AgriEngineering
Pl % M \ © © °

Article

Machine Learning in the Classification of RGB Images of Maize
(Zea mays L.) Using Texture Attributes and Different Doses

of Nitrogen

1

Thiago Lima da Silva 1* Fernanda de F4atima da Silva Devechio 2(2, Marcos Silva Tavares 12,

Jamile Raquel Regazzo !

Adriano Rogério Bruno Tech °

check for

updates
Academic Editors: Ray E. Sheriff and
Chiew Foong Kwong

Received: 4 July 2025
Revised: 15 September 2025
Accepted: 18 September 2025
Published: 23 September 2025

Citation: Silva, T.L.d.; Devechio,
Fd.Ed.S,; Tavares, M.S.; Regazzo, ].R.;
Sardinha, E.J.d.S.; Altao, LM.R,;
Pagin, G.; Tech, A.R.B.; Baesso, M.M.
Machine Learning in the Classification
of RGB Images of Maize (Zea mays L.)
Using Texture Attributes and
Different Doses of Nitrogen.
AgriEngineering 2025, 7, 317.
https://doi.org/10.3390/
agriengineering7100317

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

, Edson José de Souza Sardinha 37, Liliane Maria Romualdo Altao 4 Gabriel Pagin 3Q,

and Murilo Mesquita Baesso 3

Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture (ESALQ), University of Sao
Paulo—USP, Piracicaba 13635-900, SP, Brazil; ms.tavares@usp.br (M.S.T.); jamile.regazzo@usp.br (J.R.R.)
Department of Animal Science, Faculty of Animal Science and Food Engineering (FZEA), University of Sao
Paulo—USP, Pirassununga 13418-900, SP, Brazil; ferdefatima@usp.br

Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering (FZEA),
University of Sao Paulo—USP, Pirassununga 13418-900, SP, Brazil; sardinha@usp.br (E.J.d.S.S.);
gabriel.pagin.oliveira@usp.br (G.P.); baesso@usp.br (M.M.B.)

Department of Agricultural Engineering, Sao Francisco University (USF),

Braganca Paulista 12916-900, SP, Brazil; liliane.altao@usf.edu.br

Department of Basic Sciences, Faculty of Animal Science and Food Engineering (FZEA), University of Sao
Paulo—USP, Pirassununga 13418-900, SP, Brazil; adriano.tech@usp.br

*  Correspondence: thiago.silva@ifs.edu.br; Tel.: +55-79-99155-4149

Abstract

Nitrogen fertilization is decisive for maize productivity, fertilizer use efficiency, and sustain-
ability, which calls for fast and nondestructive nutritional diagnosis. This study evaluated
the classification of maize plant nutritional status from red, green, and blue (RGB) leaf
images using texture attributes. A greenhouse experiment was conducted under a com-
pletely randomized factorial design with four nitrogen doses, one maize hybrid Pioneer
30F35, and four replicates, at two sampling times corresponding to distinct phenological
stages, totaling thirty-two experimental units. Images were processed with the gray-level
cooccurrence matrix computed at three distances 1, 3, and 5 pixels and four orientations
0°, 45°, 90°, and 135°, yielding eight texture descriptors that served as inputs to five
supervised classifiers: an artificial neural network, a support vector machine, k nearest
neighbors, a decision tree, and Naive Bayes. The results indicated that texture descriptors
discriminated nitrogen doses with good performance and moderate computational cost,
and that homogeneity, dissimilarity, and contrast were the most informative attributes.
The artificial neural network showed the most stable performance at both stages, followed
by the support vector machine and k nearest neighbors, whereas the decision tree and
Naive Bayes were less suitable. Confusion matrices and receiver operating characteristic
curves indicated greater separability for omission and excess classes, with D1 standing out,
and the patterns were consistent with the chemical analysis. Future work should include
field validation, multiple seasons and genotypes, integration with spectral indices and
multisensor data, application of model explainability techniques, and assessment of latency
and scalability in operational scenarios.

Keywords: digital agriculture; crop nitrogen status; texture analysis; artificial neural
network; support vector machine
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1. Introduction

Maize (Zea mays L.) stands out in Brazil as one of the main agricultural commodities.
According to the National Supply Company (CONAB), in the 8th survey of the 2024 /2025
season, national production reached 126.9 million tons, representing an increase of 9.9%
compared to the previous harvest [1]. Despite this progress, challenges remain regarding
the high nutritional demand, the efficient use of nitrogen fertilizers, climate variability, and
pest and disease management, which reinforces the need for studies aimed at developing
efficient techniques applicable to specific areas of crop management.

Among these areas, mineral nutrition stands out because it acts directly on plant
growth [2], improving productivity [3], resistance to stresses [4], and grain quality [5].
However, each nutrient must be supplied accurately, within the crop’s requirements and at
the ideal time, preventing the development and reproductive phases from being affected to
the point of causing losses in estimated productivity.

To this end, plant nutrition diagnostic procedures need to be introduced with greater ef-
ficiency, as conventional analyses for detecting nutritional status are generally destructive in
nature, laborious, and require specific equipment and inputs. According to Cheng et al. [6],
these analyses are complex and require more time, specialists, and chemical reagents.
Therefore, it is of great interest to maximize the crop’s productive expression, and rapid
response alternatives such as detection and classification methods in this area need to be
studied and developed as they can contribute to the quality and yield of the plant [7].

