Área: CAT

Na-Promoted CoCu/MgAl₂O₄ Catalyst for Superior CO₂ Hydrogenation and Ethanol Steam Reforming Performance

<u>Larissa E. R. Ferreira</u> (PG), ¹ Guilherme B. Strapasson (PG), ^{1,2} Cristiane B. Rodella (PQ) ², Liane M. Rossi (PQ) ³ and Daniela Zanchet (PQ) ^{1*}

zanchet@unicamp.br*

¹ University of Campinas, Institute of Chemistry, ² Brazilian Synchrotron Light Laboratory (LNLS/CNPEM), ³ University of São Paulo, Institute of Chemistry

CoCu catalysts, CO2 hydrogenation, ethanol steam reforming, magnesium aluminate, Na-promotion

Highlights

Na promotion significantly enhanced CO_2 hydrogenation, boosting higher alcohol formation up to C_4 . In parallel with ethanol steam reforming, the Na-promoted catalyst also exhibited higher selectivity toward CO_2 and H_2 .

Abstract

Exploring alternatives to reduce the CO₂ concentration in the atmosphere, the CO₂ hydrogenation forming ethanol has emerged as a promising strategy for mitigating this critical greenhouse gas. From the chemistry perspective, the inherent stability of CO₂ combined with the challenges of C-C bond formation and selectivity control required to produce high alcohols remains challenging. However, insights gained at ambient pressure in the reverse reaction, i.e., the steam reforming of ethanol-producing CO₂ and H₂, represent a valuable opportunity to deepen our understanding of the requirements to produce high alcohols from CO₂. A crucial step is identifying distinct catalytic sites capable of adsorbing CO2 with different strengths, directly influencing the selectivity. Co and Cu-based catalyst systems show considerable promise, mainly when promoted with Na. These materials allow for the fine-tuning of the metallic phase's electronic structure and the optimization of interfacial sites through interactions between the metallic species and the catalyst support, for this reason, catalysts based on Cu_xCo_{x-1}/MgAl₂O₄ (x = 1, 5, and 9) and promoted with Na were explored here. Figures 1 a and b show the catalytic result in terms of CO2 conversion and selectivity toward CH₄, CO, methanol, ethanol, and hydrocarbons (HCs) as a function of CuCo atomic ratio. Higher Cu loadings favor the CO and MeOH formation, hindering the formation of C-C coupling, but with low activity. On the other hand, higher loadings of Co favor the CH₄ and the C-C coupling and formation of HCs, with higher CO₂ conversion. Among the different compositions, the 5Co5Cu catalyst showed the best performance in the hydrogenation of CO2, with the formation of 27 mg_{MeOH}.gc_{oCu}-1.h-1 and 1 mg_{EtOH}.gc_{oCu}-1.h-1. The impact of Na as a promoter was evaluated in this catalyst. Figure 1c shows that the presence of Na favored chain growth, expanding the products' distribution to high alcohols up to C_4 (7 $mg_{MeOH}.g_{CoCu}^{-1}.h^{-1}$, 2 $mg_{EtOH}.g_{CoCu}^{-1}.h^{-1}$, 0,2 $mg_{PrOH}.g_{CoCu}^{-1}.h^{-1}$ and 0.2 $mg_{BuOH}.g_{CoCu}^{-1}.h^{-1}$). Complementary data was obtained by the steam reforming of ethanol, Figure 1d. While Co directs the selectivity toward CO₂, favoring C-C bond cleavage, Cu directs the desorption of acetaldehyde. When the catalyst was promoted with Na, it increased the production of CO₂, while acetaldehyde production decreased.

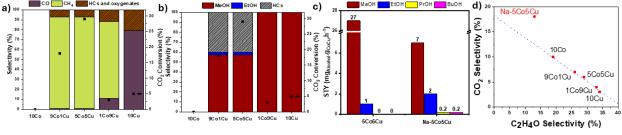


Figure 1: a) Selectivity of CO, CH₄, HCs and oxygenates during CO₂ hydrogenation on Cu_xCo_{x-1} catalysts (x = 1, 5, and 9) under H₂/CO₂ = 4, 200°C, and 100 bar. b) Zoom of HCs and oxygenate selectivity, highlighting methanol, ethanol, and HCs. c) Space-time yield (STY, mg_{Alcohol}·g_{CoCu}⁻¹·h⁻¹) of alcohols for the 5Co5Cu catalyst compared to Na-doped 5Co5Cu. d) CO₂ and C₂H₄O selectivity during ethanol steam reforming after pre-reduction at 500°C, with reaction conditions of 400°C, atmospheric pressure, and H₂O:EtOH = 3.

Acknowledgments

