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A B S T R A C T

In agriculture, water deficit stress is among the main causes of crop yield losses, particularly in leafy vegetables, 
which are highly sensitive. The need for efficient irrigation management and the early identification of potential 
yield gaps encourage the development of predictive models and the integration of more precise technologies. 
From this perspective, infrared radiation cameras in the capture of thermal information have potential for 
application. The objective of this study was to develop predictive models of yield and soil water content in leafy 
vegetables crops, specifically lettuce and arugula, by integrating thermal images obtained using infrared radi
ation cameras. Two experiments were carried out in Piracicaba, São Paulo, Brazil, using lettuce and arugula 
crops, each with two growing cycles. A randomized complete block design (RCBD) was adopted, with three 
irrigation levels: 100, 80, and 60 % of crop evapotranspiration replacement. For model development, crop yield 
was assessed based on shoot biomass at harvest, and soil water content was measured using tensiometry-based 
sensors. The Crop Water Stress Index (CWSI) and the normalized temperature difference (ΔT) were calculated 
from thermal images of the plant canopy. Yield prediction models exhibited R2 values of 0.71 and 0.82 using 
CWSI, and 0.75 and 0.79 using ΔT, for lettuce and arugula, respectively, with a mean RMSE of 4.87 t ha-1. Soil 
water content prediction models showed R2 values of 0.92 based on CWSI and 0.73 based on ΔT, with a mean 
RMSE of 0.00428 m3 m-3. The developed models demonstrated good predictive performance, indicating their 
applicability for irrigation management and for predicting possible early yield gaps in leafy vegetables. CWSI and 
ΔT values above 0.35 and -0.96 ◦C, respectively, are recommended as critical thresholds to avoid water deficit 
stress in lettuce and arugula crops.

1. Introduction

Despite the ongoing development of the agricultural sector, one of 
the major challenges in agriculture remains achieving high crop yields 
under adverse climatic conditions. It is estimated that potential crop 
yields may be reduced by up to 70 % due to abiotic stresses, depending 
on their level and intensity [1–3]. Water and heat stress are among the 
main factors responsible for yield reductions and may be exacerbated by 
the impacts of climate change. In addition to these challenges, the 
increasing global demand for food and the limitation of natural re
sources require the improvement and adoption of new technologies to 
optimize agricultural practices and support mitigation strategies.

Water stress can be characterized by changes in plant behavior due to 
water availability either above or below the crop’s physiological re
quirements. Under water stress conditions, plants experience impair
ments in essential physiological processes [4], resulting in reduced 
biomass accumulation and productivity. When soil water availability is 
limited, the reduction of transpiration becomes a strategy adopted by 
plants to minimize water loss and ensure survival, as the transpiration 
process is fundamental in regulating leaf temperature. There is a rela
tionship between water stress and ambient temperature, where in
creases in temperature can lead to decreased soil moisture due to 
enhanced soil evaporation. This may intensify water stress by lowering 
leaf relative water content, ultimately reducing water use efficiency in 
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plants [5].
Among the main agricultural crops, leafy vegetables such as lettuce 

(Lactuca sativa L.) and arugula (Eruca sativa L.) hold significant impor
tance in human nutrition, with large-scale production and consumption. 
Global production of major leafy vegetables increased by 69 % between 
2000 and 2021 [6]. A challenge in cultivating leafy vegetables is their 
high sensitivity to water deficit, where soil water availability is a critical 
factor affecting the development and productivity of these crops [4]. 
The large leaf area of these plants promotes intense transpiration, 
increasing water loss to the environment. Additionally, they have a su
perficial root system and poorly lignified tissues, making them more 
vulnerable to stress caused by water deficit compared to other crops [6]. 
Consequently, leafy vegetables are highly dependent on irrigation, 
requiring constant soil water replacement.

To mitigate these negative impacts, it is essential to adopt efficient 
water management strategies. Therefore, it is necessary to implement 
approaches that determine the appropriate timing and amount of water 
to address crop water requirements, which can be based on climate, soil, 
and/or plant information. However, traditional irrigation management 
strategies still present limitations in obtaining this information, as some 
involve lengthy analysis periods, destructive sampling, and provide only 
point measurements, such as the direct method for determining soil 
moisture by gravimetry, which requires taking soil samples from the 
field and a prolonged drying process. Other strategies require many 
sensors that are costly and need calibration through direct measure
ments, such as the use of Time Domain Reflectometry (TDR) and Fre
quency Domain Reflectometry (FDR) sensors to determine soil moisture 
[7]. Another way to overcome yield gaps due to water deficit is through 
early stress detection and yield prediction. In this context, the use of 
thermal images captured by infrared radiation cameras has gained sig
nificant attention due to their ability to provide real-time assessments of 
plant water status [8].

In agriculture, there are predictive models that use data provided by 
sensors or direct measurements integrated with agronomic characteris
tics related to plant morphology and physiology [3,9]. Among these, the 
integration of predictive models with thermal images has gained 
prominence. Besides being commonly used for water stress detection, 
thermal imaging also has potential for predicting yield and soil water 
content, thereby assisting irrigation management [10]. However, some 
models used for this purpose are complex and require a large quantity 
and variety of data, which are often difficult to obtain, making their 
practical application less accessible to farmers. Employing less complex 
models, particularly those informed by accurate and dependable data 
from infrared cameras, can improve the accessibility of this approach 
and increase its potential for agricultural applications.

Infrared cameras are sensors that measure radiation emitted by 
target objects within the infrared wavelength range and convert it into 
thermal images. These images provide the temperature distribution of 
the objects across different temperature gradients. Canopy temperature 
is an indicator of crop water stress [11–13]. The detection of tempera
ture to assess water stress depends on the plant’s transpiration process. 
Under water deficit conditions, stomatal closure occurs, resulting in 
reduced water vapor release to the atmosphere. Consequently, leaf 
temperature increases due to the decreased cooling capacity of the 
leaves [14–16]. Compared to traditional methods, thermal imaging can 
capture large-scale spatial variability across the entire field, rather than 
just at specific points [17]. In addition, it enables rapid and 
non-destructive identification with lower labor requirements [9,18–20], 
offering a comprehensive understanding of soil–plant–atmosphere 
interactions.

Canopy temperature alone is not considered an efficient indicator of 
water stress [21]. Therefore, water stress can be characterized through 
thermal indices, such as the normalized temperature difference (ΔT) and 
the Crop Water Stress Index (CWSI) [22,23]. ΔT is obtained by calcu
lating the difference between canopy temperature and air temperature, 
while CWSI is a more robust index that, in addition to comparing canopy 

and air temperatures, also incorporates reference values for 
well-irrigated and severely stressed plants [24,25]. Among these, CWSI 
is the most commonly used index for stress detection, as it overcomes the 
influence of other environmental parameters that affect plant tempera
ture [3]. However, the practical application of this index is still limited, 
mainly due to the complexity of data acquisition and associated costs. 
Nevertheless, there are mobile applications capable of calculating CWSI 
based on temporal parameters using empirical and theoretical models, 
which reduce their complexity [26], Additionally, infrared thermo
graphic cameras with lower acquisition costs, depending on their 
embedded technology level, are becoming more available, improving 
the accessibility of this approach for farmers [27,28].

Recent literature demonstrates the frequent use of thermal imaging 
as a diagnostic tool for water stress in agricultural crops. In this context, 
research has been conducted in wheat [3,10,20,29], soybean [30], 
maize [11,21], citrus [27,31], grapevine [32–34], sugar beet [35] and 
turfgrass [16]. Some studies have examined correlations between ther
mal data and yield or soil water parameters, revealing strong associa
tions and demonstrating the potential for developing predictive models. 
For example, Ma [20] observed correlations between the CWSI, biomass, 
and yield in wheat under different water conditions and phenological 
stages. Similarly, Morales-Santos and Nolz [30] found correlations be
tween various thermal indices and soil water potential in soybean at 
different depths (0.20, 0.40, and 0.60 m).

While the use of thermal imaging is analyzed in grain and fruit crops, 
its application in leafy vegetables remains largely unexplored and re
quires further research. In addition to the applications found in the 
highlighted studies, further detail of these parameters is still required in 
irrigation management. These studies associate thermal information 
with qualitative aspects of irrigation management, relying on other 
strategies and information to be applicable in the field. Therefore, 
studies integrating soil moisture information with thermal indices in a 
quantitative manner are needed to support irrigation management 
decisions.