It is widely accepted in the literature that nitrogen plays a fundamental role in the
development of the maize crop. It is an essential macronutrient that affects growth and
productivity, and its availability is essential for improving yields [8]. Inadequate amounts
of nitrogen compromise chlorophyll production, which consequently results in plants with
limited development and a drop in productive performance. Whether too much or too little,
uncontrolled application can have a negative impact on both crops and the environment [9].

To help with these challenges, digital image processing is a powerful tool in vari-
ous agricultural applications, as it can be used to analyze important parameters in crop
development, such as the precise monitoring of crop nutrition [10], making use of this
method of extracting characteristics a viable alternative for nutritional analysis in plants
and consequently helping with decision-making and increasing efficiency in the application
of nutrients in crops.

Information related to the appearance, structure, and spatial arrangement of an object
within an image is represented by a parameter known as image texture [11]. Texture analysis
consists of identifying patterns that assist in the discrimination of the component of interest
and has been widely applied for image feature extraction. These patterns can be quantified
through several attributes, such as contrast, correlation, energy, homogeneity, dissimilarity,
entropy, mean, and variance, which describe the distribution and spatial relationship of
gray levels, allowing for a detailed characterization of the analyzed surfaces [12].

During the processing and analysis of images, various characteristics can be extracted
to help deepen the information of nutritional interest, especially when these characteristics
can be associated with textural patterns. Devechio et al. [13] observed texture extraction
resources in maize leaves and concluded that this information contributed to the diagnosis
of nutritional deficiencies in the crop.

With the advent of precision and digital agriculture, this image information has been
used as input for building machine learning (ML) models, which has been consolidated
as a promising strategy, promoting robust and effective interventions in the agricultural
sector. Various ML-based algorithms have been widely applied to estimating yields [14],
identifying diseases [15] and weeds [16], and finally classifying plant nutritional status [17].
In addition, these algorithms contribute significantly to the sustainable management of
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resources such as water, fertilizers, and pesticides, which increases the operability of
agricultural systems [18].

According to Karakullukcu [19], classification methods use features extracted from
data as independent variables to distinguish predefined classes within a dataset. This
process involves identifying and extracting relevant information to assign each predictive
instance to a specific class, and the suitability of a machine learning model depends directly
on the consistency of the processed data and the complexity of the task, factors that
impact its performance evaluation. Among the models widely applied in agriculture are
artificial neural networks (ANNSs), support vector machines (SVMs), decision trees (DTs),
the Random Forest (RF) algorithm, regression-based methods, Bayesian classifiers, and the
K-Nearest Neighbors (KNN) algorithm, all of which have demonstrated effectiveness in
different contexts [20].

Abderrahim et al. [21] used the support vector machine and the artificial neural
network to improve nitrogen analysis in tomato leaves and concluded that the use of
machine learning algorithms integrated with cheminformatics methods and near-infrared
spectroscopy allows for rapid and nondestructive analysis of leaf nitrogen content.

Sirsat et al. [22] investigated the prediction of nutritional deficiencies in wheat plants
by means of RGB images of the leaves, using texture attributes extracted from the gray-
level cooccurrence matrix (GLCM) to feed different machine learning models. The algo-
rithms evaluated included K-Nearest Neighbors (KNN), Naive Bayes, decision tree, neural
networks, and kernel-based classifiers such as SVM. The best performances were seen with
neural networks, followed by KNN and Kernel classifiers. On the other hand, the worst
performances were recorded in models based on decision trees and Bayesian algorithms.

In view of the above, the application of machine learning techniques in the clas-
sification of agricultural crop images has proved to be effective in analyzing relevant
characteristics, contributing to the estimation of nutrient content, as well as promoting
greater efficiency, optimization, and savings in production systems. Considering this sce-
nario, the aim of this study was to compare the performance of different Machine Learning
algorithms in the supervised classification of nutritional status in different nitrogen dosages
in a maize hybrid, using texture descriptors extracted from RGB images as input.

2. Material and Methods
2.1. Study Site

The experiment was carried out at the University of Sao Paulo, on the campus of
the Faculty of Animal Science and Food Engineering (Faculdade de Zootecnia e Engen-
haria de Alimentos—FZEA /USP), agrarian sector in Pirassununga—SP. The geographical
coordinates are 21°59’45" S, 47°25'33" W, at an altitude of 627 m, with soil classified as
Neossolo Quartzarénico [23]. The region’s climate is of the Cwa type (subtropical, with
dry winters and hot summers) according to the K&ppen classification, with average annual
temperatures of 20.8 °C and average annual rainfall of around 1298 mm.

2.2. Characterization of the Experiment and Image Acquisition

The experiment was carried out with maize (Zea mays L.) in a greenhouse under
hydroponic cultivation, using 3.6 L plastic pots filled with nutrient solution and subjected
to different nitrogen (N) doses. The treatments were defined as proportions of the recom-
mended nitrogen dose specific to this hybrid, namely D1 = 5%, D2 = 20%, D3 = 100%, and
D4 = 200%, corresponding to 1.0, 3.0, 15.0, and 30.0 mM of N in the solution [24].

