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ARTICLE INFO ABSTRACT

Keywords: We examine the Einstein-Cartan (EC) theory in first-order form, which has a diffeomorphism as
Einstein—Cartan theory well as a local Lorentz invariance. We study the renormalizability of this theory in the frame-
First-order form work of the Batalin-Vilkovisky formalism, which allows for a gauge invariant renormalization.
Renormalization

Using the background field method, we discuss the gauge invariance of the background effective
action and analyze the Ward identities which reflect the symmetries of the EC theory. As an
application, we compute, in a general background gauge, the self-energy of the tetrad field at
one-loop order.

1. Introduction

The EC theory is an extension of general relativity that describes a spacetime with curvature and torsion, arising from the spin
of elementary particles. Due to this feature, the EC theory may solve the Big Bang singularity problem that occurs in cosmological
models based on general relativity (GR) [1,2]. In GR, the fundamental entity is the metric & (X) [3]. The EC theory differs from
GR by being formulated in a Riemann—Cartan geometry that encodes, in addition to diffeomorphism, local Lorentz symmetry. It
may be regarded as a gauge theory consisting of local translations and local Lorentz transformations [4-6]. The first-order form
of the EC theory involves a tetrad field e, (x) as well as an independent spin-connection field ®,,,,(x). These are gauge fields that
implement the diffeomorphism and the local Lorentz invariance of this theory. In a previous paper, the quantization of the EC theory
in first-order form has been systematically discussed [7]. It was shown that the gauge algebra for both these gauge transformations
is closed, and the BRST invariance of this theory was established.

The purpose of this paper is to show that this theory is renormalizable in the sense that the ultraviolet divergences are controlled
by the gauge symmetries, so that there are counterterms available to cancel all such divergences. To this end, we will employ the
Batalin-Vilkovisky (BV) formalism [8,9], which is useful for maintaining gauge invariance during the renormalization process. We
shall also use the background field method [10-15], which is convenient for preserving the gauge symmetries of the divergent part
of the effective action of the EC theory in first-order form.

The paper is organized as follows. In Section 2, we reproduce some properties of the EC theory in first-order form together
with the background field method. In Section 3, we formulate this theory in the framework of the BV formalism. In Section 4,
we apply this approach to derive the Zinn-Justin equation [16] for the effective action and to provide a recursive proof of the
renormalizability of this theory. Using this approach, all subdivergences at any order of the perturbative expansion are eliminated
through the renormalization procedure. In Section 5, we examine the gauge invariance of the background effective action, which
is applied to study the ultraviolet divergences of the tetrad and spin connection self-energies at one-loop order. A brief discussion
of the results is presented in Section 6. Some relevant details of the calculations are given in the Appendices.
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2. EC theory in the background field gauge

In this section, we will review some results obtained in the first order form of the EC theory [7], but will omit, for simplicity,
the matter fields. The pure EC action involves the tetrad field e“ﬂ that is related to the metric as

8 () = Ny () (x); (g = diag(+ — —-)) 2.1

as well as the spin-connection field w,,,. It may be written in the form

na
Sec = —— / d*xeR(e, ), 2.2)
K
2 _ : ) _ _
where k* = 162G (G is Newton’s constant), e = det e“ﬂ = y/—detg,, and

R(e,w) = e"“eb”Rwab(w) (2.3)
with

— p P
Ruvab(w) = WOyaby — Dyab,y + wuapwv b wvapw” b (24)

In the above equations, el and w,,, are treated as independent fields. One can show that the solution to the classical equation
of motion for @yap that follows from Eq. (2.2) results in [17]

1 1 2
@ pap = Eeav (ebw‘ — eb,”) + Zea”eb (ew’i - ecl)a) e“ﬂ —(a< b))+ K, (2.5)

where K, is the contorsion tensor. Because the torsion does not affect the renormalizability of the EC theory, it will be disregarded,
for simplicity, in the following discussion.
We assume the metricity condition g,,,.; = 0, which requires the tetrad to satisfy the compatibility condition

a

_ a a b _ _a _ o a a b _
e = o, =€ I"Me5+w/1beﬂ—0 (2.6)

M
where comma denotes partial derivatives, semicolon denotes the usual covariant derivatives and bar denotes the total covariant
derivative. Eq. (2.5) can also be derived from Eq. (2.6).

The action (2.2) is invariant under the diffeomorphism and local Lorentz transformations

5e”M = - Ke"e"”iya - Ke“aei‘ + A"bebﬂ (2.7a)
and
8@,y = — /ce“a)wb’a - Kcoaabsjl = Aapp /la"co”pb + /lhpa)wp, (2.7b)
where e#(x) and A,,(x) are arbitrary (infinitesimal) functions.
In the background field method', the tetrad and spin-connection fields are replaced by the sums
e“y = é"M + an“ = 53 + anu + rcq“M and @y = By + KQ g (2.8)
where ¢¢, (&%) and @, are the background fields, while ¢°, and Q,,, denote the quantum fields.
We will next choose gauge-fixing terms that respect the symmetries of Egs. (2.7) for the background fields & and @,,, but
break the symmetries
5e‘”ﬂ =0, (2.92)
1 b
Sq"” = — e"‘e"”’a - e”aef”" + Eﬂ“be u (2.9b)
and
60yap =0, (2.10a)
1 1 1
80,0 = — e“w‘wb‘a — waubef’; - ;Aub,u + ;Aa"w‘wb + ;/lbpwwp. (2.10b)
To fix the gauge transformations of Egs. (2.9) and (2.10), we choose the gauge-fixing Lagrangian
‘f - b \:ji - g S
Cgf = Ebvbv - bvrlab[(eaﬂqbv + qaﬂebv),/x - za(ebaqaa);il + EBabBab - BabQ;mb”’ (211)

where ¥ and B® are the Nakanishi-Lautrup auxiliary fields [19,20]. In the above equation, ¢ denotes a general parameter such
that for ¢ = 1/2 we recover the linear part in the quantum fields ¢, of the de Donder gauge [21] (gauge fixings involving quadratic

1 Note that, the background field method requires an invertible background metric (det &, #0) [7]. However, it is interesting to mention that the first order
formalism contains another phase with a non-invertible metric, which was first studied in Ref. [18].
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quantum fields may hinder the renormalizability of the theory [22,23]). With these choices, we do not break the diffeomorphism
invariance in the background fields provided the indices are raised and lowered using g, = na,,e“’”ébv.
After some calculations, the corresponding ghost Lagrangian is found to be [7]

BT
— kv sa (_.a,b b b _,a,a _L,a L _ Sap(_ @b _ b L
Egh—c nab{[e ”( e’ e e ;V)+e v( ctel q — el ;ﬂ)] 20[e(—c%e e @ ac;ﬂ)];;}

B
+ %c*vnab{ [e‘”ﬂ (Cbpe"v) +é, (C”pe"u)]

— 20 [é"” (Cbpepu )] AV} + Kc*ab (_cawlmb;(_’ _ waabca;ﬁ)‘” (2.12)
+ CH [~Cop + C POy + Cl )™
We note that the two pairs of ghosts, (c”,c:) and (Cab,C;b), associated respectively with the diffeomorphisms and local Lorentz
transformations, generally couple among themselves. However, for the terms quadratic in the ghost fields, the two types of ghosts
decouple. Moreover, as shown in the Appendices, there occurs a significant simplification of the calculations for ¢ = 1/2.

