based on the region C∗, then ϕ∗ = I(θ0 /∈ C∗) is an unbiased α-level
binary test.

Theorem 2. Let H = {{θ0} : θ0 ∈ Θ} ∪ {(−∞, θ0) : θ0 ∈ Θ} ∪ {(θ0,∞) : θ0 ∈ Θ}, that is, the collection of all
unilateral and bilateral hypotheses. For each θ, assume ϕθ0 is a UMPU α-level test for testing H0 : θ = θ0. If C(D) =
{θ0 : ϕθ0(D) = 0} is an interval region estimator, thenRC is uniformly most decisive onH among unbiased (α, α)-level
interval region tests.

Example 1. Let Φ be the cumulative density function of a standard normal, X1, . . . , Xn be i.i.d. and X1 ∼ N(θ, σ2
0),

where θ is unknown and σ2
0 is known. For eachH0 : θ = θ0, ϕθ0 = I

(√
n|X̄−θ0|
σ0

≥ −Φ(0.5α)
)
is the UMPU α-level test

forH0. Note that

C := {θ0 : ϕθ0 = 0}

=

(
X̄ +

Φ(0.5α)σ0√
n

, X̄ − Φ(0.5α)σ0√
n

)
Hence, it follows from Theorem 2 that RC is uniformly most decisive on H among unbiased (α, α)-level interval region
tests.

Appendix C: Proofs

Lemma 2. LetC(D) := {θ ∈ Θ : p-valD(θ) > α} . For everyH ⊆ Θ,C(D)∩H = ∅ if and only ifmaxθ∈H p-valD(θ) ≤ α.

Proof. If maxθ∈H p-valD(θ) ≤ α, then for every θ ∈ H , p-valD(θ) ≤ α and, by construction, θ /∈ C(D). That is, C(D) ∩
H = ∅. If maxθ∈H p-valD(θ) > α, then there exists θ ∈ H , such that p-valD(θ) > α and, by construction, θ ∈ C(D).
Therefore, C(D) ∩H ̸= ∅.

Proof of Property 1. First, observe that

Pθ(θ /∈ C(D)) = Pθ(p-valD(θ) ≤ α) ≤ α.

Hence, C(D) is a 1− α confidence interval. The rest of the proof follows directly from Lemma 2.

Definition 9. Let C(D) be a region estimator for θ, that is, a function C : X → σ(Θ), where X is the sample space. The
region test forH0 based on C ,RC,H0

, is

RC,H0
=


0 , if C ⊆ H0

1 , if C ⊆ Hc
0

1
2 , otherwise.
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Proof of Property 2. The proof is equivalent to showing thatRC,H0
= RCΦ,Φ0

. Also, when looking at the parameter space
as a whole, we note thatH0 possesses the following property:(ϕ, ψ) ∈ H0 =⇒

⋃
ψ∈Ψ

(ϕ, ψ) ⊂ H0

 , ∀ϕ ∈ Φ. (3)

Now, let us consider the possible settings ofRC,H0 . First, when the original test acceptsH0,

RC,H0
= 0

def. 9⇐⇒ C(D) ⊆ H0
(3)⇐⇒ CΦ(D)×Ψ ⊆ H0 = Φ0 ×Ψ

def. 9⇐⇒ RCΦ,Φ0
= 0. (4)

As for when the test rejectsH0,

RC,H0
= 1

prop. 9⇐⇒ RC,Hc
0
= 0

(4)⇐⇒ RCΦ,Φc
0
= 0

prop. 9⇐⇒ RCΦ,Φ0
= 1. (5)

Lastly, since (4) and (5) are necessary and sufficient conditions for respectively accepting and rejectingH0, it follows that
RC,H0

= 1/2 ⇐⇒ RCΦ,Φ0
= 1/2, thus concluding the proof.

Proof of Property 3. (Adapted from Coscrato et al. (2020)). SinceC(D) has confidence 1−α, Pθ(θ /∈ C(D)) ≤ α, for every
θ ∈ Θ. Therefore,

sup
θ0∈H0

Pθ0(RC,H0 = 1) = sup
θ0∈H0

Pθ0(C(D) ⊆ Hc
0) ≤ sup

θ0∈H0

Pθ0(θ0 /∈ C(D)) ≤ α

sup
θ1∈Hc

0

Pθ1(RC,H0
= 0) = sup

θ1∈Hc
0

Pθ1(C(D) ⊆ H0) ≤ sup
θ1∈Hc

0

Pθ1(θ1 /∈ C(D) ≤ α

Definition 10. The family-wise type I error, FWERI , is the probability that some truly null hypothesis is incorrectly
rejected. Similarly, the family-wise type II error, FWERII , is the probability that some truly non-null hypothesis is
incorrectly accepted. That is,

FWERI(θ) := Pθ(∪H:θ∈HRC,H = 1)

FWERII(θ) := Pθ(∪H:θ/∈HRC,H = 0).