The experimental design was completely randomized in a factorial scheme with four
nutrient doses, one maize hybrid (Pioneer 3OF35®), and four replications, evaluated at two
collection stages (V4 and R1), totaling 32 experimental units (4 treatments x 4 replications x
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2 samplings). Since plant chemical analysis requires destructive sampling, 16 experimental
units (4 treatments x 4 replications) were removed at each collection stage.

Leaves were collected for digitizing the images at two phenological stages, V4 (four
fully expanded leaves) and R1 (embrowning). According to Ordéfez et al. [25], crop
management practices under real conditions include applying nitrogen before the V7 stage.
The R1 stage, marked by the start of flowering, is recommended for leaf sampling as it
reflects the nutritional state of the plant during the reproductive phase [26].

To contextualize the analyses and standardize terminology throughout the manuscript,
Table 1 compiles the phenological stages of maize with a concise description of the vegeta-
tive and reproductive phases, from emergence VO or VE to physiological maturity Ré. This
systematization guides the sampling performed at V4 and R1.

Table 1. Phenological stages of maize (Zea mays L.) and brief characterization of vegetative (V) and
reproductive (R) stages [27].

Stage Stage Characterization

Vegetative phase

Germination and emergence: imbibition, digestion of reserve substances in the caryopsis, cell

Voou Vg division, and growth of seminal roots.
v Second leaf emergence: emergence of primary and seminal roots, onset of photosynthesis with
2 two fully expanded leaves.
Vy Fourth leaf emergence: determination of yield potential.
v Sixth leaf emergence: increase in stem diameter, acceleration of tassel development, and
6 . .
determination of the number of kernel rows on the ear.
Vs Eighth leaf emergence: beginning of plant height and stem thickness determination.
Vi Twelfth leaf emergence: onset of ear number and size determination.
Vig Fourteenth leaf emergence.
Reproductive phase
Vi Tassel emergence and opening of male flowers.
Ry Full flowering: onset of yield confirmation.
Ry Milk stage.
Rs Dough stage.
Ry Floury stage.
Rs Dent stage.
Re Physiological maturity: maximum dry matter accumulation and maximum seed vigor,

appearance of the black layer at the base of the kernel.

After removal, the indicator leaves (IFs) were carefully cleaned with paper towels
to remove any residue that could compromise the quality of the images. Next, the leaves
corresponding to each treatment were placed side by side on the surface of the scanner,
covered with a sheet of white sulfite paper. Finally, the images were scanned, identified,
and stored for later analysis [24].

The image of the leaves was scanned using a conventional high-resolution flatbed
scanner (HP scanjet 3800, Hewlett-Packard Development Company, L.P., Spring, Houston,
TX, USA) with up to 9600 DPI (dots per inch). The leaves were scanned at 1200 DPI and
stored on the computer in uncompressed TIFF (Tag Image File Format) for later processing.

The leaf samples were subjected to wet digestion using sulfuric acid to determine
nitrogen and quantified using ammonia distillation followed by titration. The chemical
analyses took place at the Agricultural Sciences Laboratory of the School of Animal Science
and Food Engineering at the University of Sao Paulo (Laboratério de Ciéncias Agrarias
da Faculdade de Zootecnia e Engenharia de Alimentos da Universidade de Sao Paulo),
located on the Pirassununga campus in Sao Paulo.
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2.3. Image Pre-Processing

Image pre-processing followed the methodology adapted from Lencioni et al. [28].
The images obtained from the experiment were cropped using Matlab R2022b software [29]
to automatically extract blocks of size 224 x 224 RGB pixels in order to obtain images
that would allow the ideal visualization of the nutritional state in the leaves (transitions)
without interference from casualties (injuries and folds), as shown in Figure 1.

Scanned leaf

Cut the original image into Sample banck of
224 x 224 pixel RGB blocks size 224 x 224 pixel

campo_nitrogeni  campo_nitrogeni  campo_nitrogeni  campo_nitrogeni
0 V4 b1 h2 T1-4. 0 V4 b1 h2T1-9. oV4Dblh2T1-1 o V4 b1 h2Ti-1
tif tif 0.tif 1tif

campo_nitrogeni  campo_nitrogeni  campo_nitrogeni  campo_nitrogeni
0 V4 b1 h2T1-8 0V4b1h2T1-1 0oV4Db1h2T1-1 oV4 b1 h2T1-1

—p 1.4 27.4if 31tif 35.4if

campo_nitrogeni  campo_nitrogeni  campo_nitrogeni  campo_nitrogeni
0V4 b1 h2T1-2 0V4Db1h2T1-3 0V4b1h2T1-3 0V4b1h2T1-3
45.4if 27 tif 28.tif 40.tif

campo_nitrogeni  campo_nitrogeni  campo_nitrogeni  campo_nitrogeni
0V4 b1 h2T1-4 oV4Db1h2T1-4 o0VAb1h2T1-4 o0V4bIh2T1-4
22tif 35.tif 36.tif 43.1if

Figure 1. Example of the digitized leaf image segmentation process.

2.4. Texture Analysis

Texture descriptor extraction analyses were processed at the Laboratory of Machinery
and Precision Agriculture (Laboratério de Maquinas e Agricultura de Precisao—LAMAP) of
the Department of Biosystems Engineering (Departamento de Engenharia de Biossistemas-
FZEA /USP).