Considering the importance of thermal information and its rela
tionship with crop yield and soil water dynamics, this study hypothe
sized that it is possible to develop predictive models by integrating 
thermal image data to provide assessments of water stress, soil water 
content, and crop yield. These models can assist in irrigation manage
ment and early detection of yield gaps, especially in leafy vegetables, 
which have short production cycles and are highly sensitive to water 
deficit stress. The objective of this study was to develop predictive 
models, based on regression and correlation analysis, for yield and soil 
water content in the cultivation of leafy vegetables, specifically lettuce 
and arugula, by integrating thermal images obtained from infrared ra
diation cameras.

2. Material and methods

2.1. Experimental area

The study was conducted in a protected environment at the experi
mental area of the Department of Biosystems Engineering, “Luiz de 
Queiroz” College of Agriculture (ESALQ), belonging to the University of 
São Paulo (USP), in Piracicaba, São Paulo, Brazil (22◦42′32″ S, 47◦37′45″ 
W, 546 m of altitude).

The regional climate, according to the Köppen classification, is 
characterized as a humid subtropical zone (Cwa), with hot and humid 
summers and dry winters. The region has an average annual precipita
tion of 1280 mm, a mean air temperature of 21.6 ◦C, an average relative 
humidity of 73 % [36] and a mean maximum reference evapotranspi
ration of approximately 5.78 mm dia-1 [37].

The local soil is classified as Red-Yellow Latosol [38], with a clayey 
texture. The physical (Clay, silt and sand) and hydro-physical (Bd, θFC, 
θPWP and AWC) soil properties as well as the chemical soil parameters for 
the two cropping cycles, corresponding to the 0–0.20 m layer, are 
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presented in Tables 1 and 2, respectively.

2.2. Experiment setup and management

In this study, two simultaneous experiments were conducted with 
leafy vegetables: one with lettuce (Experiment 1) and another with 
arugula (Experiment 2). The plants were grown in a protected envi
ronment to ensure greater experimental control and data reliability, 
while minimizing external climatic influences. The structure was 
covered with 150 µm thick transparent light-diffusing plastic and had 
lateral protection made of 50 MESH aphid-proof screens, manufactured 
from polyethylene allowing air exchange with the environment. The 
structure presented a ceiling height of 4 m and dimensions of 20 m in 
length and 10 m in width.

To initiate the experiments, soil tillage was performed to prepare the 
cultivation beds. Each bed measured 1.25 m in length, 0.4 m in width, 
and 0.2 m in height, resulting in an effective area of 0.5 m2. A spacing of 
1 m was left between beds to prevent water flow from one bed to 
another, since irrigated cultivation was carried out. At the time of bed 
construction, 25 L of well-composted cattle manure were incorporated 
per bed, with a composition of 336 kg ha-1 N, 125 kg ha-1 P2O5, 113 kg 
ha-1 K2O, 136 kg ha-1 Ca and 42 kg ha-1 Mg. In addition, mineral 
fertilization at planting was carried out by applying 40 kg ha-1 N, 300 kg 
ha-1 P2O5 and 150 kg ha-1 K2O per bed. All fertilization recommenda
tions were made according to Van Raij [39], based on the soil chemical 
analysis (Table 2).

Each experiment was conducted over two cropping cycles. The first 
cycle lasted from May 30, 2022, to July 9, 2022, and the second from 
July 19, 2022, to August 28, 2022, with each cycle lasting 40 days. In 
Experiment 1, the lettuce cultivar Vanda® was used, characterized as a 
crisphead type with high hardiness and adaptability to various growing 
conditions, and it is the most widely planted cultivar in Brazil. Lettuce 
was sown in polyethylene trays, and seedlings were transplanted to the 
beds 25 days after sowing (DAS). Lettuce was grown in double rows, 
spaced 0.20 m between rows and 0.30 m between plants, totaling 8 
plants per bed. During the lettuce cultivation, three topdressings via 
fertigation were performed, applying 25 kg ha-1 of N at 10, 20, and 30 
days after transplanting (DAT). In Experiment 2, the arugula cultivar 
Astro® was used, characterized by broad leaves and less lobed shape, 
with high tolerance to premature bolting. Arugula was sown directly in 
the soil in double rows, using a higher density than recommended for the 
crop to allow for subsequent thinning of seedlings. After the emergence 
of two true leaves, excess seedlings were thinned, resulting in 100 plants 
per bed, spaced 0.20 m between rows and 0.025 m between plants. 
During arugula cultivation, three topdressings via fertigation were 
applied, with 40 kg ha-1 of N at 10, 17, and 24 DAS.

2.3. Experimental design

The experiments were conducted using a randomized complete block 
design (RCBD). Lettuce and arugula plants were subjected to three 
treatments, corresponding to different water replacement levels relative 
to crop evapotranspiration (ETc): 100, 80, and 60 % of ETc. These 
conditions represent optimal water availability without water stress 
(100 % ETc), moderate water deficit (80 % ETc), and severe water 
deficit (60 % ETc). Each treatment consisted of five replications, with 
each bed considered as an experimental unit.

2.4. Irrigation system and management

A drip irrigation system was installed in the protected environment. 
Each experimental unit contained a 1.25 m long drip line positioned at 
the center, with an independent irrigation system and valves installed at 
the beginning of each bed to allow precise control of the different water 
replacement treatments. The drip tape had a diameter of 0.016 m, with 
emitters spaced every 0.20 m, totaling seven emitters per line. The 
emitters, featuring pressure-compensating and anti-siphon characteris
tics, had a flow rate of 1.6 L h-1 each, resulting in a total flow rate of 11.2 
L h-1. The system was operated by a KSB 500 N motor pump at a working 
pressure of 1.0 bar. Irrigation uniformity was evaluated by calculating 
the Christiansen Uniformity Coefficient (CUC), obtaining a value of 98.5 
%, indicating a high level of uniformity.

Inside the protected environment, a meteorological station was 
installed to monitor climatic variables during the experiments. The 
station was equipped with air temperature and relative humidity sensors 
(HMP45C), a solar radiation sensor (LI200X), and a barometer (CS106), 
with readings taken every 15 min, connected to a CR23X datalogger 
(Campbell Scientific, Logan, Utah, USA).

Irrigation management was performed using climate-based method 
to determine the water demand for each irrigation event. ETc was esti
mated according to the methodology proposed by FAO 56, calculated 
using Eq. (1). Reference evapotranspiration (ETo) was estimated 
following the Penman-Monteith equation (Eq. (2)). The crop coefficient 
(Kc) values used for lettuce were 0.70, 1.00, and 0.95, while for arugula 
they were 0.80, 1.00, and 1.05, corresponding to the initial, interme
diate, and final growth stages, respectively, also according to FAO 56 
[40]. 

ETc = ETo Kc (1) 

where ETc is the crop evapotranspiration (mm day-1), ETo is the refer
ence evapotranspiration (mm day-1), and Kc is the crop coefficient 
(dimensionless). 

ETo =

0.408 Δ (Rn − G) + γ
(

900
T + 273

)

u2 (es − ea)

Δ + γ (1 + 0.34 u2)
(2) 

where Rn is the surface radiation balance (MJ m-2 D-1), G is the soil heat 
flux density (MJ m-2 D-1), T is the air temperature at 2 m height ( ◦C), u2 
is the wind speed at 2 m height (m s-1), es is the saturation vapour 
pressure (kPa), ea is the partial vapour pressure (kPa), Δ is the slope of 
the saturation vapour pressure curve (kPa ◦C-1) and γ is the psychro
metric constant (kPa ◦C-1).

The irrigation depth (ID) for each treatment was calculated using 
Eqs. (3),4, and 5, considering a system application efficiency (Ea) of 95 
%. Irrigations were performed with daily irrigation shifts at 8:00 a.m. 

ID100 =
ETc
Ea

(3) 

ID80 = (ID100) 0.80 (4) 

ID60 = (ID100) 0.60 (5) 

Table 1 
Physical and hydro-physical soil properties in the 0–0.20 m layer.

Bd θFC θPWP AWC Clay Silt Sand

g cm-3 m3 m-3 mm %
1.28 0.41 0.28 26.00 54.93 15.26 29.81

Bd: bulk density; θFC: moisture at field capacity; θPWP: moisture at permanent 
wilting point; AWC: available water capacity.