Setting ¢, = ¢,n and 4,, = C,n, where n is an infinitesimal Grassmann quantity with ghost number -1, one may verify that the
Faddeev-Popov Lagrangian

£FP = EEC + éﬁgf + e_Egh (2.13)

is invariant under the BRST transformations given in Egs. (2.9) and (2.10) together with

8b, =8B, =0, (2.19)
1
ek ==b,n, 6Cl = == Baylt; (2.15)
and
e, =Kkcc qn,  6C, = (—=C  Cpy +Kc*Cpy ). (2.16)

It has been shown in Ref. [7] that the full BRST generator
6 = bgiff + OLp» (2.17)

where 64;¢ and 6;; generate respectively diffeomorphisms and local Lorentz transformations, is nilpotent due to the nilpotency of
these generators as well as to the anticommutation relation

{8aitf> 611} = 0. (2.18)
It is usual to define the BRST transformations of a functional F of the quantum fields by
6F = (sF)n, (2.19)

where s is the BRST generator. We will use the notation gh(F) for the ghost number of F. Since gh(y) = —1, it follows that the BRST
generator s increases the ghost number of F by one unit, that is, gh(sF) = gh(F) + 1.

3. BV formalism for the EC theory in the first-order form

The purpose of the BV formalism is to control gauge invariance during the perturbative renormalization of gauge theories. In
the present case, such an approach must be adapted due the fact that we are dealing with two distinct gauge transformations. To
this end, it is convenient to use a compact notation where we denote the quantum fields (e?,, ®,,43) by (¢;, @), (b, Byp) by (b;, By),
(cys c;, Cops C;b) by (ci,cl.*, Cy, Cl*), and the BRST transformations following from the gauge transformations (2.9b) and (2.10b) by

s = r(d)e; + 1, (D)C; 3.1
and
s@; = Ry ;(@)c; + Ry, (®)C;. (3.2)

Moreover, we have that gh(¢;, @) = gh(b;, B,) = 0, gh(c;, C;) = —gh(c/, Cf) =1.
We will next introduce a fermionic potential ¥, which is a local functional of the quantum fields, with ghost number -1, as

14 :/d4xe- [c,.* (f,-jqu - gb,) +Cy <F,,<1>, - gB,.>] , (3.3)

where the gauge-fixing functions f;; and F;,; may be identified with the corresponding functions given in Eq. (2.11).
Then, using the relations (3.1)-(3.3) together with the Egs. (2.14), (2.15), (2.16), one may verify that the Faddeev-Popov action
corresponding to (2.13), may be written in the simple form

Sgp = Sgc + s¥
= Spc +/d4xé —b; ( fi,; - <y, - B, | Fj,@, - 53,
P\ Jus = 2% 2 3.4
+ ¢ fij [rin@)ex + 1k (@)Ck | + C Frj | Ry (@)ey + Ry (D)C] }
which is equivalent to the one arising from the Eq. (2.2) and from the integration f d*xé of Egs. (2.11) and (2.12).

3
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In the BV-formalism, it turns out to be convenient to introduce as well gauge-invariant antifields associated with all quantum
fields of the theory [24]. Thus, if we denote the quantum fields in our theory: ¢,, ®;,b;, B;.c;, ci*, Cy, Cf collectively by y,, one adds
a new gauge-invariant action (due to the nilpotency of the BRST generator s) given by

/d4x)(331n (3.5)

which should have a zero ghost number. To ensure this, the antifield ;(,f must have a ghost number equal to —gh(y,) — 1 because
the BRST generator s increases the ghost number by one unit. These antifields act as sources for the BRST transformations and are
important to maintain the gauge invariance during renormalization.

Thus, the complete action

Sp(Z 2 x%) = Spe + s¥ + / d*x L5 s (3.6)

where the 7 denotes background fields e, and @ will be invariant under the BRST transformations. This invariance may be

expressed in the form
6,Sy 6;S 6,
/d“x*—“’ﬂ =/d4xr—lps;(n =0, 3.7)
5/%1 5}(3 5/Yn

where the r/I superscripts on the functional derivatives denote that these are taken from the right or the left, respectively.
A main element in the BV formalism is the introduction of an antibracket defined for two general functionals F and G as

F§G 6.F§G
(F,G)E/d4x 5’—1—__—5’—__’— . (3.8)
Sxn byf  Sx) Oxn

pab>

Replacing the functionals F and G by the bosonic action S, one can easily verify that

6,.Sy 6,5 1
/d“x(;—””—;” = 5 (Sy. Sp). (3.9)
Xn 5}{

n
Thus, using the relation (3.7), one can see that this action satisfies the master equation
(Sy,Sy) =0 (3.10)

which expresses the BRST invariance of the action Sy (7, v, ¥%). It is important to mention that since the EC theory is of Yang—Mills
type, the Faddeev-Popov gauge-fixed action coincides with the BV action.

4. Gauge-invariant renormalization of EC theory

BRST invariance of the action leads to relations between the Green functions which are more directly expressed in terms of
generating functionals. To this end we start from the functional:

zZU.z.0h = / Dyexpi (Sm, 12+ / d“me) : 4.1
Making a gauge transformation of the fields and using the gauge invariance of Z, leads to
I / Dysy,expi (Sq,(;?,)(,)(i) + / d4xJn;(n> =J, (Sxm) |ﬁ.J =0. 4.2)
One now defines a generating functional for connected Green functions by
. o ZU XY
W, g, x5 = ———= 4.3
expiW(J. 7. x*) Z0.0) (4.3)
Then, the relation (4.2) can be written as
sW
J,—— =0. 4.4
8 20m
Next, one performs a Legendre transformation with respect to J
o ow
In =Xy gt = A (4.5)
and define the quantum effective action for one-particle irreducible Green functions as
FGoaxH=WJ., 225~ / d*xd, 1 (4.6)

where we dropped, for simplicity of notation, the tilde denoting the mean fields and antifields. The fact that the effective action is
defined by a Legendre transform implies the relations
5. 5T W
=, =" (4.7)
X 5xn  Oxn
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Then, in terms of the effective action I', the identity (4.4) takes the form

5/%1 51;

This important relation is called the Zinn-Justin master equation [16].

We now remark that the master equations (3.10) and (4.8) are given in terms of unrenormalized quantities. In the framework
of BV approach, one must show that a similar result may be obtained if we replace them by renormalized quantities. Thus, the
required equations take the form

6. 6" 1
/d4x’—’— = E(F’ I, =0. (4.8)

(Sr-Sp) =0, R, IRr)=0. 4.9

BRST invariance is encoded in the above master equations. These are crucial to prove, order by order in a loop expansion, the
renormalizability of the EC theory in first-order form. We note that BRST quantization involves local gauge transformations. Thus,
in order to implement a BRST invariant renormalization, the counterterms must be local functions. Such a program works because the
ultraviolet divergences, which occurs at very short distances, can be described by local functionals. To evaluate these divergences, we
will use dimensional regularization which preserves gauge invariance and henceforth follow the thorough discussion given in [25]
(for the renormalization of a gauge-affine gravity, see Ref. [26]).
Let us first consider the one-loop approximation for the effective action, which may be written as
r=r"40m? =S+hry) + I +om?), (4.10)
where 7 keeps track of the loop order in a perturbative expansion. Here, S = Sy (7, 1, ¥*) is the tree level action given in Eq. (3.6),
and Fu(ul‘i, Ff(lll) are respectively the divergent and finite parts of I" in the one-loop approximation. This divergence fixes the form of
the counterterm of the one-loop renormalized action Sy, such that
— (1)
Sip=S-hrg). (4.11)
Let us now consider
(S1r> S1R) = (5,.8) = 20(S, Ty + r2(D, 1y (4.12)
1R> P1R ’ > div div’ * div’’ :
To evaluate this quantity, we substitute the expression (4.10) in the Eq. (4.8), which yields
(I T) = (S.5) + 2h(S. T})) + 2h(S. [{)) + O(h?)

