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In agriculture, water deficit stress is among the main causes of crop yield losses, particularly in leafy vegetables,
which are highly sensitive. The need for efficient irrigation management and the early identification of potential
yield gaps encourage the development of predictive models and the integration of more precise technologies.
From this perspective, infrared radiation cameras in the capture of thermal information have potential for
application. The objective of this study was to develop predictive models of yield and soil water content in leafy
vegetables crops, specifically lettuce and arugula, by integrating thermal images obtained using infrared radi-
ation cameras. Two experiments were carried out in Piracicaba, Sao Paulo, Brazil, using lettuce and arugula
crops, each with two growing cycles. A randomized complete block design (RCBD) was adopted, with three
irrigation levels: 100, 80, and 60 % of crop evapotranspiration replacement. For model development, crop yield
was assessed based on shoot biomass at harvest, and soil water content was measured using tensiometry-based
sensors. The Crop Water Stress Index (CWSI) and the normalized temperature difference (AT) were calculated
from thermal images of the plant canopy. Yield prediction models exhibited R2 values of 0.71 and 0.82 using
CWSI, and 0.75 and 0.79 using AT, for lettuce and arugula, respectively, with a mean RMSE of 4.87 t ha-1. Soil
water content prediction models showed R2 values of 0.92 based on CWSI and 0.73 based on AT, with a mean
RMSE of 0.00428 m3 m-3. The developed models demonstrated good predictive performance, indicating their
applicability for irrigation management and for predicting possible early yield gaps in leafy vegetables. CWSI and
AT values above 0.35 and -0.96 °C, respectively, are recommended as critical thresholds to avoid water deficit
stress in lettuce and arugula crops.

1. Introduction

Despite the ongoing development of the agricultural sector, one of
the major challenges in agriculture remains achieving high crop yields
under adverse climatic conditions. It is estimated that potential crop
yields may be reduced by up to 70 % due to abiotic stresses, depending
on their level and intensity [1-3]. Water and heat stress are among the
main factors responsible for yield reductions and may be exacerbated by
the impacts of climate change. In addition to these challenges, the
increasing global demand for food and the limitation of natural re-
sources require the improvement and adoption of new technologies to
optimize agricultural practices and support mitigation strategies.
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Water stress can be characterized by changes in plant behavior due to
water availability either above or below the crop’s physiological re-
quirements. Under water stress conditions, plants experience impair-
ments in essential physiological processes [4], resulting in reduced
biomass accumulation and productivity. When soil water availability is
limited, the reduction of transpiration becomes a strategy adopted by
plants to minimize water loss and ensure survival, as the transpiration
process is fundamental in regulating leaf temperature. There is a rela-
tionship between water stress and ambient temperature, where in-
creases in temperature can lead to decreased soil moisture due to
enhanced soil evaporation. This may intensify water stress by lowering
leaf relative water content, ultimately reducing water use efficiency in
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plants [5].

Among the main agricultural crops, leafy vegetables such as lettuce
(Lactuca sativa L.) and arugula (Eruca sativa L.) hold significant impor-
tance in human nutrition, with large-scale production and consumption.
Global production of major leafy vegetables increased by 69 % between
2000 and 2021 [6]. A challenge in cultivating leafy vegetables is their
high sensitivity to water deficit, where soil water availability is a critical
factor affecting the development and productivity of these crops [4].
The large leaf area of these plants promotes intense transpiration,
increasing water loss to the environment. Additionally, they have a su-
perficial root system and poorly lignified tissues, making them more
vulnerable to stress caused by water deficit compared to other crops [6].
Consequently, leafy vegetables are highly dependent on irrigation,
requiring constant soil water replacement.

To mitigate these negative impacts, it is essential to adopt efficient
water management strategies. Therefore, it is necessary to implement
approaches that determine the appropriate timing and amount of water
to address crop water requirements, which can be based on climate, soil,
and/or plant information. However, traditional irrigation management
strategies still present limitations in obtaining this information, as some
involve lengthy analysis periods, destructive sampling, and provide only
point measurements, such as the direct method for determining soil
moisture by gravimetry, which requires taking soil samples from the
field and a prolonged drying process. Other strategies require many
sensors that are costly and need calibration through direct measure-
ments, such as the use of Time Domain Reflectometry (TDR) and Fre-
quency Domain Reflectometry (FDR) sensors to determine soil moisture
[7]. Another way to overcome yield gaps due to water deficit is through
early stress detection and yield prediction. In this context, the use of
thermal images captured by infrared radiation cameras has gained sig-
nificant attention due to their ability to provide real-time assessments of
plant water status [8].

In agriculture, there are predictive models that use data provided by
sensors or direct measurements integrated with agronomic characteris-
tics related to plant morphology and physiology [3,9]. Among these, the
integration of predictive models with thermal images has gained
prominence. Besides being commonly used for water stress detection,
thermal imaging also has potential for predicting yield and soil water
content, thereby assisting irrigation management [10]. However, some
models used for this purpose are complex and require a large quantity
and variety of data, which are often difficult to obtain, making their
practical application less accessible to farmers. Employing less complex
models, particularly those informed by accurate and dependable data
from infrared cameras, can improve the accessibility of this approach
and increase its potential for agricultural applications.

Infrared cameras are sensors that measure radiation emitted by
target objects within the infrared wavelength range and convert it into
thermal images. These images provide the temperature distribution of
the objects across different temperature gradients. Canopy temperature
is an indicator of crop water stress [11-13]. The detection of tempera-
ture to assess water stress depends on the plant’s transpiration process.
Under water deficit conditions, stomatal closure occurs, resulting in
reduced water vapor release to the atmosphere. Consequently, leaf
temperature increases due to the decreased cooling capacity of the
leaves [14-16]. Compared to traditional methods, thermal imaging can
capture large-scale spatial variability across the entire field, rather than
just at specific points [17]. In addition, it enables rapid and
non-destructive identification with lower labor requirements [9,18-20],
offering a comprehensive understanding of soil-plant-atmosphere
interactions.

Canopy temperature alone is not considered an efficient indicator of
water stress [21]. Therefore, water stress can be characterized through
thermal indices, such as the normalized temperature difference (AT) and
the Crop Water Stress Index (CWSI) [22,23]. AT is obtained by calcu-
lating the difference between canopy temperature and air temperature,
while CWSI is a more robust index that, in addition to comparing canopy
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and air temperatures, also incorporates reference values for
well-irrigated and severely stressed plants [24,25]. Among these, CWSI
is the most commonly used index for stress detection, as it overcomes the
influence of other environmental parameters that affect plant tempera-
ture [3]. However, the practical application of this index is still limited,
mainly due to the complexity of data acquisition and associated costs.
Nevertheless, there are mobile applications capable of calculating CWSI
based on temporal parameters using empirical and theoretical models,
which reduce their complexity [26], Additionally, infrared thermo-
graphic cameras with lower acquisition costs, depending on their
embedded technology level, are becoming more available, improving
the accessibility of this approach for farmers [27,28].