Table 2 
Chemical soil parameters in the 0–0.20 m layer.

Cycle pH CaCl2 Ca Mg K H Al CEC V

​ - mmolc dm-3 %
First 5.8 53.0 21.0 7.8 14.0 0.0 95.8 85.4
Second 5.6 65.0 21.0 8.2 16.0 0.0 110.2 85.5
​ OC P resin S B Cu Zn Mn Fe
​ g dm-3 mg dm-3 ​ ​ ​ ​ ​ ​
First 26.0 69.0 25.7 0.2 1.2 2.7 8.1 9.0
Second 23.0 70.0 24.8 0.2 1.5 2.6 9.5 8.0

OC: Organic carbon; CEC: cation exchange capacity; V: base saturation.
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where ID100 is the irrigation depth for 100 % ETc replacement (mm), 
ID80 is the irrigation depth for 80 % ETc replacement (mm), ID60 is the 
irrigation depth for 60 % ETc replacement (mm), ETc is the crop 
evapotranspiration (mm day-1), and Ea is the application efficiency 
(expressed as a decimal).

2.5. Monitoring and assessment of soil water content

To monitor soil water content, tensiometers were installed in all 
treatments of both experiments and cropping cycles, at the 0–0.20 m soil 
depth. The tensiometers were installed in three experimental units per 
treatment, with three replications in each unit, and positioned in the 
center of the experimental unit, between the two crop rows. Tensiometer 
is a soil sensor that, through a porous ceramic cup in contact with the 
soil, enables water exchange between the soil and the tube, creating a 
vacuum that reflects the tension at which water is retained in the soil. 
From the soil water potential (-kPa) readings obtained using a digital 
tensimeter, the soil water content (m3 m-3) was indirectly determined 
using the soil water retention curve (Fig. 1).

To obtain the soil moisture points that compose the soil water 
retention curve, undisturbed soil samples were collected from the 
0–0.20 m layer, with three replications. The soil moisture points were 
determined by subjecting the soil samples to a Richards pressure 
chamber at pressure heads of 0, –10, –20, –40, –100, –300, –500, –1000, 
and –1500 kPa, following the procedures described by Camargo [41]. 
The soil water retention curve was fitted using the Van Genuchten model 
[42]. The fitted parameters of the soil water retention curve are pre
sented in Table 3.

Soil water potential readings were taken daily to validate the 
climate-based irrigation management. For the study on the prediction of 
soil water content using thermal imaging data, the readings collected on 
the same day as the thermal images were considered. Despite the dif
ferences in canopy architecture and leaf morphology between the two 
leafy vegetables, there is a similarity in the water demand of the crops 
[40] and due to the comparable behavior of both crops across the two 
cropping cycles, the predictive model of soil water content was devel
oped by integrating data obtained from both cycles and both crops, to 
increase the model’s reliability.

2.6. Thermal image data acquisition and processing

The sensor used to acquire thermal images of the lettuce and arugula 
canopies was a FLIR T640 Duo Pro R thermal camera, which operates in 
the spectral band of 7.5–13.5 µm, with a resolution of 640 × 512 pixels 
and a thermal sensitivity of <50 mK. Prior to image acquisition, the 

thermal camera was configured according to the prevailing meteoro
logical conditions at the time of image capture. Additionally, the emis
sivity (ε) was set to 0.95, in accordance with the spectral signature of the 
target surface.

One thermal image was acquired for each experimental unit. Image 
acquisition was standardized in terms of camera positioning distance 
from the canopy (1.5 m), parallel to the canopy (top view), with 
acquisition time (between 12:00 and 13:00 local time), and the pre
vailing meteorological conditions. All images were captured under 
clear-sky conditions, without cloud cover, when the crops were at the 
final stage of development (35 DAT), close to harvest. At this stage, the 
vegetative growth of the crop stabilizes.

Following acquisition, the images were processed using FLIR Ther
mal Studio® software, version 2.0.11. The images were imported and 
processed to minimize noise and potential contamination from pixels 
outside the experimental unit. To increase the precision of the thermal 
information, each image was cropped to include only the usable area of 
the experimental unit. The images were then classified using the “iron” 
color palette, and the temperature scale (minimum and maximum) was 
standardized. To sample temperature data, a line was drawn parallel to 
the longest dimension of each image at the center of the experimental 
unit. Five points were randomly selected along this line to obtain an 
average canopy temperature, which was subsequently used to calculate 
other thermal parameters, including ΔT and CWSI. Fig. 2 shows the 
main steps involved in the acquisition and processing of the thermal 
images.

2.7. Thermal parameters

The crops water status was characterized using CWSI and ΔT. To 
calculate the CWSI, two reference limits were required to normalize the 
effects of atmospheric conditions on canopy transpiration and temper
ature [24,25]. These limits include the baseline for a non-stressed plant 
(Twet), representing a well-irrigated crop with no water restrictions, 
and the baseline for a water-stressed plant (Tdry), indicating a crop with 
limited or nearly no transpiration due to stomatal closure.

Fig. 1. Flowchart of soil water content determination. Cap (1); rubber stopper (2); acrylic tube (3); tensiometer (4); PVC tube (5); soil moisture monitoring depth (6); 
and porous cup (7). FC: Field capacity; PWP: Permanent wilting point.

Table 3 
Soil water retention curve parameters in the 0–0.20 m layer.

θr θs α n m R²

m3 m-3 m-1 - - -
0.128 0.537 1.286 1.101 0.092 0.992

θr: residual water content; θs: saturated water content; α: inverse of the air-entry 
potential in the structural pore space; n: empirical curve fitting parameter; m: 
Mualem restriction parameter; R²: determination coefficient.
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In general, the baseline limits can be determined using an empirical 
approach [43], through natural wet and dry reference surfaces [44], or 
under actual field conditions. In this study, the baselines were estab
lished based on real field conditions obtained from the experiments. 
Specifically, thermal image temperature thresholds from the 100 % and 
60 % ETc irrigation treatments were used to represent the non-stressed 
(Twet) and water-stressed (Tdry) conditions, respectively. Therefore, 
the CWSI was calculated using Eq. (6) [25]. CWSI values can range from 
zero to one (0–1). A CWSI value of 0 indicates the absence of water 
stress, while a value of 1 corresponds to maximum water stress. 

CWSI =
(Tc − Ta) − Twet

Tdry − Twet
(6) 

where CWSI is the Crop Water Stress Index (dimensionless), Tc is the 
canopy temperature ( ◦C), Ta is the air temperature at the time of Tc 
acquisition ( ◦C), Twet is the baseline canopy temperature of a non- 
stressed plant ( ◦C), and Tdry is the baseline canopy temperature of a 
water-stressed plant ( ◦C).

The ΔT was calculated using Eq. (7). ΔT values can be negative, zero, 
or positive. A negative ΔT value indicates the absence of water stress, 
while a positive value corresponds to the presence of water stress. 

ΔT = Tc − Ta (7) 

where ΔT is the normalized temperature difference ( ◦C), Tc is the 
canopy temperature ( ◦C), and Ta is the air temperature at the time of Tc 
acquisition ( ◦C).

Based on the critical soil water potential of − 20 kPa for leafy vege
tables, as established by Marouelli [45], the generated models identified 
the critical limits of CWSI and ΔT, considering both leafy vegetables.

2.8. Crop yields of lettuce and arugula

In both cropping cycles of the two analyzed crops, the cycle duration 
was 40 days. Yield was measured by obtaining the fresh mass of the 
aerial parts, consisting only of leaves and stems. Plants were cut at soil 
level and weighed using an analytical balance (precision 0.001 g). Yield 
was extrapolated to t ha-1, considering the amount produced in each 
experimental unit.