The methodology is according to Lu et al. [30] where a gray-level cooccurrence matrix
(GLCM) was generated according to Haralick & Dinstein et al. [31]. The GLMC is a matrix
P (i, j) that counts the frequency with which a pixel with intensity i occurs adjacent to
a pixel with intensity j, given a distance d and an angle 0. A specific script was used in
Matlab R2022b software [29] to generate the GLMC using the graycomatrix function and
normalized by graycoprops, thus extracting 8 texture features at 4 different angles, 0°, 45°,
90°, and 135°, with distances of 1, 3, and 5 pixels from the reference pixel.

There are several examples of applying GLCM in different studies, such as segmen-
tation and detection of regions of interest through local maps of contrast and homogene-
ity [32]; estimation of orientation and anisotropy by comparing directions of 0°, 45°, 90°,
and 135° [33]; screening image quality by identifying blur and low signal [34]; performing
inspection and defect detection on leaves and surfaces [35]; assisting image retrieval and
registration with cooccurrence-based similarity measures [36]; and selecting samples by
discarding atypical patches before training, which strengthens the workflow and reduces
bias [37].

The textural features extracted from the gray-level cooccurrence matrix (GLCM) were
contrast, correlation, energy, homogeneity, dissimilarity, entropy, mean, and variance.
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For this purpose, image blocks of 224 x 224 pixels were obtained from different regions
of the leaf surface, as described by Zheng et al. [38]. The calculation of these metrics
was implemented in a MATLAB script, following the equations presented by several
authors [31,39,40].

Contrast group:
N-1

contrast = Y Pyj(i— j)? 1)
i,j=0
N-1
Dissimilarity = ) P;;|i — | )
i,j=0
Homogeneity = — 3
ij—o 1+ (i— i)’
Order group:
Energy =1/ Y P(i - j)’ )
N-1
Entropia = ) P;;[—In(P;;)] where 0 * In(0) =0 (5)
i,j=0
Descriptive statistics group:
N-1
Mean (w) = ) i(P;;) (6)
i,j=0
N-1
Variance (0%) = Z P (i — u)z (7)
i,j=0
N (—wi-w
Correlation = P (8)
i,jZ::0 K o2

2.5. Classification

The supervised classification process used the machine learning method available in
MatLab 2022b software with the Classification Learner application found in the statistical
and machine learning toolbox12.4 package, using the nearest neighbors (KNN), support
vector machines (SVMs), artificial neural network (ANN), decision trees (DTs), and naive
Bayes (NB) algorithms.

KNN is an algorithm classified as lazy, where classification is based on the Euclidean
distances between the reference sample and its nearest neighbors. SVM, on the other hand,
classifies using hyperplanes and the distances between the samples and their traces, while
neural networks characterize regions or values by determining a network of weights,
which, depending on their significance during the processing iterations, can be recalculated.
Decision trees are supervised learning models that divide the data into increasingly homo-
geneous subsets based on decision rules, requiring pruning to avoid overfitting, while naive
Bayes is a probabilistic classifier based on Bayes’ theorem, assuming that the attributes are
independent of each other, performing poorly on highly correlated data, which may have
been the case in this study.

Machine learning is an area of artificial intelligence that uses large numbers of data to
create reliable models to solve proposed problems quickly and efficiently, for this study the
algorithms for classification were provided with texture information, 8 attributes, 4 angles,
and 3 reference steps in 4 classes with 1000 blocks of 224 x 244 pixels each, totaling
384,000 input datapoints for all the models.
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Sample
preparation
(preprocessing)

The validation method used was k-fold cross-validation of 10, with a test set of 10%
of the image bank being reserved to assess the model’s performance after adjustment
and training.

Following sample preparation (preprocessing), textural features were extracted from
the images and used as input for model construction. Hyperparameter selection was carried
out using the Grid Search optimizer across all algorithms. Subsequently, the models were
applied to supervised classification, and their performances were systematically compared,

as illustrated in Figure 2.

][

Figure 2. Flowchart of pre-processing, extraction, hyperparameter selection, classification and
comparison of results, adapted from [41].

The Grid Search optimization technique was used to determine the hyperparameter
combinations, aiming for the best possible performance of the algorithms in the validation
set, considering the lowest classification error during the iterations. Thus, the models were
configured with the hyperparameters described in Table 2.

The performance metrics for the machine learning algorithms were accuracy, total
cost, Fl-score, precision, sensitivity, prediction speed, and training time.

The accuracy, precision, Fl-score, and sensitivity metrics are based on statistical
calculations that take into account the way in which the instances are classified—which
can be true positive (VP), which represents the number of instances correctly classified as
positive; true negative (VN), correctly classified as negative; false positive (FP) referring to
the number of instances incorrectly classified as positive when they are negative; and false
negative (FN), indicating those incorrectly classified as negative when they are positive—
according to Equations (9)-(12) and their descriptions [17].

VP+VN

A p—

Uy = VP VN +FP+ EN ©)

. VP
Precision = VPEEP (10)

I VP
Sensibility = VP EN (11)

2x P Recall

F1 score = x frec x Reca (12)

Prec + Recall
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Table 2. Names of the algorithms, vegetative stage, model hyperparameters, optimized hyperparameters, and the search interval of the hyperparameters configured
for classifying images of maize leaves with different doses of nitrogen fertilization.