Proof of Property 4. For everyH ∈ σ(Θ),

FWERI(θ) = Pθ(∪H:θ∈HRC,H = 1)

= Pθ(∪H:θ∈HC ⊆ Hc)

= Pθ(∪H:θ∈HC ∩H = ∅)
= Pθ(θ /∈ C) ≤ α.

FWERII(θ) = Pθ(∪H:θ/∈HRC,H = 0)

= Pθ(∪H:θ/∈HC ⊆ H)

= Pθ(θ /∈ C) ≤ α.

Definition 11. A confidence set, C(D), converges to the true θ if, for every θ0 ∈ Θ and ϵ-ball around θ0,B(θ0, ϵ),

lim
n→∞

Pθ0(C(D) ⊆ B(θ0, ϵ)) = 1.

Definition 12. ForA ⊆ Θ, let 8A denote the interior ofA. A hypothesis test forH0,RH0 , is consistent if, for every θ ∈ 8H0,
limn→∞ Pθ(RH0

= 0) = 1 and, for every θ ∈ 8Hc
0 , limn→∞ Pθ(RH0

= 1) = 1.

Proof of Property 5. Let θ ∈ 8H0. There exists ϵ > 0 such thatB(θ, ϵ) ⊆ H0. Hence,

lim
n→∞

Pθ(RH0,C = 0) = lim
n→∞

Pθ(C(D) ⊆ H0)

≤ lim
n→∞

Pθ(C(D) ⊆ B(θ, ϵ)) B(θ, ϵ) ⊆ H0

= 1 Definition 12
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Similarly, let θ ∈ 8Hc
0 . There exists ϵ > 0 such thatB(θ, ϵ) ⊆ Hc

0 . Hence,

lim
n→∞

Pθ(RH0,C = 1) = lim
n→∞

Pθ(C(D) ⊆ Hc
0)

≤ lim
n→∞

Pθ(C(D) ⊆ B(θ, ϵ)) B(θ, ϵ) ⊆ Hc
0

= 1 Definition 12

Proof of Property 8. (Adapted from Esteves et al. (2016)). Let (RH)H∈σ(Θ) be a collection of tests based on confidence set
C .
1. Since C(D) ⊆ Θ,RΘ ≡ 0,
2. LetH ⊆ H∗. If RH(D) = 0, then C(D) ⊂ H . Hence, C(D) ⊂ H∗, that is, RH∗(D) = 0. Also, if RH∗(D) = 1, then
C(D) ⊆ Hc

∗ . Hence, C(D) ⊆ Hc andRH(D) = 1. Conclude thatRH∗ ≤ RH .
3. It is sufficient to prove that, for everyH ∈ σ(Θ),RH(D) = 0 if and only ifRHc(D) = 1. The proof follows from the

fact thatRH(D) = 0 when C(D) ⊆ H andRHc(D) = 1 when C(D) ⊆ (Hc)c, that is, C(D) ⊆ H .
4. IfRH(D) = 0, for everyH ∈ H, thenC(D) ⊆ H , for everyH ∈ H. Hence,C(D) ⊆ ∩H∈HH . That is,R∩H∈HH(D) =

0.

Proof of Property 9. Property 9 is a consequence of invertibility in Definition 2 Hence, this property is a corollary of Prop-
erty 8.

Proof of Theorem 1. Let C(D) := Cϕ(D)×Ψ. Notice that

Cϕ(D) ⊂ Φ0 ⇐⇒ C(D) ⊂ Φ0 ×Ψ,

and therefore the procedure stated on the theorem is equivalent to the following REACT procedure:

Decision =


AcceptH0 if C(D) ⊂ Φ0 ×Ψ

RejectH0 if C(D) ⊂ Φc0 ×Ψ

Remain Agnostic otherwise.

The conclusion follows.

Proof of Lemma 1. SinceR∗ is a region-based test, {R∗ rejects {θ0}} is the same as {ϕ∗ = 1}. Hence, sinceR∗ is a (α, α)-
level test

Pθ0(ϕ∗ = 1) = Pθ0(R∗ rejects {θ0}) ≤ α.

That is, ϕ∗ is a α-level binary test. Also, sinceR∗ is unbiased,

Pθ(ϕ∗ = 0) = Pθ0(R∗ remains undecided about {θ0}) ≤ 1− α

Hence, ϕ∗ is unbiased.

Proof of Theorem 2. Let R∗ be an unbiased, (α, α)-level based on the interval region C∗. For every H0 ∈ H , define
ϕ∗ = I(θ0 /∈ C∗).