2.9. Statistical analysis and models evaluation

To analyze data behavior and variability, descriptive statistical 
analysis was performed. To develop the prediction models for yield and 
soil water content, regression and correlation analysis was conducted 

between these variables and both CWSI and ΔT. Model performance was 
evaluated using the following statistical indicators: root mean square 
error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency 
(NSE), Willmott’s index of agreement (d), Pearson correlation coeffi
cient (r), and confidence index (c). The statistical indicators were 
calculated using Eqs. (8) to 13, respectively. All statistical indicators 
were performed based on the individual observed (Oi) and predicted (Pi) 
values, and their respective means (Ō and P‾), and the number of data 
points (N). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Σ (Pi − Oi)²

N

√

(8) 

MAE =
Σ |Pi − Oi|

N
(9) 

NSE = 1 −

[
Σ (Oi − Pi)²
Σ (Oi − O)²

]

(10) 

d = 1 −

[
Σ (Pi − Oi)²

Σ (| Pi − O | + |Oi − O |)²

]

(11) 

r =
Σ (Pi − P)(Oi − O)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ (Pi − P)² (Σ Oi − O)²
√ (12) 

C = r d (13) 

An RMSE below 10 % is classified as perfect, between 10 % and 20 % 
as good, between 20 % and 30 % as acceptable, and above 30 % as poor. 
NSE values between 0 and 1 are considered acceptable levels of per
formance, with values closer to 1 indicating better model performance, 
whereas values below 0 indicate unacceptable performance [46]. For 
the “d” index, values close to 1 indicate acceptable performance, 
whereas values near 0 indicate poor model performance [47]. The r 
values were interpreted according to the classification proposed by 

Fig. 2. Flowchart of thermal image acquisition and processing. ΔT: Normalized temperature difference index; CWSI: crop water stress index.

Table 4 
Classification of Pearson correlation coefficient (r) values.

Pearson correlation coefficient (r) Classification

0.0 - 0.1 Very low
0.1 - 0.3 Low
0.3 - 0.5 Moderate
0.5 - 0.7 High
0.7 - 0.9 Very high
0.9 - 1.0 Nearly perfect
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Hopkins [48] (Table 4). The classification of the “c” index followed the 
interpretation criteria presented in Table 5 [49].

3. Results and discussion

3.1. Meteorological conditions

The observed temperature and solar radiation values during the two 
cycles of lettuce and arugula are presented in Fig. 3. In the first cycle 
(Fig. 3A), the maximum temperature ranged from 23.2 to 36.4 ◦C, 
reaching its maximum value at 34 DAS, when the plants were in an 
advanced vegetative growth phenological stage. The minimum tem
perature varied from 5.6 to 17.6 ◦C, with the lowest temperature 
recorded at 14 DAS, during the initial vegetative development stage. The 
average maximum and minimum temperatures were 31.8 ◦C and 12.3 
◦C, respectively, resulting in a mean temperature of 22 ◦C. Solar radia
tion ranged from 3.0 to 11.6 MJ m-2 day-1, with a mean value of 9.31 MJ 
m-2 day-1.

In the second cycle (Fig. 3B), the maximum temperature ranged from 
18.9 to 37.3 ◦C, with the highest value recorded at 15 DAS. The mini
mum temperature varied from 6.8 to 17.1 ◦C, with the lowest temper
ature observed at 12 DAS. Both the highest and lowest temperature 
events occurred when the crops were in the initial vegetative develop
ment stage. The average maximum and minimum temperatures were 
32.1 ◦C and 12.7 ◦C, respectively, resulting in a mean temperature of 
24.1 ◦C. Solar radiation ranged from 2.6 to 12.9 MJ m-2 day-1, with a 
mean value of 9.3 MJ m-2 day-1.

Vegetable cultivation is influenced by meteorological conditions, 
which directly impact plant growth and development, as well as product 
quality. These crops possess physiological characteristics that make 
them sensitive to significant climatic variations, especially under the 
influence of climate change [50,51]. Many of these vegetables originate 
from temperate climate regions and are adapted to moderate tempera
tures, experiencing difficulties developing under high-temperature 
conditions [52].

Under adverse climatic conditions, which can cause various physi
ological disorders, cultivation in protected environments can favor 
proper crop development [53]. However, very low temperatures may 
reduce photosynthetic rates and delay vegetative growth. Conversely, 
high solar radiation can increase leaf temperature and induce stress in 
plants [54,55]. In both cultivation cycles, the average air temperature 
and solar radiation values were adequate for growing leafy vegetables.

The ETc for lettuce and arugula in both cultivation cycles is pre
sented in Fig. 4. The total water demand for lettuce was 120.1 and 122.4 
mm, while for arugula it was 124.4 and 126.4 mm for the first and 
second cycles, respectively. In the first cycle (Fig. 4A), ETc ranged from 
0.64 to 3.99 mm day-1 for lettuce and from 0.74 to 4.04 mm day-1 for 
arugula cultivation. In the second cycle (Fig. 4B), ETc ranged from 0.90 
to 4.50 mm day-1 for lettuce and from 0.90 to 4.81 mm day-1 for arugula 
cultivation, both considering the 100 % ETc irrigation condition, with 
proportional reductions for the deficit irrigation levels (80 and 60 % of 
ETc).

Although the arugula crop exhibited a higher water demand 
compared to lettuce, the average ETc values for both vegetables were 

similar. In the first cycle, these values were 2.93 mm day-1 for lettuce 
and 3.03 mm day-1 for arugula, while in the second cycle the values were 
2.99 mm day-1 and 3.08 mm day-1, respectively. Comparing the water 
demands across different cycles also showed similarity, with a slight 
increase in the second cycle. Evapotranspiration values are influenced 
by climatic variables during the experimental periods, mainly solar ra
diation, air temperature, and relative humidity [56].

Periods with intense solar radiation and higher air temperatures 
contributed to higher ETc values, as evidenced between June 21 and 24 
in the first cycle, and between August 12 and 15 in the second cycle. 
Additionally, the variation in ETc between cycles is associated not only 
with the meteorological conditions of the cultivation site but also with 
the phenological stage of the crops and their production environment 
[57]. During these periods, the crops were at an advanced vegetative 
development stage, which corresponds to the phase of highest water 
demand.

3.2. Thermal images and canopy temperature parameters

The cultivation of the crops under different irrigation replacement 
conditions was reflected in distinct canopy temperature values, as 
identified by the thermal camera (Fig. 5). A similar color tone pattern 
was observed in the thermal images for each irrigation level, and this 
behavior was consistent across both crop cycles and for both leafy 
vegetables. Under the 100 % ETc condition, the images displayed darker 
tones, indicating lower leaf temperatures. In contrast, under water 
deficit conditions, the canopy exhibited lighter tones, reflecting an in
crease in leaf temperature, most pronounced under the 60 % ETc con
dition and intermediate under the 80 % ETc irrigation replacement.

Table 6 presents the values of canopy temperature, ΔT and CWSI. In 
the first cycle, the average canopy temperatures of lettuce were 24.84, 
26.62, and 27.82 ◦C, while for arugula, the values were 25.30, 27.40, 
and 29.42 ◦C under 100, 80, and 60 % ETc, respectively. This trend of 
increasing temperature values with decreasing water availability was 
also observed in the second cultivation cycle for both crops. In the 
second cycle of lettuce, the average canopy temperatures were 27.04, 
30.04, and 30.96 ◦C, while for arugula, the values were 27.86, 29.96, 
and 31.10 ◦C under the 100, 80, and 60 % ETc irrigation levels, 
respectively.

Considering both cropping cycles, the average canopy temperature 
for lettuce was 25.94, 28.33, and 29.39 ◦C, while for arugula it was 
26.58, 28.69, and 30.26 ◦C, under 100, 80, and 60 % ETc, respectively. 
Compared to the 100 % ETc, canopy temperature in lettuce increased by 
an average of 2.39 and 3.45 ◦C under the 80 and 60 % ETc, respectively. 
For arugula, the increase was 2.11 and 3.68 ◦C under 80 and 60 % ETc, 
respectively. Additionally, the average canopy temperatures recorded 
during the second cycle were higher than those observed in the first 
cycle. This difference is attributed to the air temperature at the time of 
thermal image acquisition, which was 26.35 ◦C in the first and 29.58 ◦C 
in the second cycle.

For lettuce, in the first cycle, the average ΔT values were − 1.51, 
0.27, and 1.47 ◦C under 100, 80, and 60 % ETc, respectively. In the 
second cycle, these values were − 2.54, 0.46, and 1.38 ◦C, respectively. 
For arugula, ΔT values in the first cycle were − 1.05, 1.07, and 3.07 ◦C, 
and − 1.72, 0.38, and 1.52 ◦C in the second cycle, under 100, 80, and 60 
% ETc, respectively. Considering both cycles, the average ΔT values for 
lettuce were − 2.03, 0.37, and 1.43 ◦C, and for arugula were − 1.38, 0.77, 
and 2.30 ◦C under 100, 80, and 60 % ETc, respectively. The ΔT was 
negative under the optimal water replacement condition (100 % ETc). 
When water availability was reduced (80 % and 60 % ETc), ΔT became 
positive. These results confirm that plants under 80 % and 60 % ETc 
were under water stress, as their canopy temperatures exceeded air 
temperature. Conversely, under 100 % ETc, canopy temperatures were 
lower than air temperature, indicating the absence of water stress.