Recent literature demonstrates the frequent use of thermal imaging
as a diagnostic tool for water stress in agricultural crops. In this context,
research has been conducted in wheat [3,10,20,29], soybean [30],
maize [11,21], citrus [27,31], grapevine [32-34], sugar beet [35] and
turfgrass [16]. Some studies have examined correlations between ther-
mal data and yield or soil water parameters, revealing strong associa-
tions and demonstrating the potential for developing predictive models.
For example, Ma [20] observed correlations between the CWSI, biomass,
and yield in wheat under different water conditions and phenological
stages. Similarly, Morales-Santos and Nolz [30] found correlations be-
tween various thermal indices and soil water potential in soybean at
different depths (0.20, 0.40, and 0.60 m).

While the use of thermal imaging is analyzed in grain and fruit crops,
its application in leafy vegetables remains largely unexplored and re-
quires further research. In addition to the applications found in the
highlighted studies, further detail of these parameters is still required in
irrigation management. These studies associate thermal information
with qualitative aspects of irrigation management, relying on other
strategies and information to be applicable in the field. Therefore,
studies integrating soil moisture information with thermal indices in a
quantitative manner are needed to support irrigation management
decisions.

Considering the importance of thermal information and its rela-
tionship with crop yield and soil water dynamics, this study hypothe-
sized that it is possible to develop predictive models by integrating
thermal image data to provide assessments of water stress, soil water
content, and crop yield. These models can assist in irrigation manage-
ment and early detection of yield gaps, especially in leafy vegetables,
which have short production cycles and are highly sensitive to water
deficit stress. The objective of this study was to develop predictive
models, based on regression and correlation analysis, for yield and soil
water content in the cultivation of leafy vegetables, specifically lettuce
and arugula, by integrating thermal images obtained from infrared ra-
diation cameras.

2. Material and methods
2.1. Experimental area

The study was conducted in a protected environment at the experi-
mental area of the Department of Biosystems Engineering, “Luiz de
Queiroz” College of Agriculture (ESALQ), belonging to the University of
Sao Paulo (USP), in Piracicaba, Sao Paulo, Brazil (22°42'32" S, 47°37'45"
W, 546 m of altitude).

The regional climate, according to the Koppen classification, is
characterized as a humid subtropical zone (Cwa), with hot and humid
summers and dry winters. The region has an average annual precipita-
tion of 1280 mm, a mean air temperature of 21.6 °C, an average relative
humidity of 73 % [36] and a mean maximum reference evapotranspi-
ration of approximately 5.78 mm dia™ [37].

The local soil is classified as Red-Yellow Latosol [38], with a clayey
texture. The physical (Clay, silt and sand) and hydro-physical (Bd, Orc,
Opwp and AWC) soil properties as well as the chemical soil parameters for
the two cropping cycles, corresponding to the 0-0.20 m layer, are
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presented in Tables 1 and 2, respectively.

2.2. Experiment setup and management

In this study, two simultaneous experiments were conducted with
leafy vegetables: one with lettuce (Experiment 1) and another with
arugula (Experiment 2). The plants were grown in a protected envi-
ronment to ensure greater experimental control and data reliability,
while minimizing external climatic influences. The structure was
covered with 150 pm thick transparent light-diffusing plastic and had
lateral protection made of 50 MESH aphid-proof screens, manufactured
from polyethylene allowing air exchange with the environment. The
structure presented a ceiling height of 4 m and dimensions of 20 m in
length and 10 m in width.

To initiate the experiments, soil tillage was performed to prepare the
cultivation beds. Each bed measured 1.25 m in length, 0.4 m in width,
and 0.2 m in height, resulting in an effective area of 0.5 m2. A spacing of
1 m was left between beds to prevent water flow from one bed to
another, since irrigated cultivation was carried out. At the time of bed
construction, 25 L of well-composted cattle manure were incorporated
per bed, with a composition of 336 kg ha™! N, 125 kg ha! P,0s, 113 kg
ha® K0, 136 kg ha'! Ca and 42 kg ha! Mg. In addition, mineral
fertilization at planting was carried out by applying 40 kg ha™ N, 300 kg
ha’! P,05 and 150 kg ha' K20 per bed. All fertilization recommenda-
tions were made according to Van Raij [39], based on the soil chemical
analysis (Table 2).

Each experiment was conducted over two cropping cycles. The first
cycle lasted from May 30, 2022, to July 9, 2022, and the second from
July 19, 2022, to August 28, 2022, with each cycle lasting 40 days. In
Experiment 1, the lettuce cultivar Vanda® was used, characterized as a
crisphead type with high hardiness and adaptability to various growing
conditions, and it is the most widely planted cultivar in Brazil. Lettuce
was sown in polyethylene trays, and seedlings were transplanted to the
beds 25 days after sowing (DAS). Lettuce was grown in double rows,
spaced 0.20 m between rows and 0.30 m between plants, totaling 8
plants per bed. During the lettuce cultivation, three topdressings via
fertigation were performed, applying 25 kg ha! of N at 10, 20, and 30
days after transplanting (DAT). In Experiment 2, the arugula cultivar
Astro® was used, characterized by broad leaves and less lobed shape,
with high tolerance to premature bolting. Arugula was sown directly in
the soil in double rows, using a higher density than recommended for the
crop to allow for subsequent thinning of seedlings. After the emergence
of two true leaves, excess seedlings were thinned, resulting in 100 plants
per bed, spaced 0.20 m between rows and 0.025 m between plants.
During arugula cultivation, three topdressings via fertigation were
applied, with 40 kg ha! of N at 10, 17, and 24 DAS.

2.3. Experimental design

The experiments were conducted using a randomized complete block
design (RCBD). Lettuce and arugula plants were subjected to three
treatments, corresponding to different water replacement levels relative
to crop evapotranspiration (ETc): 100, 80, and 60 % of ETc. These
conditions represent optimal water availability without water stress
(100 % ETc), moderate water deficit (80 % ETc), and severe water
deficit (60 % ETc). Each treatment consisted of five replications, with
each bed considered as an experimental unit.

Table 1

Physical and hydro-physical soil properties in the 0-0.20 m layer.
Bd Opc Opwp AWC Clay Silt Sand
gcm m® m3 mm %
1.28 0.41 0.28 26.00 54.93 15.26 29.81

Bd: bulk density; Opc: moisture at field capacity; Opwp: moisture at permanent
wilting point; AWC: available water capacity.
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Table 2
Chemical soil parameters in the 0-0.20 m layer.
Cycle pH CaCl, Ca Mg K H Al CEC \4
- mmolc dm™ %
First 5.8 53.0 21.0 7.8 14.0 0.0 95.8 85.4
Second 5.6 65.0 21.0 8.2 16.0 0.0 110.2 85.5
ocC P resin S B Cu Zn Mn Fe
g dm™ mg dm™
First 26.0 69.0 25.7 0.2 1.2 2.7 8.1 9.0
Second 23.0 70.0 24.8 0.2 1.5 2.6 9.5 8.0

OC: Organic carbon; CEC: cation exchange capacity; V: base saturation.