Algorithms

Vegetative Stage

Model Hyperparameters

Optimized Hyperparameters

Hyperparameter Search Range

Decision Trees

Naive Bayes

K-Nearest Neighbors

K-Nearest Neighbors

Support Vector Machines

Support Vector Machines

Neural Network

Neural Network

V4, R1

V4, R1

V4

R1

V4

R1

V4

R1

Optimizable Tree
Surrogate decision; split: Off.

Optimizable Naive Bayes;
Support: Unbounded.

Optimizable KNN.

Optimizable KNN.

Optimizable SVM;
Kernel function: Gaussian;
Kernel scale: Automatic.
Optimizable SVM;
Kernel function: Quadratic;
Kernel scale: Automatic.

Optimizable Neural Network;
Iteration: 1000

Optimizable Neural Network;
Iteration: 1000

Maximum number of splits: 583;
Split criterion: Maximum
deviance reduction.
Distribution names: Kernel;
Kernel Type: Box.
Number of neighbors: 28;
Distance metric: Mahalanobis;
Distance weight: Squared inverse;
Standardize data: No.
Number of neighbors: 12;
Distance metric: Mahalanobis;
Distance weight: Squared inverse;
Standardize data: yes.

Box constraint level: 10;
Multiclass method: one-vs-one;
Standardize data: Yes.

Box constraint level: 2.1544;
Multiclass method: one-vs-all;
Standardize data: False.

Number of fully connected layers: 1;
Activation: ReLU;
Regularization strength (Lambda):
3.5876 x 1078;
Standardize data: Yes;

First layer size: 24.

Number of fully connected layers: 1;
Activation: Tanh;
Regularization strength (Lambda):
7.7293 x 107>;
Standardize data: Yes;

First layer size: 13.

Maximum number of splits: 1-3599;
Split criterion: Maximum deviance reduction, Twoing rule, Gini’s
diversity index.
Distribution names: Gaussian, Kernel;
Kernel type: Gaussian, Box, Epanechnikov, Triangle.
Number of neighbors: 1-1800;

Distance metric: Mahalanobis, City block, Chebyshev, Correlation,
Cosine, Euclidean, Hamming, Jaccard, Minkowski (cubic), Spearman;
Standardize data: True, False.

Number of neighbors: 1-1800;

Distance metric: Mahalanobis, City block, Chebyshev, Correlation,
Cosine, Euclidean, Hamming, Jaccard, Minkowski (cubic), Spearman;
Standardize data: True, False.

Multiclass method: one-vs-all, one-vc-one;

Box constraint level: 0.001-1000;

Standardize data: True, False.

Multiclass method: one-vs-all, one-vc-one;

Box constraint level: 0.001-1000;

Standardize data: True, False.

Number of fully connected layers: 1-3;

Activation: ReLU, Tanh, Sigmoid, None;

Standardize data: Yes, No;

Regularization strength (Lambda): 2.7778 x 10~9-27.7778;
First layer size: 1-300;

Second layer size: 1-300;

Third layer size: 1-300.

Number of fully connected layers: 1-3;

Activation: ReLU, Tanh, Sigmoid, None;

Standardize data: Yes, No;

Regularization strength (Lambda): 2.7778 x 10~9-27.7778;
First layer size: 1-300;

Second layer size: 1-300;

Third layer size: 1-300.
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The total cost is a metric for evaluating the algorithm’s performance that takes into
account the error or loss in classification. Based on the confusion matrix, this metric includes
misclassification costs, i.e., the number of times the model made a mistake in predicting the
class of a given sample; it is presented in dimensionless form and is calculated according to
Equation (13).

1Y o
Total cost = Nl; Cost(yi, yi) (13)
where

N = total number of samples;

yi = True class;

Ji = Predicted class.

As the basis for calculating the total cost was the confusion matrix and not the cost
matrix, it was assumed that

o 0, if yi=7yi
Cost(yi, i) = {1’ if yi £ gi

Prediction speed was used to calculate the number of predictions per second for each
model; this metric is important to compare the latency of the models when receiving input
data and returning classification answers for real-time application.

Training time was used to verify the time each model takes to be ready. It is an
empirical measure that uses the timing function during the model adjustment procedure,
considering the data provided, training, validation, and testing.

Another metric used was the Area Under the Curve (AUC), which refers to the
area under the ROC (receiver operating characteristic) curve, capable of measuring the
algorithm’s performance in terms of distinguishing between classes [42]. ROC graphs are
two-dimensional representations where the true positive rate (TP) appears on the vertical
axis, while the false positive rate (FP) is shown on the horizontal axis. This type of graph
illustrates the balance between the model’s hits and misses and is considered standard in
the field of image classification [43].

The ReliefF algorithm was applied to identify the attributes that contributed most to
building the models.

Finally, the confusion matrix was generated to evaluate the algorithm’s performance in
detail, as it compares the labels predicted by the model with the actual values. Among the
elements present in the matrix are true positives (VPs), true negatives (VNs), false positives
(FPs), and false negatives (FNs), which help to identify the types of hits and misses made
between the classes.

All work was conducted using a dedicated NVIDIA GeForce RTX 3050 6GB Graphics
Processing Unit (GPU) and a 13th Gen Intel® Core™ i5-13450HX processor (16 GB CPUs),
~2.4 GHz.