Analyzing the mean CWSI values under the three irrigation levels for 
lettuce, the values were 0.17, 0.61, and 0.91 in the first cycle, and 0.13, 

Table 5 
Criteria for interpreting the performance of estima
tion methods by index “c”.

Index "c" Performance

> 0.85 Great
0.76 - 0.85 Very good
0.66 – 0.75 Good
0.61 – 0.65 Median
0.51 – 0.60 Bad
0.41 – 0.50 Very bad
≤ 0.40 Terrible
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0.69, and 0.85 in the second cycle, for 100, 80, and 60 % ETc, respec
tively. For arugula, the CWSI values were 0.22, 0.49, and 0.73 in the first 
cycle, and 0.17, 0.65, and 0.91 in the second cycle, respectively. 
Considering both cultivation cycles, the average CWSI values for lettuce 
were 0.15, 0.65, and 0.88, and for arugula were 0.20, 0.57, and 0.82, 
under 100, 80, and 60 % ETc, respectively.

The results demonstrated that canopy temperature increased as 
irrigation levels decreased, confirming that water availability directly 
affects a plant’s ability to regulate its temperature through transpiration 
[14,15]. Plants subjected to water deficit reduce stomatal opening to 
minimize water loss, which limits evaporative cooling and consequently 
raises leaf surface temperature [16]. Under higher air temperature 
conditions, the evapotranspiration demand is greater, but the reduction 
in water availability impairs the plant’s ability to respond effectively, 
leading to increased canopy temperatures. The relationship between 
irrigation levels and canopy temperature highlights the importance of 
appropriate irrigation management to prevent severe water stress, 
which could compromise both yield and quality of leafy vegetables.

Negative ΔT values under 100 % ETc irrigation indicate that 
adequately irrigated plants are able to maintain lower leaf temperatures 
than the surrounding air due to efficient evapotranspiration. When 
irrigation is insufficient, exposing the plants to water stress, leaf tem
perature exceeds air temperature. This occurs because transpiration, one 
of the components of evapotranspiration, is fundamental in maintaining 
leaf temperature by dissipating heat, thereby preserving metabolic ac
tivity and the proper functioning of the photosynthetic apparatus [58].

The CWSI is a reliable parameter for assessing water stress levels in 
crops, being directly associated with the plant’s irrigation status. Higher 
CWSI values indicate more severe stress caused by water deficit. In both 
crops and across both growing cycles, CWSI values were higher under 
water stress conditions, with values approaching 1 at 60 % ETc, and 
close to 0 under well-watered conditions (100 % ETc). Moreover, CWSI 

can be used to identify stress thresholds, meaning it is possible to 
determine a specific CWSI value beyond which the crop begins to 
experience water stress.

3.3. Thermal parameters for predicting crop yield

The yield of the leafy vegetables was influenced by the different 
irrigation levels (Table 7). Yield reduction was observed as the amount 
of applied water decreased. For lettuce, in the first cycle, the average 
yields were 51.76, 44.89, and 29.69 t ha-1, and in the second cycle, 
61.82, 48.27, and 41.11 t ha-1, under 100, 80, and 60 % of ETc, 
respectively. For arugula, in the first cycle, the average yields were 
48.24, 34.29, and 23.64 t ha-1, and in the second cycle, 51.15, 32.83, and 
27.68 t ha-1, under 100, 80, and 60 % of ETc, respectively. Considering 
both lettuce growing cycles, the 100 % ETc condition resulted in an 
average yield of 56.79 t ha-1, which was 17.98 % higher compared to the 
80 % ETc treatment and 37.67 % higher than the 60 % ETc treatment. 
For arugula, across both cycles, the 100 % ETc condition resulted in an 
average yield of 49.69 t ha-1, representing a 31.96 % increase over the 
80 % ETc treatment and 48.36 % over the 60 % ETc treatment.

Water deficit is one of the main factors limiting crop yield, repre
senting a major challenge for sustainable production in the context of 
climate change and increasing global food demand. As observed, when 
soil water becomes limited, plants undergo water stress, which can 
trigger a series of metabolic responses that negatively affect growth and 
productivity. This condition can also directly impair physiological pro
cesses such as photosynthesis, nutrient translocation, and maintenance 
of cellular turgor [59,60]. The CWSI is a robust index that is strongly 
correlated with plant physiological indicators. A rise in CWSI is associ
ated with reduced stomatal conductance, which compromises transpi
ration rate and consequently increases leaf temperature [23].

These physiological mechanisms may have been impaired in both 

Fig. 3. Values of maximum and minimum temperature ( ◦C) and solar radiation (MJ m-2 day-1) observed during the experiment. A) first cycle, and B) second cycle.

Fig. 4. Values of crop evapotranspiration (mm day-1) during the experiment. A) first cycle, and B) second cycle.
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Fig. 5. Canopy thermal images of lettuce and arugula under different water replacement levels. A) first cycle, and B) second cycle.

Table 6 
Thermal parameters of lettuce and arugula under different water replacement levels.

Parameters Water replacement levels (%) First cycle Second cycle

Max Min σ x‾ Min x‾ σ
Lettuce

Canopy temperature ( ◦C) 100 25.20 24.30 24.84 0.34 27.50 26.50 27.04 0.36
​ 80 26.90 26.30 26.62 0.23 30.50 29.00 30.04 0.61
​ 60 28.10 27.50 27.82 0.26 31.60 29.80 30.96 0.69

ΔT ( ◦C) 100 − 2.05 − 1.15 − 1.51 0.34 − 3.08 − 2.08 − 2.54 0.36
​ 80 0.55 − 0.05 0.27 0.23 0.92 0.52 0.46 0.61
​ 60 1.75 1.15 1.47 0.26 2.02 0.22 1.38 0.69

CWSI 100 0.24 0.13 0.17 0.04 0.20 0.10 0.13 0.04
​ 80 0.68 0.53 0.61 0.06 0.78 0.49 0.69 0.12
​ 60 0.97 0.84 0.91 0.05 0.94 0.65 0.85 0.12

​ ​ Arugula

Canopy temperature ( ◦C) 100 26.31 24.10 25.30 0.81 28.20 27.30 27.86 0.35
​ 80 28.30 26.60 27.42 0.65 30.40 29.70 29.96 0.32
​ 60 30.90 28.80 29.42 0.85 31.40 30.70 31.10 0.29

ΔT ( ◦C) 100 − 2.25 − 0.04 − 1.05 0.81 − 2.28 − 1.38 − 1.72 0.35
​ 80 1.95 0.25 1.07 0.65 0.82 0.12 0.38 0.32
​ 60 4.55 2.45 3.07 0.85 1.82 1.12 1.52 0.29

CWSI 100 0.33 0.15 0.22 0.07 0.22 0.12 0.17 0.04
​ 80 0.62 0.37 0.49 0.10 0.76 0.59 0.65 0.08
​ 60 0.76 0.69 0.73 0.03 0.98 0.83 0.91 0.06

ΔT: Normalized temperature difference ( ◦C); CWSI: Crop Water Stress Index; Max: maximum; Min: minimum; x‾: mean; σ: standard deviation.
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studied crops, resulting in a greater yield reduction under increased 
water deficit. This effect may occur even in irrigated systems when 
irrigation is poorly managed, or in regions with low rainfall regimes. 
Therefore, continuous crop monitoring is important for detecting water 
deficit conditions, as obtaining data on plant water status enables rapid 
corrective actions, such as timely irrigation, to prevent yield losses. 
CWSI values equal to or near zero indicate that the plants are under 
favorable water conditions, with adequate transpiration and photosyn
thesis rates, contributing to enhanced growth and higher yield, as 
observed under the 100 % ETc irrigation condition.