2.4. Irrigation system and management

A drip irrigation system was installed in the protected environment.
Each experimental unit contained a 1.25 m long drip line positioned at
the center, with an independent irrigation system and valves installed at
the beginning of each bed to allow precise control of the different water
replacement treatments. The drip tape had a diameter of 0.016 m, with
emitters spaced every 0.20 m, totaling seven emitters per line. The
emitters, featuring pressure-compensating and anti-siphon characteris-
tics, had a flow rate of 1.6 L h™! each, resulting in a total flow rate of 11.2
Lh'l. The system was operated by a KSB 500 N motor pump at a working
pressure of 1.0 bar. Irrigation uniformity was evaluated by calculating
the Christiansen Uniformity Coefficient (CUC), obtaining a value of 98.5
%, indicating a high level of uniformity.

Inside the protected environment, a meteorological station was
installed to monitor climatic variables during the experiments. The
station was equipped with air temperature and relative humidity sensors
(HMP45C), a solar radiation sensor (LI200X), and a barometer (CS106),
with readings taken every 15 min, connected to a CR23X datalogger
(Campbell Scientific, Logan, Utah, USA).

Irrigation management was performed using climate-based method
to determine the water demand for each irrigation event. ETc was esti-
mated according to the methodology proposed by FAO 56, calculated
using Eq. (1). Reference evapotranspiration (ETo) was estimated
following the Penman-Monteith equation (Eq. (2)). The crop coefficient
(Kc) values used for lettuce were 0.70, 1.00, and 0.95, while for arugula
they were 0.80, 1.00, and 1.05, corresponding to the initial, interme-
diate, and final growth stages, respectively, also according to FAO 56
[40].

ETc = ETo Kc (€]
where ETc is the crop evapotranspiration (mm day'l), ETo is the refer-

ence evapotranspiration (mm day!), and Kc is the crop coefficient
(dimensionless).

T + 273

0408 A(Rn — G)+ ¢ <ﬂ) u2 (es —ea)

ETo = (2

A+y(1+ 034u2)

where Rn is the surface radiation balance (MJ m2 D'l), G is the soil heat
flux density (MJ m2 D'l), T is the air temperature at 2 m height ( °C), u2
is the wind speed at 2 m height (m s'l), es is the saturation vapour
pressure (kPa), ea is the partial vapour pressure (kPa), A is the slope of
the saturation vapour pressure curve (kPa °C') and y is the psychro-
metric constant (kPa °C'1).

The irrigation depth (ID) for each treatment was calculated using
Egs. (3),4, and 5, considering a system application efficiency (Ea) of 95
%. Irrigations were performed with daily irrigation shifts at 8:00 a.m.

ETc
ID1gop = — 3
100 Ea ( )
IDgo = (ID]()()) 080 (4)
ID60 = (ID]()()) 060 (5)
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where ID1qg is the irrigation depth for 100 % ETc replacement (mm),
IDgy is the irrigation depth for 80 % ETc replacement (mm), IDg is the
irrigation depth for 60 % ETc replacement (mm), ETc is the crop
evapotranspiration (mm day), and Ea is the application efficiency
(expressed as a decimal).

2.5. Monitoring and assessment of soil water content

To monitor soil water content, tensiometers were installed in all
treatments of both experiments and cropping cycles, at the 0-0.20 m soil
depth. The tensiometers were installed in three experimental units per
treatment, with three replications in each unit, and positioned in the
center of the experimental unit, between the two crop rows. Tensiometer
is a soil sensor that, through a porous ceramic cup in contact with the
soil, enables water exchange between the soil and the tube, creating a
vacuum that reflects the tension at which water is retained in the soil.
From the soil water potential (-kPa) readings obtained using a digital
tensimeter, the soil water content (m® m™) was indirectly determined
using the soil water retention curve (Fig. 1).

To obtain the soil moisture points that compose the soil water
retention curve, undisturbed soil samples were collected from the
0-0.20 m layer, with three replications. The soil moisture points were
determined by subjecting the soil samples to a Richards pressure
chamber at pressure heads of 0, -10, -20, —40, -100, —-300, -500, -1000,
and -1500 kPa, following the procedures described by Camargo [41].
The soil water retention curve was fitted using the Van Genuchten model
[42]. The fitted parameters of the soil water retention curve are pre-
sented in Table 3.

Soil water potential readings were taken daily to validate the
climate-based irrigation management. For the study on the prediction of
soil water content using thermal imaging data, the readings collected on
the same day as the thermal images were considered. Despite the dif-
ferences in canopy architecture and leaf morphology between the two
leafy vegetables, there is a similarity in the water demand of the crops
[40] and due to the comparable behavior of both crops across the two
cropping cycles, the predictive model of soil water content was devel-
oped by integrating data obtained from both cycles and both crops, to
increase the model’s reliability.

2.6. Thermal image data acquisition and processing

The sensor used to acquire thermal images of the lettuce and arugula
canopies was a FLIR T640 Duo Pro R thermal camera, which operates in
the spectral band of 7.5-13.5 um, with a resolution of 640 x 512 pixels
and a thermal sensitivity of <50 mK. Prior to image acquisition, the

Smart Agricultural Technology 12 (2025) 101587

Table 3

Soil water retention curve parameters in the 0-0.20 m layer.
or 0s o n m R?
m®m3 m?! - - -
0.128 0.537 1.286 1.101 0.092 0.992

or: residual water content; 0s: saturated water content; a: inverse of the air-entry
potential in the structural pore space; n: empirical curve fitting parameter; m:
Mualem restriction parameter; R% determination coefficient.

thermal camera was configured according to the prevailing meteoro-
logical conditions at the time of image capture. Additionally, the emis-
sivity (¢) was set to 0.95, in accordance with the spectral signature of the
target surface.

One thermal image was acquired for each experimental unit. Image
acquisition was standardized in terms of camera positioning distance
from the canopy (1.5 m), parallel to the canopy (top view), with
acquisition time (between 12:00 and 13:00 local time), and the pre-
vailing meteorological conditions. All images were captured under
clear-sky conditions, without cloud cover, when the crops were at the
final stage of development (35 DAT), close to harvest. At this stage, the
vegetative growth of the crop stabilizes.

Following acquisition, the images were processed using FLIR Ther-
mal Studio® software, version 2.0.11. The images were imported and
processed to minimize noise and potential contamination from pixels
outside the experimental unit. To increase the precision of the thermal
information, each image was cropped to include only the usable area of
the experimental unit. The images were then classified using the “iron”
color palette, and the temperature scale (minimum and maximum) was
standardized. To sample temperature data, a line was drawn parallel to
the longest dimension of each image at the center of the experimental
unit. Five points were randomly selected along this line to obtain an
average canopy temperature, which was subsequently used to calculate
other thermal parameters, including AT and CWSI. Fig. 2 shows the
main steps involved in the acquisition and processing of the thermal
images.

2.7. Thermal parameters

The crops water status was characterized using CWSI and AT. To
calculate the CWSI, two reference limits were required to normalize the
effects of atmospheric conditions on canopy transpiration and temper-
ature [24,25]. These limits include the baseline for a non-stressed plant
(Twet), representing a well-irrigated crop with no water restrictions,
and the baseline for a water-stressed plant (Tdry), indicating a crop with
limited or nearly no transpiration due to stomatal closure.

