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Abstract
To train an artificial neural network model using 3D radiomic features to differentiate benign from malignant vertebral 
compression fractures (VCFs) on MRI. This retrospective study analyzed sagittal T1-weighted lumbar spine MRIs from 
91 patients (average age of 64.24 ± 11.75 years) diagnosed with benign or malignant VCFs from 2010 to 2019, of them 47 
(51.6%) had benign VCFs and 44 (48.4%) had malignant VCFs. The lumbar fractures were three-dimensionally segmented 
and had their radiomic features extracted and selected with the wrapper method. The training set consisted of 100 fractured 
vertebral bodies from 61 patients (average age of 63.2 ± 12.5 years), and the test set was comprised of 30 fractured vertebral 
bodies from 30 patients (average age of 66.4 ± 9.9 years). Classification was performed with the multilayer perceptron neural 
network with a back-propagation algorithm. To validate the model, the tenfold cross-validation technique and an independent 
test set (holdout) were used. The performance of the model was evaluated using the average with a 95% confidence interval 
for the ROC AUC, accuracy, sensitivity, and specificity (considering the threshold = 0.5). In the internal validation test, the 
best model reached a ROC AUC of 0.98, an accuracy of 95% (95/100), a sensitivity of 93.5% (43/46), and specificity of 96.3% 
(52/54). In the validation with independent test set, the model achieved a ROC AUC of 0.97, an accuracy of 93.3% (28/30), 
a sensitivity of 93.3% (14/15), and a specificity of 93.3% (14/15). The model proposed in this study using radiomic features 
could differentiate benign from malignant vertebral compression fractures with excellent performance and is promising as 
an aid to radiologists in the characterization of VCFs.
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T2WI  T2-weighted image
TE  Time of echo
TR  Time of repetition
VCF  Vertebral compression fracture
VOI  Volume of interest

Introduction

Vertebral compression fractures (VCFs) occur in different 
clinical scenarios, such as trauma, osteoporosis, and neo-
plastic infiltration [1]. In the case of a nontraumatic VCF, 
the diagnosis of the underlying disease may be challenging, 
especially in the elderly population [2]. The most frequent 
causes of benign and malignant nontraumatic VCFs are 
osteoporotic bone fragility and bone metastasis, respectively.

The study of benign and malignant VCF differentiation has 
been the subject of research for more than 20 years, making it 
possible to expand the understanding of imaging patterns that 
could help discriminate between these two conditions [2–4]. 
MRI has been established as the most relevant medical imag-
ing technique for diagnosing malignant spinal disease, mainly 
because of its high sensitivity to bone marrow abnormalities 
[5, 6]. The criteria used to distinguish between benign and 
malignant VCFs in the clinical routine are related to vertebral 
body morphology and the signal intensity abnormalities of 
the bone marrow mainly observed on T1WI and T2WI [7, 8]. 
Some characteristics commonly associated with malignant 
fractures are i) metastasis in other vertebrae, ii) presence of 
an epidural or paravertebral soft-tissue mass, iii) abnormal 
signal of the pedicle or other posterior elements, iv) total 
replacement of bone marrow fat signal by low-signal tissue 
on T1-weighted sequence, and v) diffuse posterior vertebral 
border convexity. Concerning benign fractures, some char-
acteristics frequently associated with them are i) additional 
benign fractures, ii) pedicle and posterior vertebral element 
with normal signal, iii) focal posterior vertebral border con-
vexity, and iv) linear horizontal hypointense T1/T2 band. 
However, none of the above qualitative criteria are pathog-
nomonic when used alone [3, 9].

In a recent study to evaluate the interobserver concord-
ance and diagnostic accuracy to differentiate benign versus 
malignant VCF, Arana et al. concluded that these metrics are 
moderate at best, irrespective of medical or surgical specialty, 
years of clinical experience, or hospital type. In addition, they 
highlighted this result casts doubt on the reliability of using 
MRI findings together with clinical history as the basis for 
distinguishing benign from malignant VFC in routine clini-
cal practice or multicenter studies [10]. Biopsies are also an 
important reference for the differential diagnosis between 
malignant and benign lesions; however, as it is an invasive 
technique, it should not be used as a standard method in clini-
cal routine. In addition, there is already an understanding 

that, due to the spatial and temporal heterogeneity of tumors, 
other types of descriptors need to be used to allow a more 
complete characterization of the lesion [11, 12].