Fig. 6 shows the correlation between CWSI and lettuce yield (Fig. 6A) 
and arugula yield (Fig. 6B), as well as between ΔT and lettuce yield 
(Fig. 6C) and arugula yield (Fig. 6D), considering both cultivation cy
cles. An inverse relationship was observed in both crops, indicating that 
increases in CWSI or ΔT values were associated with decreases in leafy 
vegetables yield. The coefficients of determination (R2) for lettuce were 

0.71 and 0.75 for CWSI and ΔT, respectively, while for arugula they 
were 0.82 and 0.79, respectively. It is worth noting that the models 
developed using both thermal indices demonstrated similar perfor
mance in predicting the yield of leafy vegetables, suggesting that both 
CWSI and ΔT are reliable indicators for this purpose.

Regarding the prediction of leafy vegetables yield based on models 
derived from the correlation between thermal indices and observed 
yield (Fig. 7), the predicted values closely matched the observed values 
for both lettuce (Fig. 7A and 7C) and arugula (Fig. 7B and 7D). This 
agreement is evidenced by the dispersion of data points around the 1:1 
reference line. Overall, arugula showed less dispersion compared to 
lettuce for both thermal indices.

Predicting the yield of leafy vegetables such as lettuce and arugula 
using the developed models enables the use of remote sensing tools with 
infrared sensors to estimate crop yield accurately and in real time, even 
before harvest. By monitoring thermal indices throughout the crop 

Table 7 
Lettuce and arugula yield under different water replacement levels.

Parameters Water replacement levels (%) First cycle Second cycle

Max Min x‾ σ Max Min x‾ σ

Lettuce

Yield (t ha-1) 100 52.48 50.64 51.75 0.77 68.40 58.32 61.82 3.84
​ 80 46.24 42.48 44.89 1.75 51.28 43.04 48.27 3.17
​ 60 32.00 26.80 29.69 2.04 44.52 38.56 41.11 2.51

​ ​ Arugula

Yield (t ha-1) 100 53.86 45.63 48.24 3.34 54.00 48.67 51.15 2.08
​ 80 38.59 32.69 34.79 2.52 34.56 28.80 32.83 2.44
​ 60 24.48 22.32 23.64 0.93 28.66 25.06 27.68 1.49

Max: maximum; Min: minimum; x‾: mean; σ: standard deviation.

Fig. 6. Correlation analysis between Crop Water Stress Index (CWSI) and normalized temperature difference (ΔT) values with leafy vegetables yield observed 
considering the two crop cycles. A) and C) Lettuce; and B) and D) Arugula.
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cycle, farmers can anticipate how the intensity of a possible water stress 
is affecting plant development and adjust irrigation management 
accordingly before yield losses become irreversible. This is particularly 
important for short-cycle crops like leafy vegetables, where just a few 
days of water stress may result in significant productivity losses, leaving 
limited time for corrective measures.

In addition to the crop water status, soil water content can also be 
used for irrigation management. Soil water content can be expressed as 
matric potential, indicating the availability of water in the soil for plant 
uptake. Although these factors are interrelated, water dynamics within 
the soil–plant–atmosphere continuum must be analyzed individually for 
effective irrigation management. While crop water status allows for 
identifying the proper timing for irrigation, knowing the soil water 

content enables the planning of irrigation events in terms of both timing 
and the amount of water to be applied [30].

3.4. Thermal parameters for predicting soil water content

Fig. 8 presents the average values of soil water potential on the day of 
thermal image acquisition, considering both cultivation cycles. It can be 
observed that, for the same vegetable crop, the soil water potential 
values are similar across the two cultivation cycles.

Analyzing the soil water potential for lettuce (Fig. 8A), in the first 
cycle, the values were − 13.50, − 26.50, and − 50.50 kPa, while in the 
second cycle, they were − 15.50, − 28.20, and − 47.00 kPa, resulting in 
average values of − 14.50, − 27.35, and − 48.75 kPa for the 100, 80, and 

Fig. 7. Prediction of leafy vegetables yield using models derived from the correlation analysis of the two crop cycles. A) and C) Lettuce; and B) and D) Arugula.

Fig. 8. Characterization of the average soil water potential (-kPa) on the day of thermal image acquisition of leafy vegetables for the two crop cycles. A) Lettuce, and 
B) Arugula.
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60 % ETc treatments, respectively. For arugula (Fig. 8B), in the first 
cycle, the values were − 14.50, − 21.00, and − 43.00 kPa, and in the 
second cycle, they were − 17.50, − 29.50, and − 44.80 kPa, resulting in 
average values of − 16.00, − 25.25, and − 43.90 kPa for the 100, 80, and 
60 % ETc treatments, respectively. Regarding the soil water content 
equivalent to the average soil water potential values, they were 0.369, 
0.355, and 0.342 m3 m-3 for lettuce, and 0.367, 0.356, and 0.344 m3 m-3 

for arugula, for the 100, 80, and 60 % ETc treatments, respectively.
In both crops, the lowest soil water potential values were observed in 

the treatment where plants were subjected to the greatest water deficit 
condition (60 % of ETc), while the highest values were recorded under 
the treatment with optimal water replacement level (100 % of ETc), 
indicating drier and wetter soil conditions, respectively. For leafy veg
etables in general, including lettuce and arugula, the soil water potential 
threshold is around − 20 kPa, which may vary between − 10 and − 20 
kPa depending on the soil’s water retention capacity and the pheno
logical stage of the crop [45]. In coarse-textured soils (sandy), which 
typically have lower water retention capacity, and during more sensitive 
growth stages, such as the initial establishment phase, it is recom
mended that the soil water potential not fall below − 10 kPa to avoid 
water stress. As observed, only in the 100 % ETc treatment were the soil 
water potential values above the threshold (− 20 kPa) for leafy vegeta
bles, confirming that the plants under the other treatments were indeed 
exposed to water deficit conditions.

Fig. 9 presents the correlation analysis between thermal parameters 
and soil water content, considering both crop cycles of the leafy vege
tables. It was found that both the CWSI (Fig. 9A) and ΔT (Fig. 9B) 
exhibited a strong correlation with soil water content, with R² values of 
0.92 and 0.73, respectively. These relationships were inversely pro
portional, meaning that as CWSI and ΔT increased, soil water content 
decreased. Specifically, for each 0.1 unit increase in CWSI, there was a 
3.45 % reduction in soil water content, and for each 0.1 unit increase in 
ΔT, soil water content decreased by 0.57 %. Among the two thermal 
parameters, CWSI demonstrated superior performance in predicting soil 
water content compared to ΔT, indicating its greater potential as a tool 
for supporting irrigation management.

Considering the soil water content values predicted by the models 
(Fig. 10), it was observed that the predicted values were close to the 
observed ones. However, the model developed using CWSI (Fig. 10A) 
showed less data dispersion around the reference line, resulting in more 
accurate predictions compared to the model developed using ΔT 
(Fig. 10B). Although ΔT demonstrated lower accuracy than CWSI, it still 
achieved satisfactory results and can be considered a viable alternative 
for irrigation management.

Notably, in the model based on CWSI, more dispersion was observed 
for intermediate values (80 % of ETc), which may be related to the 
coexistence of water-filled and air-filled soil pores under this condition, 

leading to greater variability in canopy temperature compared to the 
other treatments. Under the 100 % ETc condition, most pores would be 
filled with water, resulting in reduced and more stable canopy temper
atures. Conversely, under the 60 % ETc condition, most pores would lack 
water, causing increased temperatures but with lower variation, since 
the soil pores are more uniformly dry.

The CWSI, obtained based on leaf temperature, not only enables the 
assessment of plant water stress levels but also shows strong potential for 
predicting soil water content, as the morphophysiological responses of 
plants are also associated with the management practices to which they 
are subjected. In this context, the lack of water in the soil to meet crop 
demand can lead to several physiological disturbances in the plant and 
impair essential cellular functions [61]. At any sign of water stress 
emitted by the plant, leaf temperature changes due to metabolic pro
cesses associated with osmoregulation, cellular respiration, and varia
tions in photosynthetic rate [20,62].

It was observed that the values associated with each treatment were 
concentrated within specific ranges of CWSI and volumetric soil water 
content, demonstrating that the model developed for soil moisture 
prediction can be applied both when plants are subjected to different 
water availability conditions, within the 60 % to 100 % ETc range, and 
for monitoring soil water content throughout the crop cycle. In this case, 
the behavior is consistent with the different irrigation levels analyzed in 
this study, reflecting the soil transitioning from field capacity (100 %) to 
a condition where the current moisture corresponds to 60 % of the 
available soil water. The use of the model to predict soil water content 
under irrigation levels below 60 % of ETc is not recommended, as this 
represents the lower limit analyzed in this study. Furthermore, it reflects 
a condition of severe stress for leafy vegetable cultivation, and it is not 
advisable for soil water content to fall below this threshold.