3. Results
3.1. Chemical Analysis

The nitrogen concentration measured in the diagnostic (indicator) leaf (IL) at the
vegetative (V4) and reproductive (R1) phenological stages is presented in Figure 3.
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Figure 3. Graphical representation of the chemical analysis for N (g-Kg~1) in the diagnostic leaf at
stages V4 and R1 as a function of N (mMol-L~!) in the nutrient solution.

Marked differences in the nitrogen concentration of the diagnostic leaf at the two
evaluated stages yielded sufficient separability to define distinct classes and to compare
algorithm performance. At both V4 and R1, the nonomission treatments showed higher
diagnostic leaf nitrogen concentrations than the lower-N treatments.

3.2. ReliefF Feature Ranking

ReliefF identified the texture features, homogeneity, dissimilarity, and contrast as the
most influential contributors to constructing the classification models, as shown in Figure 4.

3.3. Algorithm Performance

Table 3 presents the performance metrics for each classifier at the V4 and R1 phenolog-
ical stages.

Table 3. Results for accuracy (%), total cost (%), F1-score (%), precision (%), sensitivity (%), prediction
speed (Obs/s), and training time (s) used as metrics to evaluate the performance of machine learning
classifiers for stages V4 and R1 in corn hybrids in the discrimination of N doses.

Accuracy Total Cost F1-Score Precision Sensitivity Prediction Speed  Training Time
(%) (%) (%) (%) (Obs/s) (s)
V4
Decision Trees 61.5 154 60.7 60.4 61.5 31,000 56,524
Naive Bayes 49.0 204 43.5 46.7 49.0 150 94.506
Support Vector Machines 78.7 85 78.6 78.7 78.7 12,000 60,687
K-Nearest Neighbors 777 89 75.6 77.8 777 700 17.324
Neural Network 80.7 77 80.7 80.7 80.7 25,000 66,648
R1
Decision Trees 70.7 117 70.7 71.3 70.7 55,000 28.527
Naive Bayes 57.7 169 57.0 56.7 57.7 680 112.54
Support Vector Machines 87.0 52 86.9 86.9 87.0 11,000 4.3941 x 10°
K-Nearest Neighbors 79.7 81 79.1 80.4 79.7 650 2844.7
Neural Network 86.5 54 86.5 86.8 86.5 19,000 41896 x 10°
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Figure 4. Importance scores of texture features (GLCM) estimated by the ReliefF algorithm. Blue
bars show the importance of all features; red bars highlight the three most influential features—
Homogeneity (0.0116), Dissimilarity (0.0111), and Contrast (0.0091). Negative values indicate an
inverse contribution to prediction. The x-axis shows importance scores (x1073); the y-axis lists
the features.

Accuracy values for the support vector machine (SVM) and artificial neural network
(ANN) at V4, and for SVM, ANN, and k-nearest neighbors (KNN) at R1, were considered
good, falling in the 80-89% range. The ANN achieved accuracy above 80% at both stages
(80.7% and 86.5%), indicating stable performance for the problem addressed. In Table 2,
the total cost values for ANN and SVM were lower than those of the other models at both
stages. Additional metrics (F1-score, precision, and sensitivity) were also computed to
assess performance. In this case, F1-score, precision, and sensitivity were satisfactory for
ANN, SVM, and KNN at both stages, whereas the decision tree and naive Bayes classifiers
yielded lower values, indicating poorer performance for this type of experiment.

Naive Bayes (NB) and k-nearest neighbors (KNN) exhibited lower prediction speeds,
whereas the support vector machine (SVM) and the artificial neural network (ANN) showed
higher training times, factors that are critical when selecting acceptable latency in scenarios
requiring real-time responses. Both SVM and ANN perform well on complex, nonlinear
data; however, this typically comes at the cost of longer training and greater computational
demand during model fitting. In contrast, compared with ANN, SVM generally entails
lower computational complexity, enabling faster and more efficient model construction,
particularly for datasets of moderate size.

3.4. Confusion Matrix and ROC Curves

Figures 5 and 6 graphically present the confusion matrices for the V4 and R1 stages,
respectively. Figures 7 and 8 show the ROC curves for the naive Bayes, decision tree, k-
nearest neighbors (KNN), support vector machine (SVM) and artificial neural network
(ANN) models at V4 and R1, respectively.
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Figure 5. Confusion matrix of the NB, DT, K-NN, SVM and ANN algorithms at stage V4 in a

maize hybrid.



AgriEngineering 2025, 7, 317 13 of 22

Naive Bayes Decision Trees

True Class
True Class

1 2 3 4 1 2 3 4
Predicted Class Predicted Class

K-Nearest Neighbors Support Vector Machines

)

True Class
True Class

w

" e 1 2 3 4
Predicted Class Predicted Class

Artificial Neural Network

2 2
13
173
9
o
g
=
3 1 28
4 20 0
1 4
Predicted Class

Figure 6. Confusion matrix of the NB, DT, K-NN, SVM and ANN algorithms at stage R1 in a
maize hybrid.
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In Figure 5, across all test confusion matrices, the classes corresponding to nitrogen
omission and excess treatments (D1, D2, and D4) achieved the highest numbers of correct
classifications. The ROC curves in Figure 6 corroborate the confusion matrix findings for
stage V4, the class with full nitrogen omission (D1) contributed most to correct classifica-
tions. This class exhibited higher true positive rates across all algorithms and lower false
positive rates for KNN, SVM, and ANN. Overall, all algorithms showed high sensitivity
for detecting images with nitrogen deficiency; however, the naive Bayes (NB) and decision
tree (DT) models yielded lower precision.