βR(θ,H0) = Pθ(θ0 /∈ C)
= Pθ(ϕθ0 = 1)

≥ Pθ(ϕ∗ = 1) Lemma 1 and ϕθ0 is UMPU
= Pθ(θ0 /∈ C∗)

= βR∗(θ,H0).
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Appendix D: Additional Results

Definition 13. The Bayesian family-wise false conclusion error of (RH)H∈σ(Θ), γ, is:

γ = P(∃H ∈ σ(Θ) : (θ ∈ H andRH = 1) or (θ /∈ H andRH = 0))

Theorem 3. IfR is a credibility region for θ with credibility 1− α and (RH)H∈σ(Θ) is based onR, then γ ≤ α.

Proof of Theorem 3.

γ = P(∃H ∈ σ(Θ) : (θ ∈ H andRH = 1) or (θ /∈ H andRH = 0))

= P(∃H ∈ σ(Θ) : (θ ∈ H andR ⊆ Hc) or (θ /∈ H andR ⊆ H))

≤ P(θ /∈ R) = α

Theorem4. [Computationof fREACTusingp-values in problemswithnuisanceparameters]Assume that the param-
eter space can be decomposed asΦ×Ψ, where ϕ ∈ Φ denote parameters of interest and ψ ∈ Ψ are nuisance parameters.
Let p-valD(ϕ0) be a p-value for the hypothesisH0 : ϕ = ϕ0. Consider the following procedure to testH0 : ϕ ∈ Φ0,where
Φ0 ⊂ Φ:

Decision =


AcceptH0 if supϕ∈Φc

0
p-valD(ϕ) ≤ α

RejectH0 if supϕ∈Φ0
p-valD(ϕ) ≤ α

Remain Agnostic otherwise

This procedure is equivalent to the following fREACT procedure:

Decision =


AcceptH0 if C(D) ⊂ Φ0 ×Ψ

RejectH0 if C(D) ⊂ Φc0 ×Ψ

Remain Agnostic otherwise.

where C(D) := Cϕ(D)×Ψ and Cϕ(D) := {ϕ ∈ Φ : p-valD(ϕ) > α} .Moreover, it can be more easily written as

Decision =


AcceptH0 if Cϕ(D) ⊂ Φ0

RejectH0 if Cϕ(D) ⊂ Φc0
Remain Agnostic otherwise.

Also, Cϕ(D) is a (1-α)-level confidence set for ϕ, and C(D) is a (1-α)-level confidence set for (ϕ, ψ).

Proof. Notice that

sup
ϕ∈Φc

0

p-valD(ϕ) ≤ α ⇐⇒ For every ϕ ∈ Φc0, p-valD(ϕ) ≤ α

⇐⇒ For every ϕ ∈ Φc0 and ψ ∈ Ψ, (ϕ, ψ) /∈ C(D)

⇐⇒ C(D) ⊂ Φ0 ×Ψ

Thus, the procedure accepts H0 if, and only if, C(D) ⊂ Φ0 × Ψ. Similarly, the procedure rejects H0 if, and only if,
C(D) ⊂ Φc0 × Ψ. It follows that this procedure is a REACT-type procedure. Now, if the p-values are valid, for every
(ϕ, ψ) ∈ Φ×Ψ,

P(ϕ,ψ) ((ϕ, ψ) ∈ C(D)) = P(ϕ,ψ) (p-valD(ϕ) > α) = 1− α,

which concludes the proof.

Definition 14 (Pereira and Stern (1999)). The e-value for a hypothesisH0 : θ = θ0 is the posterior probability

e-valD(θ0) = 1− P (θ ∈ TD|D) ,

where
TD = {θ : f(θ|D) ≥ f(θ0|D)}
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Theorem 5. [Computation of bREACT using e-values] Let e-valD(θ0) be an e-value (Pereira & Stern, 1999) for the
hypothesisH0 : θ ∈ Θ0. Then the following is a bREACT procedure:

Decision =


AcceptH0 ifmaxθ∈Θc

0
e-valD(θ) ≤ α

RejectH0 ifmaxθ∈Θ0 e-valD(θ) ≤ α

Remain Agnostic otherwise

The (1-α)-level Bayes set that corresponds to this procedure is the (1−α)-level Highest Posterior Density (HPD) region for
θ:

C(D) := {θ ∈ Θ : π(θ|D) > C} ,

where C is such that
P (θ ∈ C(D)|D) = 1− α.

This procedure is equivalent to the GFBST (Stern et al., 2017) and, if C is an interval, to ROPE (Kruschke, 2018).

Proof. Can be found in Esteves et al. (2016, Example 8).
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