Based on the developed models and the critical soil water potential 
for leafy vegetables (− 20 kPa), it is recommended, especially for lettuce 
and arugula, that CWSI and ΔT values above 0.35 and − 0.96 ◦C, 
respectively, be considered as critical thresholds to prevent the crops 
from entering water deficit stress. These thresholds represent the limit at 
which irrigation should be applied. In the case of ΔT, its negative 
threshold is justified by the plant’s early expression of reduced leaf 
turgor in response to approaching the critical soil moisture level, as leafy 
vegetables are highly sensitive to water stress. In this context, when ΔT 
reaches − 0.96 ◦C, the plant has not yet entered into a critical stress 
condition. However, if irrigation is not applied near this point, the leaf 
temperature will likely equal or exceed air temperature, reaching crit
ical stress levels due to water deficiency, which may result in yield 
losses.

The CWSI threshold value identified in this study is consistent with 
those reported in the literature for other crops. Kumari [29] emphasize 
that for wheat, irrigation should be triggered when the CWSI reaches 

Fig. 9. Correlation analysis between Crop Water Stress Index (CWSI) (A) and normalized temperature difference (ΔT) (B) values with soil water content, considering 
the two crop cycles of leafy vegetables.
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values equal to or greater than 0.35, to avoid stress and ensure high 
yields. Similarly, Ma [20] demonstrated that CWSI is a useful tool for 
decision-making in the irrigation management of winter wheat, allow
ing for stratification according to phenological stages. Their recom
mendations suggest that CWSI values should be maintained within the 
ranges of 0.26–0.38, 0.27–0.32, and 0.30–0.36 during the stem elon
gation, flowering, and grain filling stages, respectively.

3.5. Assessment of the predictive models

Table 8 presents the values of the statistical parameters used to 
evaluate the yield prediction models for lettuce and arugula. Regarding 
the yield prediction models based on the CWSI, the RMSE values were 
5.399 and 4.319 t ha-1, and the MAE values were 4.515 and 3.575 t ha-1 

for lettuce and arugula, respectively, indicating low prediction errors. 
Considering the NSE and the agreement index “d”, which assess model 
efficiency, the models were classified as acceptable, with NSE values of 
0.714 and 0.824, and “d” values of 0.904 and 0.948 for lettuce and 
arugula, respectively. The correlation strength, evaluated by the Pearson 
correlation coefficient “r”, was classified as very high (r = 0.845) for 
lettuce and nearly perfect (r = 0.908) for arugula. According to the 
confidence index “c”, the yield prediction model for lettuce showed very 
good performance, while the model for arugula showed excellent per
formance, with values of 0.764 and 0.861, respectively.

The models based on ΔT showed RMSE values of 5.077 and 4.707 t 
ha-1, and MAE values of 3.988 and 3.895 t ha-1 for lettuce and arugula, 
respectively, also indicating low prediction errors. Considering the NSE 
and the “d” index, these models were also classified as acceptable, with 
NSE values of 0.747 and 0.791, and “d” index values of 0.905 and 0.944 
for lettuce and arugula, respectively. The correlation strength, assessed 
by Pearson’s r, was very high (r = 0.866) for lettuce and nearly perfect (r 
= 0.889) for arugula. According to the confidence index “c”, both 
models were classified as very good, with values of 0.784 and 0.839, 
respectively.

Table 9 presents the values of the statistical parameters used to 
evaluate the soil water content prediction model in the cultivation of 
leafy vegetables. For the model based on CWSI, low prediction errors 
were observed, with an RMSE of 0.00301 m3 m-3 and an MAE of 0.00258 
m3 m-3. In terms of efficiency, the model was classified as acceptable, 
with NSE and Willmott’s index “d” values of 0.921 and 0.979, respec
tively. Regarding the degree of correlation, evaluated by the Pearson 
correlation coefficient “r,” it was classified as almost perfect (r = 0.959). 
As for the confidence index “c,” the prediction model for soil water 
content in leafy vegetable cultivation showed optimal performance, 
with a value of 0.939.

Low prediction errors were also observed for the model based on ΔT, 
although these were higher than those of the model based on CWSI. The 
RMSE value was 0.00554 m3 m-3, and the MAE value was 0.00453 m3 m- 

3. Considering efficiency, the model was classified as acceptable, with 
NSE and Willmott’s index “d” values of 0.733 and 0.921, respectively. 
Regarding the degree of correlation, evaluated by the Pearson correla
tion coefficient “r,” it was classified as almost perfect (r = 0.854). As for 
the confidence index “c” the soil water content prediction model for 
leafy vegetable cultivation showed very good performance, with a value 
of 0.787.

4. Conclusions

The models developed from thermal images captured by infrared 
radiation cameras showed good performance in predicting the yield of 
lettuce and arugula, as well as in predicting soil water content in leafy 
vegetable cultivation under protected environment. The thermal pa
rameters used in this study, CWSI and ΔT, contributed to characterize 
the water deficit in leafy vegetables, distinguishing the different irri
gation levels to which the plants were subjected. Considering both 
cultivation cycles, under conditions of 100, 80, and 60 % of ETc, 
respectively, the average CWSI values for lettuce were 0.15, 0.65, and 
0.88, and for arugula were 0.20, 0.57, and 0.82, while the average ΔT 

Fig. 10. Prediction of soil water content using models derived from the correlation analysis of Crop Water Stress Index (CWSI) (A) and normalized temperature 
difference (ΔT) (B), considering the two crop cycles of leafy vegetables.

Table 8 
Statistical parameters used to evaluate the yield prediction models for lettuce and arugula.

Crop RMSE MAE NSE d r Index “c”

Value Performance

Crop Water Stress Index (CWSI)
Lettuce 5.399 4.515 0.714 0.904 0.845 0.764 Very good
Arugula 4.319 3.575 0.824 0.948 0.908 0.861 Great
Normalized temperature difference (ΔT)
Lettuce 5.077 3.988 0.747 0.905 0.866 0.784 Very good
Arugula 4.707 3.895 0.791 0.944 0.889 0.839 Very good

RMSE: root mean square error; MAE: mean absolute error; NSE: Nash–Sutcliffe efficiency; d: Willmott’s index of agreement; r: Pearson’s correlation coefficient; and 
“c”: confidence index.
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values for lettuce were − 2.03, 0.37, and 1.43 ◦C, and for arugula were 
− 1.38, 0.77, and 2.30 ◦C.

The yield prediction models for lettuce were classified as very good 
when considering both CWSI and ΔT. For arugula, the models were 
classified as excellent based on CWSI and very good based on ΔT. Since 
the models based on CWSI and ΔT showed similar results, both thermal 
indices can be used for predicting the yield of these two crops.

The soil water content prediction models were classified as excellent 
when based on CWSI and very good when based on ΔT. For this purpose, 
the use of CWSI is recommended due to its better performance compared 
to ΔT. Based on the generated models, it is suggested that for leafy 
vegetables, especially lettuce and arugula, CWSI and ΔT values of 0.35 
and − 0.96 ◦C, respectively, constitute critical thresholds for water 
deficit stress.

The use of thermal imaging demonstrated great potential in devel
oping prediction models. The results obtained in this study may support 
decision-making in irrigation management and in the early identifica
tion of water stress damage affecting the yield of leafy vegetables. For 
future research, it is recommended to evaluate the performance of CWSI 
and ΔT indices in other leafy vegetables. It is suggested to consider 
stratification by phenological stages and a wider range of water deficit 
levels, as well as to evaluate in open-field cultivation environments.
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Investigation. Patricia Angélica Alves Marques: Writing – review & 
editing, Visualization, Validation, Supervision, Resources, Project 
administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

We thank the Coordination for the Improvement of Higher Education 
Personnel (CAPES), finance code 001, and the National Council for 
Scientific and Technological Development (CNPq – Case number 
156142/2021–0) for scholarships. We also thank the Luiz de Queiroz 
Agricultural Studies Foundation (FEALQ) for supporting the research.

Data availability

Data will be made available on request.

References

[1] P. Berry, J. Ramirez-Villegas, H. Bramley, M.A. Mgonja, S.M. Samarendu Mohanty, 
Regional impacts of climate change on agriculture and the role of adaptation, Plant 
Genet Resour. Clim. Change (2013) 78–97, https://doi.org/10.1079/ 
9781780641973.0078.

