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Abstract. Robotic rehabilitation might be a solution for the growing number of people with neuromotor disability. When
programming robust control for therapy robots, the large variability in human body dynamics leads developers to leave
it as unmodeled uncertainty. Here we propose and test a way to insert patient force estimates in a LOG compensator
loop. Identification of a linearized leg model is combined with a Kalman observer to get a full LOG knee movement
controller. A multilaver perceptron neural network is trained from reference trajectories and inverse dynamics data to
calculate human-generate torgue, subtracted from LOG state feedback, so that the controller is more compliant and
incites orthosis user activity. Preliminary simulations of an impaired patient are used to validate the complete system,
and to compare it to traditional approach. In the end, the more interesting results are discussed and considerations about
shortcomings and future developmenis are made.
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1. INTRODUCTION

Besides being one of world’s major causes of mortality, leading to death about a third of its 15 million annual victims,
the cerebrovascular accident (CVA or stroke) is also responsible for residual disability in half of survivors (World Health
Organization, 2004), increasingly numerous, due to to improvements in first aid procedures. Spinal cord injuries, by its
turn, have an incidence rate of 500 thousand cases each year, and in low- and middle-income countries only 15% of the
impaired people have access to required assistive devices (World Health Organization, 2013).

Diseases like those, which compromise one’s neuromotor capacity, are a ever growing problem, because of the global
trend of population aging and proliferation of related risk factors, such as sedentary lifestyle, diabetes and hypertension.
Overloading on health systems, increasingly required by patients in need of rehabilitation services, raises demand for
innovative treatments that allow for quality recovery using fewer human and material resources (KREBS et al., 2008).

In view of this and recent technological advances, the last decades have seen an increasing interest in research on
the application of robots (as orthoses or end-effectors) in physical rehabilitation. Using a robotic device as controllable
interface between therapist and patient saves the first from manual work of guiding the exercised limb and enables finer
adjustments in external aid to particular needs of the second (MARCHAL-CRESPO; REINKENSMEYER, 2009; CAO et
al., 2014). In addition to the immediate advantages, having a computerized system integrated to the treatment opens the
door for application of motivational virtual games, remote communication for home care, recording of data over several
sessions Lo assess performance evolution, among others (GONCALVES et al., 2014; CARIGNAN; KREBS, 2006).

The most successful approaches to robotic therapy so far are those based on learning: the synchronization of effort
and precision during high intensity exercises, in order to stimulate the central nervous system to regain movement control.
Although usage of robots, which can work uninterruptedly. facilitates performing a great number of repetitions, simply
tracking predefined trajectories does not require any patient collaboration, resulting in only increased joint range of motion
without improved coordination (Slacking Hypothesis). An appropriate control for the rehabilitation device should provide
the minimum help necessary for users to complete motor tasks on their own (assistance-as-needed paradigm or AAN)
(HOGAN, 2014).

In this article, an experiment with application of optimal torque control on an active knee orthosis is described. A
real-time estimation of user activity is combined with the algorithm, in the expectation that it better follows an AAN
criterion and promotes motor relearning.

The text is organized as follows: Section 2 presents the robotic platform; Section 3 shows how data collected from
preliminary tests were processed to assist in system identification; in Section 4 that information is used to estimate a
linearized plant model; Section 5 describes the optimal control architecture; Section 6 details the tools used in training an
artificial neural network to calculate patient-generated torque; finally, in Sections 7 and 8, simulations of an impaired user
are performed, to compare results oblained with and without network estimations, and some considerations about further
improvements are made.
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. ROBOTIC REHABILITATION PLATFORM

Among the equipment available at the Rehabilitation Robotics Laboratory (ReRob) from Sdo Carlos School of En-
gineering (EESC-USP) is the active knee orthosis, developed in Santos e Siqueira (2014). Based on a Rotational Series
Elastic Actuator (rSEA), it allows to take measurements of interaction torque between its effector and the load (flexed leg).
Such readings are necessary to implement compliant controllers, more suitable for robots acting as a human-machine in-
terfaces (HMI) (HOGAN, 2014).

The control hardware for this device is comprised of Maxom Motor EPOS DC motor drives and a National Instruments
PXle-8115 embedded computer running the code on a real-time operating system (Phar Lap ETS). In addition, a desktop
with network access can be added to run graphical user interfaces (GUIs) for monitoring or direct operation (Fig. (1)).
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Figure 1: Diagram showing hardware connections used for controlling the active knee orthosis, on the left (adapted from
Consoni et al. (2016))

Being performed via software, developed in Consoni et al. (2016), the orthosis control is discrete-time type (so are
all its equations), with 5 milliseconds update step At. Inside that time frame, each processing iteration, including file
recording of related variables (when set for any of them), must be completed to ensure real-time performance.