/" Soil moisture sensor - Tensiometer % Soil water retention curve A
/ \
Undisturbed Laboratory Richards
soil sampling analysis chamber
:E\ 0.60 * FC
b * PWP
g 050
g 040
£ 030
\ S
. 8 020
~ <
Z 010
. . (=]
[ Soil water potential (-kPa) ]—- @ (.00 +—rrrr
NN N R RTINS
TP T IFT NI ITIETSSESLSS
Il \ S S S ST /
[ Soil water content (m? m-3) ] AN Soil water potential (-kPa) S

Fig. 1. Flowchart of soil water content determination. Cap (1); rubber stopper (2); acrylic tube (3); tensiometer (4); PVC tube (5); soil moisture monitoring depth (6);

and porous cup (7). FC: Field capacity; PWP: Permanent wilting point.
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Lettuce Arugula
Standardization:
 FLIRT640 Tz}rlgnffci‘;?:;e
Model Duo Pro R ST phase

Thermal
camera

lmage Post-
Preprocessing acquisition Processing processmg

Settmgs:
Emissivity
" Temperature
Relative humidity |

{_ Solar radiation }

Meteorological station

Software: AT
Image import Cwsli
Image processing
Image cutting
Color classmcatlon

Fig. 2. Flowchart of thermal image acquisition and processing. AT: Normalized temperature difference index; CWSI: crop water stress index.

In general, the baseline limits can be determined using an empirical
approach [43], through natural wet and dry reference surfaces [44], or
under actual field conditions. In this study, the baselines were estab-
lished based on real field conditions obtained from the experiments.
Specifically, thermal image temperature thresholds from the 100 % and
60 % ETc irrigation treatments were used to represent the non-stressed
(Twet) and water-stressed (Tdry) conditions, respectively. Therefore,
the CWSI was calculated using Eq. (6) [25]. CWSI values can range from
zero to one (0-1). A CWSI value of 0 indicates the absence of water
stress, while a value of 1 corresponds to maximum water stress.

(Tc — Ta) — Twet

CWSI = Tdry — Twet

©

where CWSI is the Crop Water Stress Index (dimensionless), Tc is the
canopy temperature ( °C), Ta is the air temperature at the time of Tc
acquisition ( °C), Twet is the baseline canopy temperature of a non-
stressed plant ( °C), and Tdry is the baseline canopy temperature of a
water-stressed plant ( °C).

The AT was calculated using Eq. (7). AT values can be negative, zero,
or positive. A negative AT value indicates the absence of water stress,
while a positive value corresponds to the presence of water stress.

AT =Tc —Ta ()

where AT is the normalized temperature difference ( °C), Tc is the
canopy temperature ( °C), and Ta is the air temperature at the time of Tc
acquisition ( °C).

Based on the critical soil water potential of —20 kPa for leafy vege-
tables, as established by Marouelli [45], the generated models identified
the critical limits of CWSI and AT, considering both leafy vegetables.

2.8. Crop Yyields of lettuce and arugula

In both cropping cycles of the two analyzed crops, the cycle duration
was 40 days. Yield was measured by obtaining the fresh mass of the
aerial parts, consisting only of leaves and stems. Plants were cut at soil
level and weighed using an analytical balance (precision 0.001 g). Yield
was extrapolated to t ha™, considering the amount produced in each
experimental unit.

2.9. Statistical analysis and models evaluation

To analyze data behavior and variability, descriptive statistical
analysis was performed. To develop the prediction models for yield and
soil water content, regression and correlation analysis was conducted

between these variables and both CWSI and AT. Model performance was
evaluated using the following statistical indicators: root mean square
error (RMSE), mean absolute error (MAE), Nash-Sutcliffe efficiency
(NSE), Willmott’s index of agreement (d), Pearson correlation coeffi-
cient (r), and confidence index (c). The statistical indicators were
calculated using Eqs. (8) to 13, respectively. All statistical indicators
were performed based on the individual observed (O;) and predicted (P;)
values, and their respective means (O and P"), and the number of data
points (N).

2 - 0)?
RMSE = |/=————" ®
TP — Of
MAE = N 9
. [ - Piq
NSE =1 {72 0 _ 0y (10)
(P — 05)? }
d=1 - ik — 11
{<\P170|+|oi70|>2 an
_— (P — P)(O; — 0) a2
\/z (Pi — P)2(Z0; — 0)2
C=rd 13)

An RMSE below 10 % is classified as perfect, between 10 % and 20 %
as good, between 20 % and 30 % as acceptable, and above 30 % as poor.
NSE values between 0 and 1 are considered acceptable levels of per-
formance, with values closer to 1 indicating better model performance,
whereas values below 0 indicate unacceptable performance [46]. For
the “d” index, values close to 1 indicate acceptable performance,
whereas values near 0 indicate poor model performance [47]. The r
values were interpreted according to the classification proposed by

Table 4

Classification of Pearson correlation coefficient (r) values.
Pearson correlation coefficient (r) Classification
0.0-0.1 Very low
0.1-0.3 Low
0.3-0.5 Moderate
0.5-0.7 High
0.7 - 0.9 Very high
0.9-1.0 Nearly perfect
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Hopkins [48] (Table 4). The classification of the “c” index followed the
interpretation criteria presented in Table 5 [49].

3. Results and discussion
3.1. Meteorological conditions

The observed temperature and solar radiation values during the two
cycles of lettuce and arugula are presented in Fig. 3. In the first cycle
(Fig. 3A), the maximum temperature ranged from 23.2 to 36.4 °C,
reaching its maximum value at 34 DAS, when the plants were in an
advanced vegetative growth phenological stage. The minimum tem-
perature varied from 5.6 to 17.6 °C, with the lowest temperature
recorded at 14 DAS, during the initial vegetative development stage. The
average maximum and minimum temperatures were 31.8 °C and 12.3
°C, respectively, resulting in a mean temperature of 22 °C. Solar radia-
tion ranged from 3.0 to 11.6 MJ m2 day™!, with a mean value of 9.31 MJ
m? dayl.

In the second cycle (Fig. 3B), the maximum temperature ranged from
18.9 to 37.3 °C, with the highest value recorded at 15 DAS. The mini-
mum temperature varied from 6.8 to 17.1 °C, with the lowest temper-
ature observed at 12 DAS. Both the highest and lowest temperature
events occurred when the crops were in the initial vegetative develop-
ment stage. The average maximum and minimum temperatures were
32.1 °C and 12.7 °C, respectively, resulting in a mean temperature of
24.1 °C. Solar radiation ranged from 2.6 to 12.9 MJ m™2 day’, with a
mean value of 9.3 MJ m™ day!.

Vegetable cultivation is influenced by meteorological conditions,
which directly impact plant growth and development, as well as product
quality. These crops possess physiological characteristics that make
them sensitive to significant climatic variations, especially under the
influence of climate change [50,51]. Many of these vegetables originate
from temperate climate regions and are adapted to moderate tempera-
tures, experiencing difficulties developing under high-temperature
conditions [52].