[2] R. Joshi, S.L. Singla-Pareek, A. Pareek, Engineering abiotic stress response in plants 
for biomass production, J. Biol. Chem. 293 (2018) 5035–5043, https://doi.org/ 
10.1074/jbc.TM117.000232.

[3] S. Das, J. Christopher, A. Apan, M.R. Choudhury, S. Chapman, N.W. Menzies, Y. 
P. Dang, Evaluation of water status of wheat genotypes to aid prediction of yield on 
sodic soils using UAV-thermal imaging and machine learning, Agric. Meteorol. 307 
(2021) 108447, https://doi.org/10.1016/j.agrformet.2021.108477.

[4] V. Villa e Vila, P.A.A. Marques, T.M. Gomes, A.F. Nunes, V.G. Montenegro, G. 
S. Wenneck, L.B. Franco, Deficit irrigation with silicon application as strategy to 
increase yield, photosynthesis and water productivity in lettuce crops, Plants 13 
(2024) 1029, https://doi.org/10.3390/plants13071029.

[5] N. Akter, M. Rafiqul Islam, Heat stress effects and management in wheat. A review, 
Agron. Sustain. Dev. 37 (2017) 37, https://doi.org/10.1007/s13593-017-0443-9.

[6] M. Knez, K. Mattas, M. Gurinovic, A. Gkotzamani, A. Koukounaras, Revealing the 
power of green leafy vegetables: cultivating diversity for health, environmental 
benefits, and sustainability, Glob. Food Sec. 43 (2024) 100816, https://doi.org/ 
10.1016/j.gfs.2024.100816.

[7] M.W. Rasheed, J. Tang, A. Sarwar, S. Shah, N. Saddique, M.U. Khan, M. Imran 
Khan, S. Nawaz, R.R. Shamshiri, M. Aziz, Soil moisture measuring techniques and 
factors affecting the moisture dynamics: a comprehensive review, Sustainability 14 
(2022) 11538, https://doi.org/10.3390/su141811538.

[8] Z. Zhou, Y. Majeed, G. Diverres Naranjo, E.M.T. Gambacorta, Assessment for crop 
water stress with infrared thermal imagery in precision agriculture: a review and 

Table 9 
Statistical parameters used to evaluate the soil water content prediction models in leafy vegetable cultivation.

Crop RMSE MAE NSE d r Index "c"

Value Performance

Crop Water Stress Index (CWSI) ​ ​ ​ ​ ​ ​ ​
Leafy vegetables 0.00301 0.00258 0.921 0.979 0.959 0.939 Great
Normalized temperature difference (ΔT) ​ ​ ​ ​ ​ ​ ​
Leafy vegetables 0.00554 0.00453 0.733 0.921 0.854 0.787 Very good

RMSE: root mean square error; MAE: mean absolute error; NSE: Nash–Sutcliffe efficiency; d: Willmott’s index of agreement; r: Pearson’s correlation coefficient; and 
“c”: confidence index.

V. Villa e Vila et al.                                                                                                                                                                                                                            Smart Agricultural Technology 12 (2025) 101587 

13 

https://doi.org/10.1079/9781780641973.0078
https://doi.org/10.1079/9781780641973.0078
https://doi.org/10.1074/jbc.TM117.000232
https://doi.org/10.1074/jbc.TM117.000232
https://doi.org/10.1016/j.agrformet.2021.108477
https://doi.org/10.3390/plants13071029
https://doi.org/10.1007/s13593-017-0443-9
https://doi.org/10.1016/j.gfs.2024.100816
https://doi.org/10.1016/j.gfs.2024.100816
https://doi.org/10.3390/su141811538


future prospects for deep learning applications, Comput. Electron. Agric. 182 
(2021) 106019, https://doi.org/10.1016/j.compag.2021.106019.

[9] S. Elsayed, M. Elhoweity, H.H. Ibrahim, Y.H. Dewir, H.M. Migdadi, 
U. Schmidhalter, Thermal imaging and passive reflectance sensing to estimate the 
water status and grain yield of wheat under different irrigation regimes, Agric. 
Water. Manag. 189 (2017) 98–110, https://doi.org/10.1016/j.agwat.2017.05.001.

[10] B. Zhang, J. Huang, T. Dai, S. Jing, Y. Hua, Q. Zhang, H. Liu, Y. Wu, Z. Zhang, 
J. Chen, Assessing accuracy of crop water stress inversion of soil water content all 
day long, Precis. Agric. 25 (2024) 1894–1914, https://doi.org/10.1007/s11119- 
024-10143-y.

[11] L. Zhang, Y. Niu, H. Zhang, W. Han, G. Li, J. Tang, X. Peng, Maize canopy 
temperature extracted from UAV thermal and RGB imagery and its application in 
water stress monitoring, Front. Plant Sci. 10 (2019) 1270, https://doi.org/ 
10.3389/fpls.2019.01270.

[12] S. Das, J. Christopher, A. Apan, M. Roy Choudhury, S. Chapman, N.W. Menzies, Y. 
P. Dang, UAV-thermal imaging and agglomerative hierarchical clustering 
techniques to evaluate and rank physiological performance of wheat genotypes on 
sodic soil, ISPRS. J. Photogramm. Remote Sens. 173 (2021) 221–237, https://doi. 
org/10.1016/j.isprsjprs.2021.01.014.

[13] G. Fevgas, T. Lagkas, P. Papadopoulos, P. Sarigiannidis, V. Argyriou, Integrating 
thermal infrared and RGB imaging for early detection of water stress in lettuces 
with comparative analysis of IoT sensors, Smart Agr. Technol. 11 (2025) 100881, 
https://doi.org/10.1016/j.atech.2025.100881.

[14] J. Kang, X. Hao, H. Zhou, R. Ding, An integrated strategy for improving water use 
efficiency by understanding physiological mechanisms of crops responding to 
water deficit: present and prospect, Agric. Water. Manag. 255 (2021) 107008, 
https://doi.org/10.1016/j.agwat.2021.107008.

[15] V. Parkash, S. Singh, S.K. Deb, G.L. Ritchie, R.W. Wallace, Effect of deficit 
irrigation on physiology, plant growth, and fruit yield of cucumber cultivars, Plant 
Stress 1 (2021) 100004, https://doi.org/10.1016/j.stress.2021.100004.

[16] C. Wang, K. Zhu, Y.Y. Bai, C.Y. Li, M. Li, Y. Sun, Response of stomatal conductance 
to plant water stress in buffalograss seed production: observation with UAV 
thermal infrared imagery, Agric. Water. Manag. 292 (2024) 108661, https://doi. 
org/10.1016/j.agwat.2023.108661.

[17] H.S. Ndlovu, J. Odindi, M. Sibanda, O. Mutanga, Multi-temporal analysis of taro 
crop water stress using high-resolution thermal and multispectral proximal sensing 
for improved resilience of smallholder farming systems, Smart Agr. Technol. 12 
(2025) 101337, https://doi.org/10.1016/j.atech.2025.101337.

[18] R. Ludovisi, F. Tauro, R. Salvati, S. Khoury, G.S. Mugnozza, A. Harfouche, Uav- 
based thermal imaging for high-throughput field phenotyping of black poplar 
response to drought, Front. Plant Sci. 8 (2017) 1681, https://doi.org/10.3389/ 
fpls.2017.01681.
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Köppen’s climate classification map for Brazil, Meteorol. Z. 22 (2013) 711–728, 
https://doi.org/10.1127/0941-2948/2013/0507.

[37] Dias, S.H.B., 2018. Evapotranspiração de referência para projeto de irrigação no 
Brasil utilizando o produto MOD16.

[38] H.G.D. Santos, P.K.T. Jacomine, L.H.C.D. Anjos, V.A.D. Oliveira, J.F. Lumbreras, 
M.R. Coelho, J.A.D. Almeida, J.C.D. Araujo Filho, J.B.D. Oliveira, T.J.F. Cunha, 
Sistema Brasileiro de Ciência do Solo, 355, Embrapa Solos, 2018.

[39] B. Van Raij, H. Cantarella, J.A. Quaggio, A.M.C. Furlani, Recomendações De 
Adubação e Calagem Para o Estado de São Paulo, Instituto Agronômico de 
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