In the last decade, the role of medical imaging as a diag-
nostic tool has expanded, allowing it to become a potential 
critical pillar in the context of personalized medicine. This 
only became possible when medical images started to be 
treated as quantitative data [13]. Radiomics is a relatively 
recent approach with promising results, mainly in oncology, 
and it consists of the massive extraction of many quantitative 
features from medical images that can be correlated with 
clinical outcomes [11].

Previous studies used quantitative features extracted from 
MRI to differentiate benign from malignant VCFs. Frighetto-
Pereira et al. [14] extracted 17 features to evaluate 103 VCFs 
(from 61 patients) using k-NN. Azevedo-Marques et al. [15] 
extracted 19 features derived from Fourier and wavelet trans-
forms to classify 73 VCFs (54 benign and 19 malignant) from 
47 patients. Frighetto-Pereira et al. [16] extracted 27 quantita-
tive features to evaluate 102 VCFs using different classifiers 
from those used in their previous work. Casti et al. [17] pro-
posed to segment the fractures using nine different techniques 
and extract 15 shape-based features from each segmentation 
result. Finally, Arpitha and Rangarajan [18] proposed a segmen-
tation and classification method based on shape and texture to 
differentiate benign from malignant VCFs in 62 patients. They 
used the same set of features used in [14] and [16]. Although 
these studies have shown promising results, all of them had an 
exploratory goal and did not analyze the data to the point of 
proposing a radiomic signature capable of performing the dif-
ferentiation between benign and malignant VCFs with suitable 
reliability. In addition, as above-mentioned, radiomics implies 
a "massive extraction" of features to obtain the maximum infor-
mation. In previous studies, the largest number of extracted 
features was 27, which may lead to a lack of relevant informa-
tion. Finally, all the studies only evaluated the central slice of 
T1-weighted sagittal MRIs. To the best of our knowledge, this 
is the first work that used a three-dimensional approach, which 
allows us to extract more information from the images [19].

Our hypothesis is that the massive and three-dimensional 
extraction of features from spinal MRIs may result in a radi-
omic signature capable of differentiating benign and malignant 
VCFs. The aim of this study was to distinguish between benign 
and malignant VCFs using an artificial neural network based 
on three-dimensionally extracted radiomic features from MRIs.

Material and Methods

Study Design

This retrospective study proposed the creation of a classi-
fication model for the differential diagnosis of benign and 
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malignant vertebral compression fractures using quanti-
tative features three-dimensionally extracted from MRIs.

Dataset

This study was performed in compliance with Health 
Insurance Portability and Accountability Act regulations 
and was approved by the Institutional Review Board. 
Informed consent was waived.

The dataset of this study comprised sagittal T1-weighted 
lumbar spine MRIs obtained from consecutive patients 
diagnosed with benign or malignant vertebral compres-
sion fractures at the University Hospital. The MRIs were 
performed in the clinical setting using the Philips Achieva 
1.5 T and 3 T MRI systems (Philips Medical Systems, 
Best, The Netherlands) and were retrieved from Picture 
Archiving and Communication System (PACS) in the Dig-
ital Imaging and Communications in Medicine (DICOM) 
format. The sagittal T1-weighted MRI sequences had the 
following parameters: 400–675.38/7–14 [TR (msec)/TE 
(msec)], 183.6–418.6/183.6–630.2 [FOVx (mm)/FOVy 
(mm)], 320–1750/320–1024 [Rows/Columns], 2–8 [Num-
ber of Averages], 160–767 [Pixel Bandwidth (hz/pixel)], 
3–5 [Slice Thickness (mm)], 3–5.5 [Spacing between 
Slices (mm)] and 12–15 [Number of Slices]. The table 
containing the parameters for each exam can be seen in 
the electronic supplementary material.