Under adverse climatic conditions, which can cause various physi-
ological disorders, cultivation in protected environments can favor
proper crop development [53]. However, very low temperatures may
reduce photosynthetic rates and delay vegetative growth. Conversely,
high solar radiation can increase leaf temperature and induce stress in
plants [54,55]. In both cultivation cycles, the average air temperature
and solar radiation values were adequate for growing leafy vegetables.

The ETc for lettuce and arugula in both cultivation cycles is pre-
sented in Fig. 4. The total water demand for lettuce was 120.1 and 122.4
mm, while for arugula it was 124.4 and 126.4 mm for the first and
second cycles, respectively. In the first cycle (Fig. 4A), ETc ranged from
0.64 to 3.99 mm day™ for lettuce and from 0.74 to 4.04 mm day™ for
arugula cultivation. In the second cycle (Fig. 4B), ETc ranged from 0.90
to 4.50 mm day! for lettuce and from 0.90 to 4.81 mm day! for arugula
cultivation, both considering the 100 % ETc irrigation condition, with
proportional reductions for the deficit irrigation levels (80 and 60 % of
ETo).

Although the arugula crop exhibited a higher water demand
compared to lettuce, the average ETc values for both vegetables were

Table 5
Criteria for interpreting the performance of estima-
tion methods by index “c”.

Index "c¢" Performance
> 0.85 Great

0.76 - 0.85 Very good
0.66 — 0.75 Good

0.61 - 0.65 Median

0.51 - 0.60 Bad

0.41 - 0.50 Very bad

< 0.40 Terrible
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similar. In the first cycle, these values were 2.93 mm day! for lettuce
and 3.03 mm day! for arugula, while in the second cycle the values were
2.99 mm day™! and 3.08 mm day, respectively. Comparing the water
demands across different cycles also showed similarity, with a slight
increase in the second cycle. Evapotranspiration values are influenced
by climatic variables during the experimental periods, mainly solar ra-
diation, air temperature, and relative humidity [56].

Periods with intense solar radiation and higher air temperatures
contributed to higher ETc values, as evidenced between June 21 and 24
in the first cycle, and between August 12 and 15 in the second cycle.
Additionally, the variation in ETc between cycles is associated not only
with the meteorological conditions of the cultivation site but also with
the phenological stage of the crops and their production environment
[57]. During these periods, the crops were at an advanced vegetative
development stage, which corresponds to the phase of highest water
demand.

3.2. Thermal images and canopy temperature parameters

The cultivation of the crops under different irrigation replacement
conditions was reflected in distinct canopy temperature values, as
identified by the thermal camera (Fig. 5). A similar color tone pattern
was observed in the thermal images for each irrigation level, and this
behavior was consistent across both crop cycles and for both leafy
vegetables. Under the 100 % ETc condition, the images displayed darker
tones, indicating lower leaf temperatures. In contrast, under water
deficit conditions, the canopy exhibited lighter tones, reflecting an in-
crease in leaf temperature, most pronounced under the 60 % ETc con-
dition and intermediate under the 80 % ETc irrigation replacement.

Table 6 presents the values of canopy temperature, AT and CWSI. In
the first cycle, the average canopy temperatures of lettuce were 24.84,
26.62, and 27.82 °C, while for arugula, the values were 25.30, 27.40,
and 29.42 °C under 100, 80, and 60 % ETc, respectively. This trend of
increasing temperature values with decreasing water availability was
also observed in the second cultivation cycle for both crops. In the
second cycle of lettuce, the average canopy temperatures were 27.04,
30.04, and 30.96 °C, while for arugula, the values were 27.86, 29.96,
and 31.10 °C under the 100, 80, and 60 % ETc irrigation levels,
respectively.

Considering both cropping cycles, the average canopy temperature
for lettuce was 25.94, 28.33, and 29.39 °C, while for arugula it was
26.58, 28.69, and 30.26 °C, under 100, 80, and 60 % ETc, respectively.
Compared to the 100 % ETc, canopy temperature in lettuce increased by
an average of 2.39 and 3.45 °C under the 80 and 60 % ETc, respectively.
For arugula, the increase was 2.11 and 3.68 °C under 80 and 60 % ETc,
respectively. Additionally, the average canopy temperatures recorded
during the second cycle were higher than those observed in the first
cycle. This difference is attributed to the air temperature at the time of
thermal image acquisition, which was 26.35 °C in the first and 29.58 °C
in the second cycle.

For lettuce, in the first cycle, the average AT values were —1.51,
0.27, and 1.47 °C under 100, 80, and 60 % ETc, respectively. In the
second cycle, these values were —2.54, 0.46, and 1.38 °C, respectively.
For arugula, AT values in the first cycle were —1.05, 1.07, and 3.07 °C,
and —1.72, 0.38, and 1.52 °C in the second cycle, under 100, 80, and 60
% ETc, respectively. Considering both cycles, the average AT values for
lettuce were —2.03, 0.37, and 1.43 °C, and for arugula were —1.38, 0.77,
and 2.30 °C under 100, 80, and 60 % ETc, respectively. The AT was
negative under the optimal water replacement condition (100 % ETc).
When water availability was reduced (80 % and 60 % ETc), AT became
positive. These results confirm that plants under 80 % and 60 % ETc
were under water stress, as their canopy temperatures exceeded air
temperature. Conversely, under 100 % ETc, canopy temperatures were
lower than air temperature, indicating the absence of water stress.

Analyzing the mean CWSI values under the three irrigation levels for
lettuce, the values were 0.17, 0.61, and 0.91 in the first cycle, and 0.13,
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Fig. 4. Values of crop evapotranspiration (mm day™) during the experiment. A) first cycle, and B) second cycle.

0.69, and 0.85 in the second cycle, for 100, 80, and 60 % ETc, respec-
tively. For arugula, the CWSI values were 0.22, 0.49, and 0.73 in the first
cycle, and 0.17, 0.65, and 0.91 in the second cycle, respectively.
Considering both cultivation cycles, the average CWSI values for lettuce
were 0.15, 0.65, and 0.88, and for arugula were 0.20, 0.57, and 0.82,
under 100, 80, and 60 % ETc, respectively.

The results demonstrated that canopy temperature increased as
irrigation levels decreased, confirming that water availability directly
affects a plant’s ability to regulate its temperature through transpiration
[14,15]. Plants subjected to water deficit reduce stomatal opening to
minimize water loss, which limits evaporative cooling and consequently
raises leaf surface temperature [16]. Under higher air temperature
conditions, the evapotranspiration demand is greater, but the reduction
in water availability impairs the plant’s ability to respond effectively,
leading to increased canopy temperatures. The relationship between
irrigation levels and canopy temperature highlights the importance of
appropriate irrigation management to prevent severe water stress,
which could compromise both yield and quality of leafy vegetables.

Negative AT values under 100 % ETc irrigation indicate that
adequately irrigated plants are able to maintain lower leaf temperatures
than the surrounding air due to efficient evapotranspiration. When
irrigation is insufficient, exposing the plants to water stress, leaf tem-
perature exceeds air temperature. This occurs because transpiration, one
of the components of evapotranspiration, is fundamental in maintaining
leaf temperature by dissipating heat, thereby preserving metabolic ac-
tivity and the proper functioning of the photosynthetic apparatus [58].