1 1 (4.13)
=20(S, Iy) +20(S. T\ + O(h?) = 0,

where we used the master equation (3.10). To first order in 7, we have a sum of two terms which must vanish independently, since
one of them is infinite. Thus, we get

(M) _
(S, Ty) =0. (4.14)

Using this result in Eq. (4.12), together with Eq. (3.10), we obtain

(Sirs S1p) = WA@Y, Dy, (4.15)

div’ © div
Thus, we have shown that the renormalized action S, ; satisfies the master equation (4.9) up to terms of order h2.
The renormalized effective action to one loop order I'jp can now be constructed by replacing in Eq. (4.10), S by S;g, which
leads to the relation
T =S+ A + 1= 5 +nrd. (4.16)

Thus, Iy is finite at one-loop order and satisfies, by using Eq. (4.15), the relation

(1
(I'ig- Tyg) = KAL) T3, (4.17)
Let us now proceed by considering the two loop renormalized action S,z defined by
_ 202 _ (1 2 (2
Sor = S1r — W T\, = S —hIg) =W T3, (4.18)
where Fl(zd)iv is the divergent part at two-loop order constructed on the basis S;z. One can verify that this obeys the equation
@ y_ L
(8, I i) = 5 T Taiv)- (4.19)
Using this relation, we find that S,y satisfies, up to terms of order #3, the master equation
D @
(Sop. Sar) = 203(I'3). rf, )+ o). (4.20)

The effective action I, is obtained from S,z by a similar procedure to that used earlier (compare with Eq. (4.16))

1 1 2 2
Do = Sop + AT + T+ hz[Tl(, Lt rf,gn] (a1

=S+ +n’r?
in 1,fin
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and satisfies the equation

@
(Iar, Tap) = 203 (g, T12 ) + O(hY). (4.22)

Using mathematical induction, we assume that the effective action I',,_; g constructed on the basis S,,_; p is finite up to terms of
order 2"~!. Then, one finds that the full renormalized action Sy given by

m—1,div

Sp=8- Y n"r" (4.23)
m=1

satisfies exactly the master equation (4.9). Moreover, the renormalized effective action Iy is finite to each order in perturbation
theory:
o0
— n (m)
=S+ Yy nr" (4.24)
m=1
and satisfies as well the master equation (4.9).
Thus, we have shown that the theory is renormalizable in the sense that all infinites can be eliminated by an appropriate
renormalization procedure. The renormalized action Sy and the effective action I'y preserve the BRST gauge invariance to all orders
in the loop expansion.

5. Gauge invariance of the background effective action

Of special interest is the background effective action I'(7) defined as the effective action I'(7, y, y¥) evaluated for vanishing
mean quantum fields and antifields. The Ward identities satisfied by this action may be obtained in a similar way to that used in
Section 4, by starting with the generating functional Z(J, 7)

Z("»f):/Dxexpi(SFP(ZsZ)+/d4X‘InIn>5 (51)

where 7 denotes the background fields cj"# and @4 (see Eq. (2.8)) and y denotes the quantum fields.

Making the background gauge transformations

a _ ~ = b

Aq"u = - Ke"q“j,a - an(ZSZl +A%d " (5.2a)
and

ABy gy = — K€" Dpah g~ Daap€’, = KAy + A @y + 2@ 0 (5.2b)
and using the gauge invariance of Z(J, 7) and of Sgp(y, 7), we obtain that

g / DyAy,expi <SFP(;(, D+ / d4xJ,,;(,,> =0, (5.3)
where 4y,, denote the corresponding background gauge transformations of the quantum fields. For example,

- b

Aq”ﬂ = - Ke“q"/w — anm(:"{:‘ + /labq u (5.4)
and

AQ”ab = - Ke”QWb,a - KQ(lube,(;l + A 0+ Apr;mp' (5.5)

It is now convenient to write the field transformations (5.2) in the compact form used in Section 3, as 4y,, = R,,(r)§,, where
0, =¢, and 0, = 4,. Then, in terms of the generating functional W (J, 7) defined in Eq. (4.3), the Eq. (5.3) becomes

IR, (%) WJ, 76, =0. (5.6)

The background effective action I'(7) is obtained in the standard way, by using a Legendre transform like that given in Eq. (4.6).
Proceeding in a similar manner to that used previously, we get the result

AF(Z)=A;?,,,£ =0 (5.7)

6%m
which exhibits the diffeomorphism invariance of the background effective action I"(y) under the background gauge transformations
of the background fields ¢¢, and @,,,.

This relation leads to Ward identities that reflect the background gauge symmetry of this action. Such identities are obtained by
taking functional derivatives of Eq. (5.7) with respect to the background fields 7, and @, evaluated at vanishing values of these
fields. But taking just a single functional derivative and using the transformations (5.2) of these fields, one gets trivial identities
because the tadpoles 61°/64°, and 6I'/é&,,, vanish in our theory.

6
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q
(a) n b (b)
k k
p
q q
© & v h b (d)
k k k k
P p

(f)

0)

Fig. 1. One-loop contributions to the self-energy I1/;'(k). The curly lines denote the background tetrad field, while the wavy and double wavy lines are associated,
respectively, with the quantum fields ¢°, and Q,,,. The ghost fields ¢}, ¢, and C;, C,, are denoted by dotted and double dotted lines. Diagrams like (1T) vanish
in dimensional regularization.

uab*

On the other hand, by taking two functional derivatives of Eq. (5.7) with respect to the background tetrad or spin connection
fields, one obtains non-trivial relations which should be satisfied by the corresponding Green functions. For instance, taking two
derivatives with respect to the tetrad fields, it is straightforward to derive the following equations

8:r
e A 0, (5.8)
where we have used the fact that ¢, is an arbitrary independent parameter. The Ward identity (5.8) implies that the background
tetrad self-energy should be a transverse function.

The Feynman diagrams contributing at one loop to the tetrad self-energy are shown in Fig. 1. The Feynman rules of the first-order
form of the EC theory are derived in any space-time D in Appendix A. As shown in Appendix C (Egs. (C.8) and (C.9)), in D =4-2¢
dimensions, the divergent part of this function has the transverse form

22 k kM kyk” k kY keykH kyky kH kY
l6n2c Cl 5‘;; - ;{2 5; - 2 + C2 5; - ]‘12 51‘: - k_2 + C3nab + CSZ_Z v — 7 5 (5.9)

where C; are linear functions of the gauge parameters ¢ and ¢ introduced in (2.11).
Similarly, the spin connection self-energy is also ultraviolet divergent. It may be verified that this obeys the Ward identity

82r

—_— =0. (5.10)
# 5wuab6wvcd

G==0

which shows that the spin connection self-energy is also a transverse function.
6. Discussion

We have examined the renormalizability of the EC theory in the first-order form, where the basic elements are the independent
tetrad and spin connection fields. This theory possesses two BRST symmetries, namely, diffeomorphism and local Lorentz invariance.
To this end, we used the BV formalism in conjunction with the background field method, which preserves gauge invariance during
perturbative renormalization. We have argued that the EC theory in the first-order form is renormalizable, meaning that all the
ultraviolet divergences can be subtracted in a gauge-invariant way by local covariant counterterms.
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We have studied the background effective action obtained after switching off the quantum fields and antifields. It is important
that the background field transformations do not change the form of the gauge-fixing terms for the quantum fields nor that of the
ghost terms, which appear in the Faddeev-Popov action. The invariances of the background effective action lead to Ward identities
that reflect the gauge symmetries of the first-order form of the EC theory. Such Ward identities relate the Green’s functions and
are very useful for simplifying perturbative calculations in this theory (exemplified in the Appendices), which are generally quite
involved. As an illustration, we have computed the divergent part of the background tetrad self-energy at one-loop order. Apart
from the tetrad self-energy, there also occurs a divergent spin-connection as well as mixed tetrad-spin connection self-energy. Upon
diagonalizing such a matrix, one would obtain a diagonal self-energy matrix whose elements correspond to the tetrad and spin
connection normal modes of the EC theory. This is currently under consideration.