To search the patients, a query on the RIS was per-
formed from 2010 to 2019. Due to the system's limitation, 
it was only possible to select the search period, insert the 
anatomical region of the MRI (spine), and input the term 
"fracture" to filter the reports. Therefore, many cases in 
which the physician reported "absence of fracture" were 
also recovered. From the list generated by the RIS, the 
duplicated patients were eliminated, remaining in the data 
set only the oldest acquisition of the patient. This strategy 
was adopted to reduce the chances that the patient had 
started some treatment. After discarding duplicate patients 
and exams that did not have lumbar fractures, 375 cases 
that met the inclusion criterion, which was "patient with 
at least one vertebral fracture in the lumbar region" were 
selected. The exclusion criteria were (a) treatment (such 
as chemotherapy, radiotherapy, and surgery) before the 
MRI, (b) a fracture of traumatic etiology, (c) diagnosis not 
confirmed by biopsy (for the malignant fractures), (d) an 
old fracture and (e) patients under 18 years old (consider-
ing the MRI date).

To meet the exclusion criteria and define the ground truth, 
a rereading of all MRI examinations by a senior radiologist 
(blinded) with 20 years of experience in musculoskeletal 
radiology was performed, as well as the review of all avail-
able data in the medical records of the hospital information 

system (HIS), including biopsies, clinical and imaging 
follow-up. The labeling and exclusion of cases were car-
ried out during the same process of checking the medical 
records. Regarding the malignant fractures, the spine biopsy 
was the main criterion to confirm the diagnosis and label 
the fracture, so patients who did not undergo this examina-
tion were excluded. As an additional evaluation, the review 
of the patient records to check the neoplasia follow-up was 
performed, and those who started treatment before the MRI 
were also excluded. Concerning the benign fractures, DEXA 
scan indicating the presence of osteoporosis and the reread-
ing of the MRIs were used to confirm the diagnosis and label 
these fractures. As a complementary evaluation, an imaging 
and clinical follow-up of two years were performed to ensure 
that the group of fractures labeled as benign did not contain 
any vertebra with neoplastic infiltration imperceptible by the 
radiologist, which may occur, for example, in patients with 
early-stage multiple myeloma.

The study group comprised 91 patients (36 men and 55 
women, with an average age of 64.24 ± 11.75 years) with 
146 fractured vertebrae. Of these 91 patients, 47 (51.6%) 
had benign VCFs and 44 (48.4%) had malignant VCFs. In 
addition, 61 (67%) had only one fracture, 16 (17.6%) had 
two fractures, 7 (7.7%) had three fractures, 3 (3.3%) had four 
fractures, and 4 (4.4%) had five fractures.

Once the final list of patients has been established, the 
MRIs were retrieved from the PACS of the institution. For 
this, a Python script was developed to automatically down-
load the exams using the following DICOM header informa-
tion: PatientID, Modality, and StudyDate. In this script, an 
anonymization function was inserted for some information 
in the DICOM header: PatientName, InstitutionAddress, 
InstitutionName, OperatorsName, ProtocolName, Request-
ingPhysician, RequestedPROCedureDescription, and Body-
PartExamined. This step ensured that all exams used in this 
work were adequately anonymized.

The 91 patients were split into training and test sets. The 
last 15 patients with benign fractures and the last 15 patients 
with malignant fractures retrieved from PACS were chosen 
as the test set. To avoid bias during test set evaluation, just 
one vertebral body per patient was used. To choose which 
VCF would be used for the cases where a patient had more 
than one fractured vertebra, the Python function random.
choice was used, so that among the 46 vertebral bodies (from 
30 patients chosen as the test set), 30 were used to test the 
model, and 16 were discarded. The 100 fractured vertebral 
bodies (54 benign and 46 malignant) from the remaining 61 
patients were used to train the model.