The CWSI is a reliable parameter for assessing water stress levels in
crops, being directly associated with the plant’s irrigation status. Higher
CWSI values indicate more severe stress caused by water deficit. In both
crops and across both growing cycles, CWSI values were higher under
water stress conditions, with values approaching 1 at 60 % ETc, and
close to 0 under well-watered conditions (100 % ETc). Moreover, CWSI

can be used to identify stress thresholds, meaning it is possible to
determine a specific CWSI value beyond which the crop begins to
experience water stress.

3.3. Thermal parameters for predicting crop yield

The yield of the leafy vegetables was influenced by the different
irrigation levels (Table 7). Yield reduction was observed as the amount
of applied water decreased. For lettuce, in the first cycle, the average
yields were 51.76, 44.89, and 29.69 t ha'l, and in the second cycle,
61.82, 48.27, and 41.11 t ha!, under 100, 80, and 60 % of ETc,
respectively. For arugula, in the first cycle, the average yields were
48.24, 34.29, and 23.64 t ha'l, and in the second cycle, 51.15, 32.83, and
27.68 t ha™l, under 100, 80, and 60 % of ETc, respectively. Considering
both lettuce growing cycles, the 100 % ETc condition resulted in an
average yield of 56.79 t ha'!, which was 17.98 % higher compared to the
80 % ETc treatment and 37.67 % higher than the 60 % ETc treatment.
For arugula, across both cycles, the 100 % ETc condition resulted in an
average yield of 49.69 t ha!, representing a 31.96 % increase over the
80 % ETc treatment and 48.36 % over the 60 % ETc treatment.

Water deficit is one of the main factors limiting crop yield, repre-
senting a major challenge for sustainable production in the context of
climate change and increasing global food demand. As observed, when
soil water becomes limited, plants undergo water stress, which can
trigger a series of metabolic responses that negatively affect growth and
productivity. This condition can also directly impair physiological pro-
cesses such as photosynthesis, nutrient translocation, and maintenance
of cellular turgor [59,60]. The CWSI is a robust index that is strongly
correlated with plant physiological indicators. A rise in CWSI is associ-
ated with reduced stomatal conductance, which compromises transpi-
ration rate and consequently increases leaf temperature [23].

These physiological mechanisms may have been impaired in both
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Fig. 5. Canopy thermal images of lettuce and arugula under different water replacement levels. A) first cycle, and B) second cycle.

Table 6
Thermal parameters of lettuce and arugula under different water replacement levels.
Parameters Water replacement levels (%) First cycle Second cycle
Max Min c X Min X c
Lettuce

Canopy temperature ( °C) 100 25.20 24.30 24.84 0.34 27.50 26.50 27.04 0.36
80 26.90 26.30 26.62 0.23 30.50 29.00 30.04 0.61
60 28.10 27.50 27.82 0.26 31.60 29.80 30.96 0.69

AT (°C) 100 —-2.05 -1.15 —-1.51 0.34 -3.08 —2.08 —2.54 0.36
80 0.55 —0.05 0.27 0.23 0.92 0.52 0.46 0.61
60 1.75 1.15 1.47 0.26 2.02 0.22 1.38 0.69

CWSI 100 0.24 0.13 0.17 0.04 0.20 0.10 0.13 0.04
80 0.68 0.53 0.61 0.06 0.78 0.49 0.69 0.12
60 0.97 0.84 0.91 0.05 0.94 0.65 0.85 0.12

Arugula

Canopy temperature ( °C) 100 26.31 24.10 25.30 0.81 28.20 27.30 27.86 0.35
80 28.30 26.60 27.42 0.65 30.40 29.70 29.96 0.32
60 30.90 28.80 29.42 0.85 31.40 30.70 31.10 0.29

AT (°C) 100 —-2.25 —0.04 -1.05 0.81 —-2.28 —1.38 -1.72 0.35
80 1.95 0.25 1.07 0.65 0.82 0.12 0.38 0.32
60 4.55 2.45 3.07 0.85 1.82 1.12 1.52 0.29

CWSsI 100 0.33 0.15 0.22 0.07 0.22 0.12 0.17 0.04
80 0.62 0.37 0.49 0.10 0.76 0.59 0.65 0.08
60 0.76 0.69 0.73 0.03 0.98 0.83 0.91 0.06

AT: Normalized temperature difference ( °C); CWSL: Crop Water Stress Index; Max: maximum; Min: minimum; X : mean; c: standard deviation.
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Table 7

Lettuce and arugula yield under different water replacement levels.

Smart Agricultural Technology 12 (2025) 101587

Parameters Water replacement levels (%) First cycle Second cycle
Max Min X c Max Min X c
Lettuce
Yield (t ha) 100 52.48 50.64 51.75 0.77 68.40 58.32 61.82 3.84
80 46.24 42.48 44.89 1.75 51.28 43.04 48.27 3.17
60 32.00 26.80 29.69 2.04 44.52 38.56 41.11 2.51
Arugula
Yield (t ha™) 100 53.86 45.63 48.24 3.34 54.00 48.67 51.15 2.08
80 38.59 32.69 34.79 2.52 34.56 28.80 32.83 2.44
60 24.48 22.32 23.64 0.93 28.66 25.06 27.68 1.49

Max: maximum; Min: minimum; X : mean; c: standard deviation.

studied crops, resulting in a greater yield reduction under increased
water deficit. This effect may occur even in irrigated systems when
irrigation is poorly managed, or in regions with low rainfall regimes.
Therefore, continuous crop monitoring is important for detecting water
deficit conditions, as obtaining data on plant water status enables rapid
corrective actions, such as timely irrigation, to prevent yield losses.
CWSI values equal to or near zero indicate that the plants are under
favorable water conditions, with adequate transpiration and photosyn-
thesis rates, contributing to enhanced growth and higher yield, as
observed under the 100 % ETc irrigation condition.

Fig. 6 shows the correlation between CWSI and lettuce yield (Fig. 6A)
and arugula yield (Fig. 6B), as well as between AT and lettuce yield
(Fig. 6C) and arugula yield (Fig. 6D), considering both cultivation cy-
cles. An inverse relationship was observed in both crops, indicating that
increases in CWSI or AT values were associated with decreases in leafy
vegetables yield. The coefficients of determination (R?) for lettuce were
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0.71 and 0.75 for CWSI and AT, respectively, while for arugula they
were 0.82 and 0.79, respectively. It is worth noting that the models
developed using both thermal indices demonstrated similar perfor-
mance in predicting the yield of leafy vegetables, suggesting that both
CWSI and AT are reliable indicators for this purpose.

Regarding the prediction of leafy vegetables yield based on models
derived from the correlation between thermal indices and observed
yield (Fig. 7), the predicted values closely matched the observed values
for both lettuce (Fig. 7A and 7C) and arugula (Fig. 7B and 7D). This
agreement is evidenced by the dispersion of data points around the 1:1
reference line. Overall, arugula showed less dispersion compared to
lettuce for both thermal indices.