In previous works, it was shown, by using a Lagrange multiplier field that ensures the classical equations of motion, that all
contributions beyond one-loop order may be eliminated in quantum gravity. It has also been argued that this important feature
leads to a renormalizable and unitary theory [27,28]. It may be worth considering an extension of such an approach to the EC
theory, particularly in the formalism recently formulated in [29,30].
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Appendix A. Feynman rules

In this appendix, we will derive the propagators of the EC theory in first-order form that comes from the action (2.13). We will
also present the vertices which are relevant to the computation of the background self-energy of the tetrad field at one-loop order.
Throughout the Appendices we have used FeynCalc [31,32].

A.1. Propagators

Using Eq. (2.8) in Eq. (2.2), we can collect the bilinear terms in the quantum fields obtaining

v Im
Y Qo) <C§§zv Dlié:: ,,,m> <Qq:lm> a1
We will also include the gauge fixing terms due to the gauges:
F(q) = npl@,¢", +4°,& )7 —20(2q""),;1 =0 (A.2a)
F,(0) = leb‘f” =0. (A.2b)

When ¢ = 1/2, the gauge in Eq. (A.2a) is equal to the linear part of the de Donder gauge h';f‘v - %h;v, where

By () =y [0+ D, %, + 1+ D00, + x| A3)

in the quantum field ¢° .
Integrating out the Nakanishi-Lautrup fields in Eq. (2.11) leads to

1 1
Lo= —EF”F” - zF“hFa,,. (A.4)
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Thus, we obtain that, in momentum space (0 — +ip),

4opppSl papsSHY  PePPSY  PaP'S)  pFpng

M 402 pshsy  Aop,ptsy
Aab = - + - + + +
¢ ¢ S ¢ S ¢ ¢
BHPIM = — i(p! 84y — pn't ™ — i y'? — plyH 8P + pn'HEE + pan™Hn'P),
CD‘CdV - _ Bvocd
b b ’
poedolm — _ 21abap(Iupchpb1m _ IaplmIPbcd) _ %po-pplcdlm7

where labcd = (nacnbd - nad”bc)/z'

In order to derive the propagator, we will invert the 2 x 2 matrix in Eq. (A.1) using

A B\ [ x7 -x"'BD"!
“\-p'cx' D '+D'CcxBD')’

C D

where X = A — BD~!C is the Schur complement.

First, we will compute the inverse of D. We introduce the tensor basis:

(1) yuabved _ l ac  bd uv _ l ad bc uv _ ypabved
(Thp) = St = o =1 ;
(2) \pabved 1 ap  bd cv 1 ad by cv 1 ap  be dv 1 ac by dv
(T = 0¥ — ™ — o™ ™+ o™,
o0 4 4 4 4
(3) \uabved 1 av_bd c 1 ad bv_c 1 av_be d 1 ac bv d
TGy -2 w_ 2 n_ 2 My 2 M
(Tho) g = T = T T
(T ypabvea _ PP p
Q0 2p? 2p?
(T(S) )uab ved _ pcpunavnbd N pcpynadnbv i Pdpurlavnbc N pdpunacnbv
00 B 4p2 4p2 4p2 4p2
4 4 14 4
_ papvgbdgfu . pbpvgadgcy N papvgbcgdu _ pbpvgacgdy
4p? 4p? 4p? 4p2 7
(T(é) )uab ved _ _ pcpvrlaﬂnbd N pcpvnadnby B pdpvnayrlhe N pdpvr’acrlbu
00 4p2 4p? 4p? 4p2 ’
(T(7) )uabvcd _ papc,,lbvndy B pbpcr]uvr’du B papd’,’bvr’cy . pbpdr’avr]cy
00 - 4p2 4p2 4p2 4p2
(T(g) )yabvcd _ papcr]bundv B pbpcnuur’dv _ papdnbuncv + pbpdrlauncv
oo 4p? 4p? 4p2 4p? ’
(O pabvea _ PSRN ot piplghigh | phplgtg
00 4p? 4p? 4p? 4p2 ’
(T(lo))uab ved _ papcpypvnbd B pbpcpupvnad B papdpypvr,bc N pbpdpupvr’ac
00 e 4pt 4pt 4pt
We obtain
10
- (i) \ocd plm
(D I)rrcd plm _ Z y(i)(T ) P R
0
i=1
where
1 2(¢+p%)
Y =-3 YO = ST p 5
“o 2 @7 -2+ (-3
- 1 ¢
Yo = Yo =3 2+
2 2p°
Vi) = 2_1 y(6):—2
2 +p (D—-2)¢+(D-3)p
2¢ | 2p?
Y= 57 5 Y@y = —
e @ D=2 ((D-2¢+(D=3))
o= 1- 2 Yo, = 2D - 4)p*
[C) (10) =~
20 +p? (2¢+p2) ((D-2)¢ + (D =3)p?)

and D is the spacetime dimension.
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(A.5a)

(A.5b)
(A.5¢)
(A.5d)

(A.6)

(A.7a)
(A.7b)

(A.7¢0)

(A.7d)
(A.7€)
(A7)
(A.78)
(A.7h)
(A7)
(A7)

(A.7K)

(A.8)

(A.9a)
(A.9b)
(A.9¢)

(A.9d)

(A.9¢)
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Then, using Eq. (A.5) and the result in Eq. (A.8), we obtain the Schur complement (for simplicity, in D = 4):
XH bv _ A% bv _ Ball (D—l)aca’plmc bv
ocd plm

_ 462p27]a”11bv . 40‘pap”7]bv . 40’pbpvi1a” _ papvnlm _ papbn/w B pbpunav _ pypvnab

¢ ¢ & ¢ ¢ 14 ¢
+ 3papb1’]”v _ papvnbu _ papurlbv _ pbpvna;l _ pbpyrlav + erIavnby + pZ’,Iayrlbv
Sppptpt | 260 et ppP Y 6P Pt 8Cp et 6¢p pint (A.10)

Pr+20 P (PP+2) »” P+ P+2 P+2%
B ZCp/Apvnah N p4rlav’1b/4 _ 3p4rlaﬂnbv N 3p2pap/4nbv N 3p2pbpv’1a;4 N ZgPZrlabnyv

Pr+2¢ PP +2¢ Pr+2¢ Pr+2¢ Pr+2¢ Pr+2¢
_ et pPeten™ 6Lt Tt p et

PP+2¢ P +2¢ PP +2¢ PP+2¢

A.2. Propagator qq

The propagator (qu)”b = (0|Te“”ebV|O) of the tetrad field is given by i(X ‘I)Z"’/ . To invert X, we use the basis:

1%
(T;;))a)d bv — n“”ﬂbv, (A,lla)
(Tq(;))a}l bv — ”avnbu’ (A.]_]b)
(TN = by = g, (All0)

U Vo ab
™" = E (Aa11d)
b v
s)arbv _ pp°n
(T,) = —p2 s (A.11e)
a o, bv b v au
(Tq(g))tmbv — P PZVI + P P2'1 . (A.11)
p p
bu b uav
naubv _ pp'n p’pin
T == (A11g)
a b ou v
(T(S))“”b" _pppp ) (A.11h)
qq P
One can verify that
8
(X =~ Z} X (TaH™ ™, (A12)
i=

where

1 ¢+
[ S =— A.13a
X1y D27 X@) 2 ( )

—4£+ DQE+1)=3
X3y = — Xy = ——— A.13b
O 2pt @ 2D -2)p? (130
D-3 1-20
= ——"° = - = A.13c
YO T 3D YO 3 D2 -1) ¢ )
1-20)D(ERo—-3)-2)+2(¢E+1)20 -3

1 X = ( o)(D(EQ2c —3)=2)+2(¢ + D20 ))_ (A.13d)

Xy = ————
D= 2D -2)p2 4D - 2)p*(c — 1)?
We have a pole when ¢ = 1 which is associated to the vanishing of the Faddeev-Popov determinant [21]. The gauge (A.2a) and the
de Donder gauge are equivalent in the lowest order in . Thus, the propagators in either gauge should be the same.