In Figure 7, the confusion matrices for the R1 phenological stage show increased correct
predictions for classes D1, D2, and D3 compared with V4, with D1 standing out as the
best-performing class across models. By contrast, the excess nitrogen class (D4) exhibited
the highest misclassification rates, except for the artificial neural network (ANN), which
achieved superior performance for this group. Consequently, ANN was the only model
to improve D4 classification at R1, likely due to its ability to capture complex, nonlinear
patterns under substantial interclass overlap and subtle within class variation.

In Figure 8, the ROC curve obtained by the SVM model exhibited behavior similar
to that of the artificial neural network (ANN), but with higher true positive rates for
most classes, except for the excess nitrogen class (D4). The ANN, in turn, achieved better
performance for class D1 at R1, possibly due to placing greater emphasis on texture features
associated with low nitrogen doses a pattern also observed for the naive Bayes, decision tree,
and k-nearest neighbors (KNN) models. Overall, at the R1 phenological stage, the machine
learning algorithms displayed greater stability and higher classification accuracy across
the nitrogen classes. The omission classes (D1 and D2) showed greater consistency during
modeling, which may be associated with the more evident expression of nitrogen-deficiency
symptoms, thereby facilitating discrimination by the algorithms.

4. Discussion

Differences observed in the chemical analysis shown in Figure 3 suggest the emergence
of patterns suitable for image processing, particularly by enabling the grouping of treat-
ments into distinct classes, which supports the development of classification models based
on texture features and machine learning. Texture attributes such as homogeneity, contrast,
and dissimilarity extracted from the gray-level cooccurrence matrix (GLCM) are widely
used to assess leaf nitrogen status [44,45]. Nitrogen deficiency can affect leaf structural
development, especially the organization of primary and secondary venation, making these
attributes particularly informative when evaluating maize plants across two phenological
stages under insufficient doses, notably in class D1.

Image patches display regions with parallel venation typical of monocots, which
may have facilitated the capture of this pattern and contributed to algorithm performance,
especially for attributes from the contrast group, namely homogeneity, contrast, and dis-
similarity, as confirmed by ReliefF in Figure 4. According to Perico et al. [46], leaf venation
patterns begin with the differentiation of procambial initial cells arising from the ground
meristem during leaf development. Those authors investigated the regulators involved in
venation pattern formation in maize leaves and concluded that distinct combinations of
transporters responsible for auxin flux are activated in a coordinated manner throughout
leaf specification and vein differentiation.

Insufficient nitrogen can influence auxin flux, leading to changes in leaf venation
patterns. Wang et al. [47] investigated an auxin transporter in maize under low nitrogen
conditions and found that plants overexpressing ZmPIN1a showed a pronounced response
to inhibition of auxin transport by NPA (an auxin transport inhibitor), underscoring the
functional relevance of this gene in modulating adaptive responses to nitrogen supply. This
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supports the view that low nitrogen availability can alter venation patterns in maize leaves.
In related work, Jiang et al. [48] reported that enhancing auxin synthesis promotes nitrogen
metabolism and suggested that exogenous auxin application may optimize nitrogen uptake
and assimilation in maize.

Among the performance metrics, accuracy showed consistent values; however, other
metrics were also considered in conjunction. As noted by Tholke et al. [49], accuracy can
appear high simply by favoring the majority class in scenarios of class imbalance, without
reflecting the classifier’s true ability to identify the minority class. This issue did not arise
in the present study, since all classes were carefully balanced with 1000 images each.

The shallow neural network used here consists of a single hidden layer between the
input and output layers. The model was implemented in MATLAB using the patternnet
function configured with 10 hidden neurons, with weights and biases randomly initialized
during training, and employing a ReLU activation function. This configuration of fully con-
nected layers is well suited to recognizing complex patterns, which may have contributed
to the strong performance observed in this study.

Wen et al. [50] reported accuracies above 90% using artificial neural networks to
recognize thermal behavior of reactions in isoperibolic semibatch reactors, and concluded
that the trained artificial neural network was ideal due to low time complexity and high
effectiveness, comparing it with naive Bayes, support vector machine, and k nearest
neighbors, the same algorithms evaluated in this study.

Adjustments to artificial neural network hyperparameters, such as the number of
hidden layers, the learning rate, and the activation function during optimization, can
help reduce total cost. Moreover, neural networks are effective at capturing complex and
nonlinear patterns in high-dimensional datasets [51], such as images, so they often achieve
superior performance when many interrelated features are present, for example, the texture
attributes used here, which is consistent with the lower total cost and with the reductions
in errors and overfitting observed in this study.

Cost-sensitive approaches in machine learning can employ hyperplane shifting tech-
niques, modifications to the sample space, or increases in spatial resolution. According to
Castro and Braga [52], with the standard backpropagation algorithm, convergence speed
can be impaired in studies with imbalanced classes, which requires changes to the original
cost function. This issue did not arise in the present study because the classes were balanced
during preprocessing.