3. DATA ACQUISITION AND PREPROCESSING

In order to adapt therapy for each patient physical characteristics, the system operation has a preliminary phase, when
it attempts to map limb dynamics. Equation (1), adapted from Mefoued, Mohammed e Amirat (2011), is the reference
model for the case studied here: person in sitting down position, moving shank (of mass m, and length /) around knee
joint (with damping b}, and kinetic dry friction f§) in the sagittal plane, from 0° (lowest point) to 90° (highest point).

s : T . s ml? masgls dn A
T + 7 = Jsf + bpf + fisign(f) + wgsin(f) , where j; =~ =y We N ———, Tp = f(8%.8.6.8,1.) 8

&

For that, values of desired position #¢, effective position ¢ and interaction torque 7, of the elastic actuator, indexed
by time, are registered over 3 sampling periods, during which the user has to follow a reference sinusoidal movement,
displayed on a GUI Here, data was collected from a healthy subject performing the task.

3.1 Provisional Control for Data Acquisition

As the knee orthosis is not backdriveable, some sort of actuation is required to enable its movement. So, initially, a
basic virtual impedance control (JARDIM; SIQUEIRA, 2013) is applied. For the first period, the knee orthosis is set to
a fully compliant (zero impedance) behavior, that lets users track the reference as much as they are able to. Over the last
two time windows, the robot provides variant assistance and random disturbances are inserted at some points.
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3.2 Kalman Filtering

For kinematic data sampling in that setup, it is only possible to reliably measure angular position A, although velocity
and acceleration are also needed. Instead of simply performing a double discrete derivative Lo get those values, a Kalman

filter is used to estimate smoother signals A. A and 4. The general formulas (for state 7 calculation and Kalman gain K
adjustment) presented in Faragher (2012) were adapted to this use case as in Eq. (2).

1 A 22 b
.2‘7'.;.1 - Fi‘g -+ 1\—;1,](5},' — HFJA,;) ., where F = 0 1 Xt | B = [1 0 {]] 5 Fi== 3 y Y= 7 (2)
0 0 1 i

3.3 Inverse Dynamics

The last measurement necessary for motion analysis is patient-generated torque 75, which could only be obtained
directly using electromyographic (EMG) readings and a muscle contraction equation, as in Hassani, Mohammed e Amirat
(2013). As an alternative, here inverse dynamics (ID) is used to get it indirectly on OpenSim (SETH et al., 2011), a set of
software libraries (available for C++, Python, Java and MATLAB) for human mechanics simulation.

With that framework, a base musculoskeletal model, provided as XML file, can be scaled to fit a given person anthro-
pometric values. Then, taking the adjusted parameters, OpenSim 1D solver calculates internal joint torques for a given
kinematic state and list of external loads.

4. PLANT IDENTIFICATION

Considering that a MIMO (multiple input, multiple output) solution, applicable to multi-joint control, is being devel-
oped, a state-space (matrix) representation of the system is necessary. Equation (3) shows a standard linear model for
plant observation, where matrices A, B and C determine the relationships between the state x variables and the input u
and output y, accounting for unstructured (stochastic) uncertainties v (processing error) and w (measurement error).

0
xip) = A; + Bu; v,y = Cx; + w; here, r = |8, y = (6], u=[m+ 2] (3)
)
However, the nonlinearities of Eq. | would not fit this formulation. A linearized variant of it, as in Eq. (4), must be
used to approximate the original one. at the cost of greater state prediction errors.

NER 1 Ay AL 0
T =af+80+90 = A= 0 I At|.B=|0]|,C=[1 4 0 )
—v/a —Bla 1 l/a

Having done that, the preprocessed list of values from the first sampling period, described in Section 3.is used in a
linear least squares solver (like Python’s numpy.linalg.lstsg) to estimate parameters v, (3 and + (Tab. (1)).

Table 1: Unconstrained least squares coefficients and average residual for nonlinear and linear formulations

{l coeff. f coeff. sign(é) coeff.  sin(A) coeff. f coeff. avg. residual
nonlinear equation  j, = 6.217 by = —2.637  ff =0.154 w, = 13.485 0 0.178
linear equation a=13432 pB=-5824 0 0 v = 10.363 1.510

5. CONTROL ARCHITECTURE

As the control of the orthosis must simultaneously keep reference position r tracking (small error) by the patient and
reduced input torque u, it involves an optimization problem: the minimization of a cost function with two inputs. In
Linear—quadratic—Gaussian (LQG) "cheap" control, this cost J is defined as in Eq. (5), where Q and R are symmetrical
weighting matrices for manual adjustment (one could be made constant, as only the ratio between them matters).

N
J=> (fQu+ul Ru;), where Q=C'C, R=pI (p>0) (5)

i=0
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The full discrete optimal controller equations are a combination of state-space plant model, internal state z observer
{Kalman filter) and compensator (feedback gain) (Eq. (6)). Although not intrinsically robust, the LQG method leaves
room for stability optimization through the TR process (LLoop Transfer Recovery), that for "cheap” control consists of
lowering p to near 0 (SKOGESTAD; POSTLETHWAITE, 2005).

AR AZ; + BU.,' =t K;.+.1(y; = P C{.A:i -~ B’Uj)) 5 Uy = —(BT.YB e R)ilB’[‘.YAL'i (6)

Matrix X is the solution to discrete-time algebraic Ricatti equation (Eq. (7)), also available in Python (function
scipy.linalg.solve_discrete_are).