A.3. Propagators QQ, Qq and qQ

We proceed, and compute the QQ propagator Py, which is given by i(D~'+ D"'CXBD™"). We obtain that

10
(PQQ)/mb ved = i z z(i)(Tg)Q)ﬂah ved (A14)
i=1
where
1 2 1 ¢
= — - = = —1 = - - = = -1 A.15
=5 20=p3 23) =375 Zs) (A.153)
2 2 2(D -3)
2(6) = m Z(7) =1 Z(g) = — m Z(g) =1 Z(l()) = — W (A15b)

10
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To compute the mixed propagators, we introduce another basis:

bac  uv a..bc . uv
(Tél))uabcv — pn u, (A.16a)
q 2p? 2p2
b av.cu a,bv.cu
(Tg))/mbcv - pn 27’ _ u’ (A.16b)
q 2p 2p?
b apcv a., by cv
(Té3))/4abcv — pnTn _ u’ (A16C)
q 2172 2172
VoA, be Vaac  bu
(Tg))uﬂbcv _pnn u, (A.16d)
q 202 2p2
I 4,aV o, be 1 ,AC 1, bV
(Tg))/mbcv _prn 2’7 e (A.16e)
a 2p 2p?
bv Cav  bu
(6)\pabev _ pntn _ pn 77_
(TQq ) - 2]72 2172 ’ (A.160
bv b o ,av
Duabev _ PP°P*R” — p°ppHn
T =52 2 160
a2 C Vb boc v au
(T(S))”abcv _ pppnT _ppPpH , (A.16h)
Qq 2112 2P2
a o p Vo be by v ac
(Tg)),mbcv _ pppn— _ pppn ) (A.161)
q 2p? 2p?
The Qq propagator Py, is given by —iD~'CX~!. Computing and projecting it in basis (A.16) yields
9
Poguaser = =1 2 00/ T pabev (A17)
i=1
where
1
-0 =1 = A.18a
wa e YO =3°Dp ¢ )
1 ¢ 1
w(4) = m w(s) = _F W(G) = m (A18b)
woy = —2=3 Wy = ——20 Wy = ——— (A.18¢)
(D -2)p? (D =2)(o - Dp? (D = 2)p?

One can verify that (Pyo)evuab = —(Pog)yuaev- Note that, the propagators QQ, Qg and ¢Q have no dependency on the gauge
parameter ¢ because

cx'A=o. (A.19)
A.4. Ghost sector

The bilinear terms in c;, ¢, and C%, C,;, from the ghost Lagrangian (2.12) reads

M _
= {30 (et ) + 2 (2%, )| - 201608 5}

A _ (A.20)
+e g (57 (C0r) + 80 (co,87) ] — 20 o (chev)] -t
However, note that the second term in above equation can be simplified to
e {[oe (c,0) +at ()] 20 |5 (Cope)] } =eriC, 4, =200, ) (A.21)

which vanishes, since C,, = —C,,,. Then, we see that, in this order, the ghost fields decouple. There is no mixed ghost propagators.
Using Eq. (A.21) in Eq. (A.20), we have
- *¥ 1,079, + (1 — 26)9,0,|c* — C*0,0" I, C'™. (A.22)
The propagator (Pes¢)gsim = {C2Ci,, ) of the ghost field C,, is simply given by
i

- _zIablm' (A23)
p

While the propagator (Px,),, = <c:cv> is

i 11-=206 PuPv
- + = . A.24
P> <n‘” 20-1 p? ) ( )

When ¢ = 1/2 (in de Donder-like gauge), it simplifies to —i,, / P>

11
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A.5. Vertices

To derive the vertices, we need to consider the expansion (2.8) in several terms. In the determinant e, we obtain that
~ K, v 2
e=é|1+5h +06). (A.25)
where
h) = h, 8" =ng@,d", +& 4", +xq",a") 0" — kB + O(?). (A.26)

Thus,
e=¢é [1 + Knabéaﬂqbvg”v + O(Kz)]
a =bu a b _uv Kz a b -vc acv=uc b beu,a ~vce b a ~uc
=14 xn,6,3" +Kng6,9° 0" — 7’7(11;(55‘1 3+ 6,803 q°, + 8,6k q° GV +824%, ") (A.27)

2 2
K —a b _b K Pra sb . =b d d 3
+ 7:1(,1,71‘”(4”,,4 L +a,q%)+ Inabncm’”n" (@°,6,+d°,8,)859°; +859°,) + Ok™).
We have omitted nonlinear terms on the quantum field ¢¥.
Moreover, using the relation ¢? ¢, = é,, we find that the inverse tetrad e,/ is given by

_ _ 5 205 - 3
et =e )l —xgh + =6k —xq", —xq, 0" +x G+ ", G+, + O, (A.28)

a

which appears in the action (2.3).

In the following derivation, we assume that all the external momenta are inward. We also remember that curly lines represents
the background tetrad field §. The wavy and double wave lines represent respectively the quantum fields ¢ and Q. The ghost fields
¢, C by dotted and double dotted lines.

A.5.1. Vertex qqq
Using Eq. (A.27), we obtain the first contribution to the vertex ggg that comes from the gauge fixing term

—é%gvﬂ Napea8" 81 4", + 4%,y = 202, 4% )@ 14y + a4 )y =20 46,5 (A.29)
which is
_2_’(§Vluv5,u,q_U””Vﬂ Napl (850", + 4, 80" = (620%™ Ineal(85a” 5 + ¢, 85" = (B1a5n ) g1 (A.30)

where we have set 6 = 1/2.
Now, let us consider the contributions due to the expansion (2.8) in

1 K _ - — — - | — — —
= 328 aead 8@ 0", + 07,2 ) = 20@ 07 S 0y + 4,8 5 = 20 01 5)
1 _ _ _ _ _ _
= - Eﬂub'lad”lvﬁ (&, "q", + & ¢ " +q° e, +q0 @ M = el g = gl

¢ . d —c d .« asd sd d s¢ . d
X[ecaaq ﬁ+ecaq P +qcaae /i‘+qcae 5 _e-f[,ﬁq n_ec”qyﬁn] A3