Predicting the yield of leafy vegetables such as lettuce and arugula
using the developed models enables the use of remote sensing tools with
infrared sensors to estimate crop yield accurately and in real time, even
before harvest. By monitoring thermal indices throughout the crop
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Fig. 6. Correlation analysis between Crop Water Stress Index (CWSI) and normalized temperature difference (AT) values with leafy vegetables yield observed

considering the two crop cycles. A) and C) Lettuce; and B) and D) Arugula.
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Fig. 7. Prediction of leafy vegetables yield using models derived from the correlation analysis of the two crop cycles. A) and C) Lettuce; and B) and D) Arugula.

cycle, farmers can anticipate how the intensity of a possible water stress
is affecting plant development and adjust irrigation management
accordingly before yield losses become irreversible. This is particularly
important for short-cycle crops like leafy vegetables, where just a few
days of water stress may result in significant productivity losses, leaving
limited time for corrective measures.

In addition to the crop water status, soil water content can also be
used for irrigation management. Soil water content can be expressed as
matric potential, indicating the availability of water in the soil for plant
uptake. Although these factors are interrelated, water dynamics within
the soil-plant-atmosphere continuum must be analyzed individually for
effective irrigation management. While crop water status allows for
identifying the proper timing for irrigation, knowing the soil water
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content enables the planning of irrigation events in terms of both timing
and the amount of water to be applied [30].

3.4. Thermal parameters for predicting soil water content

Fig. 8 presents the average values of soil water potential on the day of
thermal image acquisition, considering both cultivation cycles. It can be
observed that, for the same vegetable crop, the soil water potential
values are similar across the two cultivation cycles.

Analyzing the soil water potential for lettuce (Fig. 8A), in the first
cycle, the values were —13.50, —26.50, and —50.50 kPa, while in the
second cycle, they were —15.50, —28.20, and —47.00 kPa, resulting in
average values of —14.50, —27.35, and —48.75 kPa for the 100, 80, and
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Fig. 8. Characterization of the average soil water potential (-kPa) on the day of thermal image acquisition of leafy vegetables for the two crop cycles. A) Lettuce, and

B) Arugula.
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60 % ETc treatments, respectively. For arugula (Fig. 8B), in the first
cycle, the values were —14.50, —21.00, and —43.00 kPa, and in the
second cycle, they were —17.50, —29.50, and —44.80 kPa, resulting in
average values of —16.00, —25.25, and —43.90 kPa for the 100, 80, and
60 % ETc treatments, respectively. Regarding the soil water content
equivalent to the average soil water potential values, they were 0.369,
0.355, and 0.342 m® m™ for lettuce, and 0.367, 0.356, and 0.344 m® m™
for arugula, for the 100, 80, and 60 % ETc treatments, respectively.

In both crops, the lowest soil water potential values were observed in
the treatment where plants were subjected to the greatest water deficit
condition (60 % of ETc), while the highest values were recorded under
the treatment with optimal water replacement level (100 % of ETc),
indicating drier and wetter soil conditions, respectively. For leafy veg-
etables in general, including lettuce and arugula, the soil water potential
threshold is around —20 kPa, which may vary between —10 and —20
kPa depending on the soil’s water retention capacity and the pheno-
logical stage of the crop [45]. In coarse-textured soils (sandy), which
typically have lower water retention capacity, and during more sensitive
growth stages, such as the initial establishment phase, it is recom-
mended that the soil water potential not fall below —10 kPa to avoid
water stress. As observed, only in the 100 % ETc treatment were the soil
water potential values above the threshold (—20 kPa) for leafy vegeta-
bles, confirming that the plants under the other treatments were indeed
exposed to water deficit conditions.

Fig. 9 presents the correlation analysis between thermal parameters
and soil water content, considering both crop cycles of the leafy vege-
tables. It was found that both the CWSI (Fig. 9A) and AT (Fig. 9B)
exhibited a strong correlation with soil water content, with R? values of
0.92 and 0.73, respectively. These relationships were inversely pro-
portional, meaning that as CWSI and AT increased, soil water content
decreased. Specifically, for each 0.1 unit increase in CWSI, there was a
3.45 % reduction in soil water content, and for each 0.1 unit increase in
AT, soil water content decreased by 0.57 %. Among the two thermal
parameters, CWSI demonstrated superior performance in predicting soil
water content compared to AT, indicating its greater potential as a tool
for supporting irrigation management.

Considering the soil water content values predicted by the models
(Fig. 10), it was observed that the predicted values were close to the
observed ones. However, the model developed using CWSI (Fig. 10A)
showed less data dispersion around the reference line, resulting in more
accurate predictions compared to the model developed using AT
(Fig. 10B). Although AT demonstrated lower accuracy than CWSI, it still
achieved satisfactory results and can be considered a viable alternative
for irrigation management.

Notably, in the model based on CWSI, more dispersion was observed
for intermediate values (80 % of ETc), which may be related to the
coexistence of water-filled and air-filled soil pores under this condition,
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leading to greater variability in canopy temperature compared to the
other treatments. Under the 100 % ETc condition, most pores would be
filled with water, resulting in reduced and more stable canopy temper-
atures. Conversely, under the 60 % ETc condition, most pores would lack
water, causing increased temperatures but with lower variation, since
the soil pores are more uniformly dry.

The CWSI, obtained based on leaf temperature, not only enables the
assessment of plant water stress levels but also shows strong potential for
predicting soil water content, as the morphophysiological responses of
plants are also associated with the management practices to which they
are subjected. In this context, the lack of water in the soil to meet crop
demand can lead to several physiological disturbances in the plant and
impair essential cellular functions [61]. At any sign of water stress
emitted by the plant, leaf temperature changes due to metabolic pro-
cesses associated with osmoregulation, cellular respiration, and varia-
tions in photosynthetic rate [20,62].

It was observed that the values associated with each treatment were
concentrated within specific ranges of CWSI and volumetric soil water
content, demonstrating that the model developed for soil moisture
prediction can be applied both when plants are subjected to different
water availability conditions, within the 60 % to 100 % ETc range, and
for monitoring soil water content throughout the crop cycle. In this case,
the behavior is consistent with the different irrigation levels analyzed in
this study, reflecting the soil transitioning from field capacity (100 %) to
a condition where the current moisture corresponds to 60 % of the
available soil water. The use of the model to predict soil water content
under irrigation levels below 60 % of ETc is not recommended, as this
represents the lower limit analyzed in this study. Furthermore, it reflects
a condition of severe stress for leafy vegetable cultivation, and it is not
advisable for soil water content to fall below this threshold.

Based on the developed models and the critical soil water potential
for leafy vegetables (—20 kPa), it is recommended, especially for lettuce
and arugula, that CWSI and AT values above 0.35 and —0.96 °C,
respectively, be considered as critical thresholds to prevent the crops
from entering water deficit stress. These thresholds represent the limit at
which irrigation should be applied. In the case of AT, its negative
threshold is justified by the plant’s early expression of reduced leaf
turgor in response to approaching the critical soil moisture level, as leafy
vegetables are highly sensitive to water stress. In this context, when AT
reaches —0.96 °C, the plant has not yet entered into a critical stress
condition. However, if irrigation is not applied near this point, the leaf
temperature will likely equal or exceed air temperature, reaching crit-
ical stress levels due to water deficiency, which may result in yield
losses.