ATXA - X —(ATXB)(R+BTXB) Y(BTXA)+ Q=0 (7

6. NEURAL NETWORK TORQUE CALCULATION

Up to this point, the approach taken follows what is commonly done for robust control of rehabilitation devices,
which treat human interaction as unknown input disturbance (SANTOS; SIQUEIRA, 2014; JUTINICO et al., 2017). The
proposed improvement consists of subtracting user torque estimates 7,, from state feedback control input u, in order to
lower actuator work when the patient is able to partially track a given trajectory.

OpenSim 1D solver, however, can not be used to simulate the person behavior, as it does not take reference positions
into account. Besides, its algorithm is slow for required time constraints and its libraries are not easily integrated in a
real-time system,

As a solution to model that relationship and speed up processing, a multilayer perceptron (MLP) neural network with
improved learning rate (SUTSKEVER et al., 2013) is employed. Data from second and third sampling routines are used
for MLP training and validation, respectively. As the appropriate amount of samples and hidden neurons is unknown, a
discrete optimization process searches for a suitable combination to minimize a fitness function, as in Alg. (1).

Algorithm |: Code for perceptron optimization (Python)

bestNeurons=10; nStep=5; bestSamples=10000; sStep=5000
bestFitness = 1.0

# iterative optimization loop

isRunning = True

while isRunning:
# generate 8 new points around last best fit one
neuronsList = [ bestNeurons+nStep, bestNeurons, bestNeurons -nStep ]
samplesList = [ bestSamples+sStep, bestSamples, bestSamples -sStep ]
oldBestFitness = bestFitness

for neuronsNumber in neuronsList:
for samplesNumber in samplesList:

# call MLP training and validation routines
trainingError = TrainMLP ( neurcnsNumber , samplesNumber )
validatienError = ValidateMLP( neuronsNumber , samplesNumber )
fitness = trainingError + 0.5 * validationError
# update fittest MLP training properties
if fitness < bestFitness:
bestFitness = fitness
bestNeurons = neuronsNumber
bestSamples = samplesNumber
# optimization loop stop condition
if abs( bestFitness - oldBestFitness ) < 10e-3: isRunning = False
# update steps to their half greater nearest integer

nStep = ceil( nStep / 2 )
sStep = ceil( sStep / 2 )
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7. SIMULATION RESULTS

To try getting a better understanding of how the control system would behave with an actual impaired patient, 2
simulations were run reducing MLP-estimated 7, (equal to the effective one 7, for this virtual subject). by 40% (KELLER;
ENGELHARDT, 2013). Reference trajectory was a generated sinusoidal curve with 8s period. During the first simulated
activity, 7, is only monitored, and not subtracted from control input u. In the second, calculated values enter the control
loop. The actual plant was replaced by the nonlinear model (Eq. (1)) in order to reproduce more reliable results (Fig. (2)).
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Figure 2: Motion outputs (on top) and robot and patient inputs (below) for simulated assisted activity when (a) user torque
is taken as disturbance and (b) accounted as control action. The stable LQG compensator used p = 0.00001

Despite lower actuator torques, human ones remained mostly the same, causing larger trajectory deviation. However,
as the main concern is stimulating synchrony between effort and desired (not actual) motion, another evaluation metric is
necessary. Summation of the pointwise product of 7, and position error e, (= 8% — ) sign (always pointing the correct
direction) was chosen as a preliminary performance assessment. Table (2) present that and other measurements.

Table 2: Patient performance measurements for N=50000 samples of both simulation runs

\/ Z—Ni [rad] +/ ;VT& [N.m]  Work: 3" 7, - AAL[J]  Performance index: Y. T - sign(ey)
Simulation 1 0.2834 4.7352 411298 207009 (-325084 at 100% 7,)
Simulation 2 0.5663 5.4934 -4312.07 244021 (494985 at 100% Tp)

As depictled, in simulation 2 the virtual patient produced slightly higher torques, but great part was spent on negalive
work, resisting actual movement (probably due to unsustainable leg’s weight). On the other hand, higher performance
index possibly indicates an extra amount of ability of reacting to the task which is not used during simulation 1.

8. CONCLUSIONS

This work experimented with aspects of optimal and robust control (LQG, H,,, etc.) for human-robot interaction
where they seem Lo be lacking. Making no considerations about external loads makes sense to keep the algorithm as
generic and adaptable as possible, but in the case of rehabilitation, in controlled environments, at least a black-box (no
defined structure) approach could be employed to preadapt models for more performance.

The enhancement proposed here shows an impact worth looking at, and it is far from fully developed, as room for
improvement is clear. The usage of time-invariant matrices limits range of operation, as state prediction error raises
considerably for larger joint angles. making online recalculation of A and B matrices an interesting next step. Also, EMG
measurements could be compared or even combined with current torque estimates, in order to fine tune it. Finally, real
tests on healthy and mainly impaired subjects will be essential to confirm the whole strategy viability.
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