+ %nabncdne s + 670§ NG5, + 4,80, = (804, ) 1G5 + 4455 0 — (Bha°,) 5]
+ Z—Znabncdnc,-n“”n"w[se”q” +371qN@5a", +a%,80), = 6)a° ) IEa" ) + 89 0 = (854, ]
+ Z—’Enabmmemvﬂnwwe“qwf +67°q" NG5, + 4,80, — (6)4° ) G54y + a4 80 o — (65 ) -
The part of the vertex gqq coming from Eq. (A.31) is given by
1 VB a C(lll)i
g e e g Geaq™ (%2064 (x) im0 (32
which, in momentum space, becomes
%%bﬂcd"lvﬂ{[l’g"eﬁﬁ&:&i + Py n,080676) + P§5;5;535v9 + P'345,V,5,ar.55’7v9 — P3N B580n™ = P, 2B ]
X [p;'a;a;a;’ + p‘;agafsg — p1p8Ssin™] + [pg(s/‘jag(s; + p’;ﬁl}ﬁfnﬁf — Py, 8965 1771
X 1P§61a08,6] + P{65na008] + P 60876 npg + P5605 6 Npg — PapSilegSi ™ — P1ySiegdi ™1}
- zﬁfnabncdnef{[ﬁfnsg&g +06705,511p}556,6] + p{ 608755 — p1p656{ N’ 11ph 667 6y, + Py 8,506) — 2,628 ] (A.33)
+ (6155, + 877 815 (8567 6 + 676080) — pp8Lofn ™ 1[ph (836567 + 645760) — pay,6L6n ]
+ (8055, + 87V 5T 65 P} (5567 85 + 87 6050) — 1665 1Ip, (8806] + 626780) — pa, L8N 1}

+ (p1,1,p) < (pp, m,y).

12
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Finally, we have the interactions terms coming from the background covariant derivatives

Vi =ve, —wefoq vi-ele ol vy

e e,V (A.34)
which lead to the contributions to the vertices:
1 vp 53 au b ~a b :u a :pusb a cbiu a bt =at b
B e e e e e A
» j4 3
sc a d sc d @ ¢ azd c sd . s _drx _ 5 . dn
X[, g + &4 )" + 4"+ 48 -8 g eﬂq’ﬂ](i:qzo (A.35)
1 53 b, sa b b b b ~a b )
- %nabnmn‘/ﬂ 5ql (x1)5qm (Xz)aliv(i(Xf;) [e_a”’”q v + eaﬂq V’” + qau’”e v + qaue v’M - e_‘;,vq f- eafq,vr]
» j4
. . . T = d ;
X[6,°a"y + &0a'y’" + 4% + a5y = 8y qudﬂiﬁ]|q=q=0'
where ¢., = ¢, —

q,- Note that, 67 ~does not vanishes. By omitting @,,, and taking the linear part in g% , it is given by
—K&faﬂq“aéz = —k0,q",. Using the same conditions, we get that q:m = —Kﬁiayq_“aq‘;.
The contributions in Eq. (A.35), in momentum space, reads
K

2

1

NapMeat”? APy 531,06] 8, + Dy 35,6,1,08,5, 6, + D56,8,1,48,,5,6) + D5 6},87,8.,0

37u"mv
— D3 Buneg O™ — P35 84m 08 T 1P} 558061 + p{605; 85 — pigbis)n™]
+ [P 845760 + Py 57,50] — pa, 860N 1D 55nag5,5] + D365, 61npad] 6] + P51 6N 585 6 + P§605; 50N (A.36)
= P3pONa0in™ — p3ptor 8 e n 1)
+ (p1,1,p) < (py,m. 7).
Thus, collecting all contributions, one can find that the vertex gqq is given by
T

P2

0 Vi1l o @152, p3), (A.37)
p3 p1

~

where
K
Wil o1 p2sp3) = E[—P11P2m555g — P31P2m605) + 87 Pap1 5y — P1154,P2,5)

+ 8/ P1mb208"" = 8" 2up1 "8 + P1iP2 g’ = B10P2mP1 M’ = P118maP2 "
= 8 PamtooP1” + S19P2m0p17 + 8] 8mgPauP1” + P110hNuePs” = 6] PimiuePs”
= P116mo8002" — P318mad0p2" + 819D 1m00Py" + S19D3m00P," + 5105m91’1u172y
— 81960p15P2" + 819P2mSP3” — P11P2mOL8Y — P11P3mS)8) + D218l P10y
= 81 P16 + 116},258) — 8" Py Py 8 + 8] P2S) P10 + 5] P3P
+ py%&ﬁmg - 5;P2m551710 - 5f5,7,,P2uP19 - 5[’"5517271719 = P18561Pag (A.38)
+ 5,’)P1m5,};P20 +1161,80p2g + P3181,85p29 — 8781, p1,P29 — P11545! P30
+ 87 p1 ! p3% + Py 6,80 p3g — 8 P28 39 — 8" 62 py" Pag + P218me0LP)”
+ P316medl 1’ — 819D2m0,P1” — S19P3m0, P " — P21 S] MugP1” + 517P2m'7u9P1p
+ 81907 D201 = 8] 8,gP2uD1” + 6" Nygp2  P1” — 887 prgpy” — 68 p3gpy”
+ P118,8L D2 — P118LM,0P2" + 8190,01uP2” + P118,gSp3” — 878,957 (Py - P2)
+ 8787 1y (P1 - P2) = 61961,60 (P1 - P2) = 68,08, (P1 - P3) = 61061, (P2 - p3)],
where p-q=p,q".
A.5.2. Vertex Qqq
Using Eq. (A.27), we can obtain the contribution to the vertex Qgg which comes from the determinant:
S (85a, 0" + 55,8 a", + 8)64°, 3" + 804", 3" N6 Y — 57500

(A.39)

K V- _ 1 _ _
= Sl (@, a", + 3" d) + Srnean’ 0@, 8 + 3, 8)554%, + 64,0 DIE" 6T = 5760

13
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Now, using Eq. (A.28), we obtain the following interaction terms

- Kchngngv(chb,/l - Q/lcb,v) + ancn”ﬂq‘/b(gvtb,l - Qltb,v)

- k8"(@"q,° = 43, Qveps = Qaeps) + k8@ 9," = 4“,2)(Oveps — Qrevn)

which yields the following vertex contribution

1 8 2 ) A 2/~ Augs
-= - [6“ —kq"“ —Kkq,n"" +k~(@+ "G+ 9, ]
K 6Q 51m(x1)89%, (x2)3°7 (x3) i “ (A.41)

X [6% —kq"" —kq,"n™ + K> G+ 9" @@ + D 21 Oveps — Qrev)

(A.40)

4=G=0=0"

In momentum space, it becomes

—ix(p60 — plvéi)lcb/”’

(A.42)
X [6265 6100 + 6206150 + 6 (826“ N t™ + Nyulen2nH) + 6 (86" o™ + 1,628 0" )1.
We also have the following interactions terms due to the expansion in EC action and the determinant:
—1 84T+ my 8in™ ¢/ N8 = k@ = kg, U™ = k3" = k4, "1 1O\t = Qcn)- (A.43)
The terms that contributes to the Qqg vertex are
K Sr T (679, 0% + 8™ 4, NN Qyep s = Quena) + KNy 8in™ @/, (53" + 6" )N Qe — Qrcnn) (A.44)
which leads to the contribution, in momentum space,
ix(p148) = pry DI, ", 8L8 5T (64" 8" + 648, + m,; 8in™ 5161 (58} 60 + 6750.6™). (A.45)
Collecting all the interaction terms above, in momentum space (9 — +ip), we get
a
N
b2
00 ep iVl F (b1 Py p)s (A.46)
b3 P
plm
where
W™ 2 o Pr p2. p3) = ik (828165, 6% + 6,8, 61/5)60 65 + 6087556468, + 6.6/,54606,) 1" py,
= ikpi TP SN T " ™ (8, 8L'6] + 601, 8461
MubMled "
_ % (B4, 260 + 50n,8)(5550 81 + 645561
+iK(py80 = py, 8L, (A47)
X [8,856,n"" + 308,67 — 8" (8,83 nai™ + oulexyn" )
— 6 (8) 84 ™ + N BL8N"H) = ;8481881 8™ + 545 nH?)
w7 5i Asvshb o shscsby
+1,;6¢n™ 8161(58)6, +675,6")].
A.5.3. Vertex QQgq
The first contribution comes from the gauge fixing term
1 o .
—eZQ”ab’”QV“b*V. (A.48)
Using Eq. (A.27), we get the following contribution to the vertex 0Qg
K o
—an(sgq‘ agH waaVQV“b. (A.49)
We also have one from the EC action:
- Kﬂu,,(sﬁ‘,ti””(s“"ﬁbv(Q,mef,] - Qme:b). (A.50)
Now, we will consider the interaction terms coming from the covariant derivatives
Ver=vi-xelo, vyt —efe o Vil (A.51)

14
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Using Eq. (A.51), we have that
Qvabv _Q ab [”wv_Kn f((sew—vf_'_&fv—we)] 50:6\/—1 Q ab etxem ~vi Qaab+0(q2).