The properties of the support vector machine and the neural network likely con-
tributed to assigning instances to distinct nitrogen classes, due to similar patterns in texture
values regardless of direction and to the filters applied to characterize these data, which
together help explain the superior results obtained by these algorithms at both V4 and R1.

These results are consistent with Meza et al. [53]. In the study “Comparative Analysis
of the Implementation of Support Vector Machines and Long Short Term Memory Artificial
Neural Networks”, the authors report that support vector machines and artificial neural
networks show a strong ability to capture complex nonlinear patterns in data. However,
the artificial neural network has a more sophisticated architecture and a large number of
parameters, and requires longer training time and greater computational resources.

Regarding the Receiver Operating Characteristic curve, Castro and Braga [52] state
that it reflects classification errors in terms of the probability of correctly detecting the class
versus the fraction of examples incorrectly classified, which is known as the sensitivity—
specificity trade-off. The D1 treatment class may display more pronounced and clearer
signs of nitrogen deficiency, which contributes to higher rates of correct classification, as ev-
idenced in Figures 6 and 8. This behavior agrees with recent observations by Shu et al. [54],
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who showed that the absence of nitrogen produces more evident foliar symptoms, facilitat-
ing detection by hyperspectral imaging combined with machine learning algorithms.

An imbalance in nitrogen supply may have induced patterns in the arrangement of
foliar structures, which were captured by the gray-level cooccurrence matrix primarily
through variability in pixel intensity along the leaf blade, yielding higher values for texture
groups such as homogeneity, dissimilarity, and contrast, as highlighted by the ReliefF test.
In addition, the higher accuracies observed for the omission classes D1 and D2 and for the
excess class D4 may be related to scalar pixel intensity expressed by leaf characteristics
under these conditions, such as chlorosis and a very dark green color, which after conversion
to grayscale is registered in pixel tone. This behavior is consistent with recent studies; for
example, Zhang et al. [44], which showed that gray level cooccurrence texture features
including contrast, homogeneity, and dissimilarity, when combined with spectral indices,
are strongly correlated with nitrogen content in wheat.

The unsatisfactory performance of the naive Bayes algorithm in the classification task
using image-derived features can be largely attributed to its fundamental assumption
of independence among input variables. This assumption is inadequate when features
are correlated, as often occurs between tonalities and texture patterns obtained from the
gray-level cooccurrence matrix. In this regard, Chen et al. [55] introduced a correlation
factor to adapt naive Bayes to settings where features are not independent, and showed
that this modification can improve classifier performance. In addition, in the present study,
we used the box kernel as the smoothing hyperparameter, which means the model did not
adopt a specific parametric form such as the Gaussian distribution for continuous features.

By contrast, the decision tree algorithm is prone to overfitting, especially in scenarios
with noise and irrelevant features, which compromises generalization. Moreover, its se-
quential one-variable-at-a-time splitting mechanism tends to capture complex interactions
among features, such as color and texture patterns in maize leaf images, less effectively.
Recent approaches, such as that by Azad, Nehal, and Moshkov [56], mitigate these limi-
tations by combining multiple trees through majority voting, which increases robustness
and accuracy, and by integrating models into cloud platforms with real-time data, which
supports performance and scalability in precision agriculture [57].

As noted by Cheng et al. [58], the relationship between leaf nitrogen content and
image-derived characteristics varies with the phenological stage. Around flowering, at VT
and R1, and especially at the onset of grain filling, the physiological demand for nitrogen
is directed to reproductive structures, with nitrogen remobilized from leaves to ears and
grains. As a result, leaves tend to show lower nitrogen contrast among treatments, in part
due to chlorophyll decline, which can reduce differences in texture attributes among classes
and hinder discrimination by conventional algorithms.

5. Conclusions

This study demonstrated that texture attributes extracted by the gray-level cooccur-
rence matrix are effective for discriminating maize leaves subjected to different nitrogen
doses, enabling the construction of classification models with good performance and
moderate computational cost. Feature selection indicated homogeneity, dissimilarity, and
contrast as the most informative descriptors, aligning texture behavior with anatomical
and physiological patterns associated with nutritional status.

Among the evaluated algorithms, the artificial neural network showed the most stable
performance across the two phenological stages, followed by support vector machine and
k nearest neighbors, whereas decision tree and naive Bayes were less suitable for this
task. Confusion matrix and receiver operating characteristic analyses highlighted greater
separability for the omission and excess nitrogen classes, with D1 standing out, while
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D4 was more challenging in some scenarios, except for the neural network. Differences
observed in the chemical analysis corroborated class separability and supported the results
obtained with computer vision.

The findings also indicate an influence of phenological stage on discriminability,
especially in later phases such as R1, because the redistribution of nitrogen to reproductive
structures tended to increase the power of discrimination when using texture attributes
alone, enabling the models to maintain accuracy levels suitable for screening and decision
support applications.

As a practical implication, the proposed approach has the potential to be integrated
into precision agriculture workflows, contributing to the diagnosis of nitrogen status and
supporting management decisions, including variable-rate dose recommendations. As
limitations, it is important to highlight the use of leaf images under controlled conditions
and the reliance on texture attributes derived from RGB images. Future studies should con-
sider the inclusion of deep learning networks, field validations, multiple growing seasons
and genotypes, integration with spectral indices, multisensor data, edge detection, and the
use of UAV-acquired RGB images, as well as the assessment of latency and scalability in
operational scenarios.
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