The CWSI threshold value identified in this study is consistent with
those reported in the literature for other crops. Kumari [29] emphasize
that for wheat, irrigation should be triggered when the CWSI reaches
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Fig. 9. Correlation analysis between Crop Water Stress Index (CWSI) (A) and normalized temperature difference (AT) (B) values with soil water content, considering

the two crop cycles of leafy vegetables.
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Fig. 10. Prediction of soil water content using models derived from the correlation analysis of Crop Water Stress Index (CWSI) (A) and normalized temperature

difference (AT) (B), considering the two crop cycles of leafy vegetables.

values equal to or greater than 0.35, to avoid stress and ensure high
yields. Similarly, Ma [20] demonstrated that CWSI is a useful tool for
decision-making in the irrigation management of winter wheat, allow-
ing for stratification according to phenological stages. Their recom-
mendations suggest that CWSI values should be maintained within the
ranges of 0.26-0.38, 0.27-0.32, and 0.30-0.36 during the stem elon-
gation, flowering, and grain filling stages, respectively.

3.5. Assessment of the predictive models

Table 8 presents the values of the statistical parameters used to
evaluate the yield prediction models for lettuce and arugula. Regarding
the yield prediction models based on the CWSI, the RMSE values were
5.399 and 4.319 t ha'l, and the MAE values were 4.515 and 3.575 t ha'!
for lettuce and arugula, respectively, indicating low prediction errors.
Considering the NSE and the agreement index “d”, which assess model
efficiency, the models were classified as acceptable, with NSE values of
0.714 and 0.824, and “d” values of 0.904 and 0.948 for lettuce and
arugula, respectively. The correlation strength, evaluated by the Pearson
correlation coefficient “r”, was classified as very high (r = 0.845) for
lettuce and nearly perfect (r = 0.908) for arugula. According to the
confidence index “c”, the yield prediction model for lettuce showed very
good performance, while the model for arugula showed excellent per-
formance, with values of 0.764 and 0.861, respectively.

The models based on AT showed RMSE values of 5.077 and 4.707 t
ha'l, and MAE values of 3.988 and 3.895 t ha! for lettuce and arugula,
respectively, also indicating low prediction errors. Considering the NSE
and the “d” index, these models were also classified as acceptable, with
NSE values of 0.747 and 0.791, and “d” index values of 0.905 and 0.944
for lettuce and arugula, respectively. The correlation strength, assessed
by Pearson’s r, was very high (r = 0.866) for lettuce and nearly perfect (r
= 0.889) for arugula. According to the confidence index “c”, both
models were classified as very good, with values of 0.784 and 0.839,
respectively.

Table 9 presents the values of the statistical parameters used to
evaluate the soil water content prediction model in the cultivation of
leafy vegetables. For the model based on CWSI, low prediction errors
were observed, with an RMSE of 0.00301 m® m™ and an MAE of 0.00258
m® m3. In terms of efficiency, the model was classified as acceptable,
with NSE and Willmott’s index “d” values of 0.921 and 0.979, respec-
tively. Regarding the degree of correlation, evaluated by the Pearson
correlation coefficient “r,” it was classified as almost perfect (r = 0.959).
As for the confidence index “c,” the prediction model for soil water
content in leafy vegetable cultivation showed optimal performance,
with a value of 0.939.

Low prediction errors were also observed for the model based on AT,
although these were higher than those of the model based on CWSI. The
RMSE value was 0.00554 m® m, and the MAE value was 0.00453 m® m
3. Considering efficiency, the model was classified as acceptable, with
NSE and Willmott’s index “d” values of 0.733 and 0.921, respectively.
Regarding the degree of correlation, evaluated by the Pearson correla-
tion coefficient “r,” it was classified as almost perfect (r = 0.854). As for
the confidence index “c” the soil water content prediction model for
leafy vegetable cultivation showed very good performance, with a value
of 0.787.

4. Conclusions

The models developed from thermal images captured by infrared
radiation cameras showed good performance in predicting the yield of
lettuce and arugula, as well as in predicting soil water content in leafy
vegetable cultivation under protected environment. The thermal pa-
rameters used in this study, CWSI and AT, contributed to characterize
the water deficit in leafy vegetables, distinguishing the different irri-
gation levels to which the plants were subjected. Considering both
cultivation cycles, under conditions of 100, 80, and 60 % of ETc,
respectively, the average CWSI values for lettuce were 0.15, 0.65, and
0.88, and for arugula were 0.20, 0.57, and 0.82, while the average AT

Table 8

Statistical parameters used to evaluate the yield prediction models for lettuce and arugula.
Crop RMSE MAE NSE d r Index “c”

Value Performance

Crop Water Stress Index (CWSI)
Lettuce 5.399 4.515 0.714 0.904 0.845 0.764 Very good
Arugula 4.319 3.575 0.824 0.948 0.908 0.861 Great
Normalized temperature difference (AT)
Lettuce 5.077 3.988 0.747 0.905 0.866 0.784 Very good
Arugula 4.707 3.895 0.791 0.944 0.889 0.839 Very good

RMSE: root mean square error; MAE: mean absolute error; NSE: Nash-Sutcliffe efficiency; d: Willmott’s index of agreement; r: Pearson’s correlation coefficient; and

¢”: confidence index.
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Table 9
Statistical parameters used to evaluate the soil water content prediction models in leafy vegetable cultivation.
Crop RMSE MAE NSE d r Index "c¢"
Value Performance
Crop Water Stress Index (CWSI)
Leafy vegetables 0.00301 0.00258 0.921 0.979 0.959 0.939 Great
Normalized temperature difference (AT)
Leafy vegetables 0.00554 0.00453 0.733 0.921 0.854 0.787 Very good

RMSE: root mean square error; MAE: mean absolute error; NSE: Nash-Sutcliffe efficiency; d: Willmott’s index of agreement; r: Pearson’s correlation coefficient; and

“c”: confidence index.

values for lettuce were —2.03, 0.37, and 1.43 °C, and for arugula were
—1.38, 0.77, and 2.30 °C.

The yield prediction models for lettuce were classified as very good
when considering both CWSI and AT. For arugula, the models were
classified as excellent based on CWSI and very good based on AT. Since
the models based on CWSI and AT showed similar results, both thermal
indices can be used for predicting the yield of these two crops.

The soil water content prediction models were classified as excellent
when based on CWSI and very good when based on AT. For this purpose,
the use of CWSI is recommended due to its better performance compared
to AT. Based on the generated models, it is suggested that for leafy
vegetables, especially lettuce and arugula, CWSI and AT values of 0.35
and —0.96 °C, respectively, constitute critical thresholds for water
deficit stress.

The use of thermal imaging demonstrated great potential in devel-
oping prediction models. The results obtained in this study may support
decision-making in irrigation management and in the early identifica-
tion of water stress damage affecting the yield of leafy vegetables. For
future research, it is recommended to evaluate the performance of CWSI
and AT indices in other leafy vegetables. It is suggested to consider
stratification by phenological stages and a wider range of water deficit
levels, as well as to evaluate in open-field cultivation environments.
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