This leads to the followmg interaction terms

Zﬁ;lay —I Quavaab,v _gQMab M&aa\/ =| Q ab
24’ Q;me '7 f(éeJ/ ~f + 5/1 ye) + iQ”ab,yQTab,rnef(aeyqnf + 5fnqye).

The remaining contribution comes from the following term in the action Sgc (without é):
ap =vb bv Zva P _ P
+ k(677 + 677" NQapQ, QW,,Q” )
Summing all the interaction terms QQg, we obtain
I8 Quey 0], ~ Q@] + 25T Qo0 =)

| K - K
Zg 5;1614 l” QaabQVab,v + ZQuab,ué;lavqlvQwab 24; ,me ab nef((sey ~Tf + 5fr ye)

K —. —
+ 22000 QP (BT + 877G ) — 2, 850" Q

2 2

which, in momentum space d — —ip, gives us the vertex:

b
”abanva
ved
P2

. 0
6 Vil uapyed”” P1-P2sP3):

ps3 p1

pab
where

_ 0 _ 0l p 1 H P
[V221]uab,vcdv (P],Pz,P}) = — k6" 6m(11pab med Ilpcdl mab) + 2K6 m(Ilpab med Ilpcdl mab)

K K
- _Iabcd (p3p2v5,4 +p§p]u55> - z_nlmp;plylabcdnyn']w(ﬁly 6’m UT + SMTPIMWIW)

2¢ ¢
_LI T (51}/ mo nu+5mn51951)y)+_1

2C abcdnlmp2yplrl7ryrlrv n C abcdr’ plyp2v
+(py. uab) < (py, ved).

A.5.4. Vertices C*Cq and c*cq
Consider the C7, ghost Lagrangian

_ b —
ec* [_Cab;;z +Clw,,, + C/,pa’;mp] . g

Using the expansion (2.8) in the determinant yields
_KIablmnuuagqvaC*abaﬂaﬂClm’

and the expansion in g"#:
+ Kc*ab [ b;¢v] ']ef(‘se” ~vf + 5vf Me)

We also have a interaction term (at order x) due to the covariant derivative

Cab;ﬂ;V = Cab,uv - Kéaﬂavqau Cﬂb,ﬂ - e_uﬂévya_}vuucab,ﬂ’
which reads
Knﬂvc*abégavqaﬂ Cab,ﬁ'

Therefore, the interaction terms C*Cq are given by

_KIablmnul,‘su —vac*aba 07rclm + Kc*ab [ ]nef(é-eu ~vf + 5vf ME) + Kﬂ”vc*ab(sﬂlqu Cabﬂ

ab,uv

Now, we have the ¢* ghost Lagrangian
M

S KV Uy Sa _Lazb _5b a sb [ aza _ 54 _[54 (_p0zb _
ec™'g nﬂb{[ey< chen, et +e, che T, . [ey e, . & c )]

in which linear terms in the quantum tetrad field g were omitted.
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(A.59)
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(A.61)

(A.62)

(A.63)
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From Eq. (A.25), we obtain the first interaction term
= KMy M0y G *¥ 07 0t (A.65)
Now, we have the terms coming from g#4:
e (57 4 g [52 (_5%) +a (—5;4; )] —[6960¢" 1, ). (A.66)
e
Moreover, the covariant derivatives 5”M:a = —Kaaq"” + O(®) and
(e, +2 ")y =—kelo,q (") +& ")+ 0@ (A.67)
also lead to interaction terms
* ~a b b ~a sb
Kc Vn”ynab[ayq”}léacoiv +9,q V&Zc“’” — 0vq“y 5ac"f”] (A.68)
* By su sb bsfy = B -
+ Kkc Vn‘”nab(é“i&u ayq”vﬁac"iﬂ +6,0, @q”ﬂéic"’ﬁ — 6‘;5,46 q”ﬂéic"iﬂ).
The remaining interactions terms arises from the expansion (2.8) in
Ny { [e‘“u (—c”ébv’a - ébac’fv> +é, (—c"éa‘m - é“ac‘f”)] - (e, (=c* “’M - e‘bac"ﬂ)],g} (A.69)
which reads
H
* =b =b b = ~ * ~b ~b
K™ Map [574 (-c“q va — 4 ac"iv) *+9, (_caqaw - qaaca,u)] =R ST (=T = T (A.70)
+Kc*Y 7 (=8Pc® V+ab (=59¢® H kv [—ay(_éb @] )
Moy |3°, ( =85¢%, ) + @, (—65¢”, K N q PRI
Collecting all contributions, in the momentum space, we have the vertices:
, O
;.
p2
»
l'l
vl m\' iV3x3115.6,00(P15 P2, P3) (A.71)
A}
Pp3 oD
«
\“
-
and
B cd
:"
P2 ,:"
r
.
ilVyx4ilab,ca,v0(P1s P2s P3)s (A.72)
0 p vo _P;PT”IBJ
Sp5n” (A73)
(P2 p3) 1”11
(A.74)

"pin’ + pipln
- p5pin” - p
n&ar’up _

ab
0 P vo

- (Pl 'Pz)

) = Kl gpeaP3oPao

where
WVas31177" (01 P2 p3) = K[=205p5n"" = pipsn’® + pan"n"’ + p
= Plpin" — ppon" + ppin® + pphn
= 2pn” + i pin"® — (py - po) n”n"°
and
Viraila.ea.o0(P1 P2s P3) = Kl apeatogPy Par — KIabcd”efp2vp2y(5eM6;69f +8v 5ksp
Appendix B. Transversality of the tetrad self-energy
One can express the tetrad self-energy in terms of the basis (A.11) as follows
KMk k,kp,
Ha”bv(k) =c 886, + C25:5£ + 3t ng, + C4I’]ab7 + CSU”V;—Z
kok* o kkY LKk ekt k kK B.1
— + 6 +c;( 6 +6 g—,
k2 a k2 b k2 a k2 k4
16

\2
+ ¢ <5b
where ¢; are scalar functions with mass dimension 2.
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The transversality condition (5.8) leads to the following constraints:
ci+c=0, cp+c;=0, c3+¢,=0 and c5+c5+c;+c3=0. (B.2)

Using these relation in Eq. (B.1), we obtain the transverse expression

o kg , kK , kK u kpk?
&0\ - 2 o, — 2 +6(&,0) (6, — 2 5, — 5
k,k HfV
+ <c3(§, OMlap + ¢5(6.0) ;;) <11‘” - "k—f>

where ¢ and ¢ are the gauge parameters introduced in Eq. (2.12).

(B.3)

Appendix C. Self-energy of the background tetrad field at one-loop order

To compute the diagrams in Fig. 1, we will use dimensional regularization and employ tensor decompositions as done in
Refs. [33,34]. After the loop momentum integration, the diagram (I) will have the following tensorial structure

8
(11 Ry = Y, CRaim ¥ ), (c.1)
m=1
where (T, q(;"))a" , is the mth tensor of the basis (A.11) and I = a, b, ¢, d, e, f, g, h, i. We can obtain the coefficients c" by solving
the system of 8 linear equations:

8

b (M H VvV _ I Hv b
@ P01 = e @iy, €2
m=1

where n=1,2,...,8.

Now, we have to compute the scalar integrals (T;")

q

D
[ &5 wan. ©3)

)"””V[I_I (D]a" , » which have the following form

where p is taken to be the loop momentum, q = p + k, k is the external momentum and s®(p, ¢, k) are scalar functions of the p - k,
q-k, p-q, p*, ¢* and k*. We can simplify these scalar functions using the relations

2 2 k2

p-k=%, (C.4a)
2 2_ 2

q.k:%’ (C.4b)
2 2 2
+2 -k

P.q=1+; (C.4c)

which reduces s¥(p, ¢, k) to combinations of powers of p> and ¢%. In the end, the integrals in Eq. (C.3) becomes a combination of
the simple integrals [34]:
dPp 1 1p (KHP/271=m (1 4+ m — D/2) T(D/2 = m)['(D/2 - I)

Im — —
T=leor e~ aopr  TOrm TO-m=0) €5

The only non-vanishing integrals are

e (BOPP2 TQ - D/2)Ir((D/2 - 1)

I = : c6
nEh T anpn (D=2 (C.62)
3-D
I, =1 = e Iy, (C.6b)
3- D)6~ D
Iy = (2#1”. (C.60)

Other integrals comes from massless tadpole-like contributions that go to zero when dimensional regularization is used [35]. Note
that, in the massive case, these contributions may not vanish. The procedure described here for the massless case can be modified
accordingly to the massive case, which could be required to the diagonal formulation of the EC theory in first-order form.
In D = 4 — 2¢ dimensions, the ultraviolet pole 1/e part of the integral I'! is given by

i

1672¢”

From Eq. (C.6), we see that if the UV pole of the integrals in Eq. (C.3) vanish, then the entire integrals vanish. This implies that, if
the background tetrad self-energy I_IZIV’ is finite, then it must vanish.

Iyy = (€7

17
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Table 1
The coefficients C® (see Eq. (C.1)), in units of x?k*Iyy, for the divergent part of the diagrams in Fig. 1 decomposed in the basis
(A.11).
O (@) (b) © () (e) ® (@) (h) ®
c® 1 s, 1 ¢ .38 _8 0 1 L7 1 -1
! 15 24 20 6k2 64 480 4 3k 24 60 10
c® L s _ 13 B¢ 247 0 _3 _L 2 1 _1
2 15 24 240 192 12k? 480 8 6k> 96 60 10
c® -1 _e_ 13 v _ & L 0 -L _£ .2 -1 -L
3 10 6 240 9  12k? 160 24 6k2 96 15 10
co L £, 7 RN 19 o 1 ¢ 1 1
4 10 6 60 12k2 16 240 24 6k2 32 15 10
B T 5 ¢ E o 7 R £l 2
5 15 12~ 60 96  4k? 80 24 2k 96 30 5
c® _L _f_ 1 £ _ 6t 1 0 _1 _x 3 _1 1
o 15 24 120 6k 192 60 4 3k 8 60 10
co _L 1_£ 25 _ L _1 0 1 £ _1 19 1
7 15 60 24 192 1242 30 6 3Kz 48 60 10
o 1 & 1 5 7 5 23 1
% 5 2710 i & 0 0 6 55

C.1. Results in D = 4 — 2¢ dimensions

Using the method described above, we obtained the divergent part of the diagrams in Fig. 1 in D = 4 —2¢ dimensions which are
presented in Table 1 (for a general & and ¢-gauge).

Summing all the contributions of the diagrams in Fig. 1, we find that the divergent part of the background tetrad self-energy is
given by (see Eq. (5.9))

B

8
kY =y 21 Cu(TIM 1Y, (C.8)
o
where
E 961\ ,, ¢
==+ )k2+2
! (24+960> T2
C, = £ _1» k2_£
2 24 320 4

& 197\ ,, ¢
Ci= -2+ 2L )k2-2
3 <6+480> 4’

B

C,= -G, (€9
TE 241 5, ¢

Cs= =+ )k2+2,

3 <1z+240> *3

Cs= -G,

C = -G,

Cy= —C5+C, +C,.
The above relations between the coefficients C,, are exactly the transversality conditions derived in Appendix B (see (B.2)).
The gauge parameter ¢ does not appear in the coefficient Cg, since non-local terms, as
gkakbkukv position _ d,0,0,,0,
k2 space 02

would arise. Such terms are forbidden due to the locality of gauge transformation and the corresponding BRST transformations.
Moreover, the following relation holds

> (C.10)

Poy(p) - Vgoy (p. 4. 5) - Pyo(q) = 0. (C.11)

This implies that the diagrams (e) must vanish at the integrand level, which is consistent with our computations.
Appendix D. Relations between the tetradic and the metric formulations
The metric h,,, and the tetrad ¢“, are related by

By =Ty (é“yqbv +q°,2 + an”qbv) . (D©.1)

From the EH action, we can obtain the quadratic form
By, = / d*xh, X P h,,. (D.2)

18
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Using Eq. (D.1), we find that

B, =/d4xqa”55”ﬂa (Xaﬂprr + XParo 4 xabop 4 Xﬁtwp) 5;%bqbv + O(qz). (D.3)
Thus, we see that the quadratic terms in the tetrad would be equal to

B, = 5gnﬂa5;r[,,b (X"’ﬂ’”y + XParo 4 xobor 4 Xﬁ‘"’p) . (D.4)

In the first-order formalism, we have contributions due to the spin connection gauge fixing term. When ¢ — oo, we find that
(A.10) is equal to (D.4). This allows us compare the propagators in the second order formalism. We may also use Eq. (D.1) to
compute the graviton propagator using the tetrad propagator in the first-order formalism of the EC theory obtained in Appendix A.
Then, the graviton two-point Green’s function

(0T Ay, (xR, (1)|0), (D.5)
yields

NapMlea MM (0IT ", (), (1)10) + minOIT4", ()g° ,(I0) + nin (01T, (x)g’, (I0) + nin(OIT 4, (x)q°,(1)10)

+ 1001, ()a", ()4, I0) + -+ (OITF , ()q", ()T, (4, IO) + - + k73 (01T 4", ()q", (14, (1)]0) (D.6)

+ o 4+ (0T, (04", ()4, (14", DI0) + Mapea ™ OIT4* (g, (g, (1a” , ()10)].
In lowest order, the two-point function (D.5) leads to the graviton propagator which correspond to

Napled (nZn,ﬁ(OITq”V g’ , I0) + nindOITq", (x)q°,(I0) + nlns(0IT g, (¥)a? ,()I0) + nlnl(0ITq%, (x)rf,,(y)|0>) (D.7)

in lowest order (x°). Using the propagator computed in Eq. (A.12), Eq. (D.7) leads (in the de Donder-like gauge ¢ = 1/2) to

i | 2oy Py (Pl + Putlon) + Po (D + PyMlyp)
“HNopllvp — Novllyp +(1+& p2

' D-2

) (D.8)
which is the graviton propagator in the de Donder gauge [15].
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