Preprocessing and Segmentation

Preprocessing and segmentation were performed by using 
3D Slicer version 4.8.1 (https:// www. slicer. org/). Linear 

https://www.slicer.org/
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transformation was applied to the images to rescale the 
intensity levels between 0 and 255 by using the RescaleIn-
tensityImageFilter tool, which is included in 3D Slicer. 
Histogram equalization was performed to enhance image 
contrast by using the AdaptiveHistogramEqualizationImage-
Filter tool, also included in 3D Slicer, with the following 
parameter settings: α = 0.3, β = 0.3 and radius = 5.

The segmentation of the 146 fractured vertebrae was 
accomplished semiautomatically by one investigator 
(blinded) who has been trained by the senior radiologist. 
The vertebral body in the sagittal images was defined as the 
volume of interest (VOI), excluding the images without an 
apparent pedicle, and was segmented three-dimensionally 
using threshold- and erosion-based tools available in 3D 
Slicer. All segmentations were reviewed by the supervisor 
(blinded), and adjustments were made. Each segmentation 
was saved as an NRRD file, which is the native extension of 
the 3D Slicer. A dynamic representation of the segmenta-
tions can be seen in the electronic supplementary material.

Three‑Dimensional Extraction of Quantitative Features

Quantitative features were extracted from the VOIs by using 
PyRadiomics (https:// pyrad iomics. readt hedocs. io/ en/ latest/), 
which is an open-source Python package. A Python script 
that imports the PyRadiomics package was coded to input 
the MRIs and segmentations, extract the radiomic features, 
normalize them to range from 0 to 1, and save them into 
a.csv file. Three-dimensionality was handled in this work in 
different ways for each feature category. Regarding the first-
order features, they are calculated based on a histogram that 
represents the frequency distribution of the gray level inten-
sities of the image. In this case, the three-dimensionality 
lies in the frequency distribution considering the gray level 
intensities of all slices of the volume of interest. Concern-
ing texture attributes, they are traditionally calculated based 
on intensities variations between neighboring pixels. In the 
case of 2D feature extraction, this neighborhood is defined 
considering one single slice. In a 3D feature extraction, the 

neighborhood contains pixels from the other slices, and their 
relationships during the calculation are computed. Figure 1 
shows the neighborhood representation for a 2D and 3D 
feature extraction considering the distance between pixels 
equal to 1.

Shape features were not extracted in this work, as the 
number of slices used for the three-dimensional charac-
terization of each vertebral body was defined based on the 
presence or absence of pedicles. This intentional selection 
of slices could insert a bias during the shape analysis. The 
electronic supplementary material can show details of the 93 
extracted features (19 first-order features and 74 texture fea-
tures), which were calculated in accordance with the Image 
Biomarker Standardization Initiative (IBSI) [20].

Model

Machine learning step was performed by using WEKA 
version 3.8 (https:// www. cs. waika to. ac. nz/ ml/ weka/). For 
classification, the multilayer perceptron (MLP) neural net-
work with the back-propagation algorithm was chosen. 
Although deep neural networks have been state-of-the-art 
in the image classification task, we chose the MLP to get 
greater control over the features extracted from the images 
once our main objective was to find a radiomic signature 
that could bring more clarity to the radiologist's interpre-
tation. As input data of the model, the.csv file containing 
the 93 features extracted from the segmented vertebral 
bodies was used so that each line corresponded to one 
fractured vertebral body and each column to a feature, the 
last one being designated for the label benign or malig-
nant. The hyperparameters that WEKA allows to handle 
were set as follows: learning rate = 0.3, momentum = 0.2, 
batch size = 100, and epochs = 500, which are the default 
configuration. Other configurations were tested using the 
function CVParameterSelection, which is included in 
WEKA; however, they did not overcome the performance 
that used the default configuration. Concerning the hid-
den layers, they were set to correspond to the expression 

Fig. 1  Neighborhood represen-
tation for a 2D and 3D feature 
extraction

https://pyradiomics.readthedocs.io/en/latest/
https://www.cs.waikato.ac.nz/ml/weka/
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(number of features + number of classes) / 2. Therefore, 
during the feature selection steps, this hyperparameter was 
continuously changed according to the number of resulting 
features. Finally, the threshold used to compute the metrics 
was 0.5, which is the WEKA default.

Experimental Design

The experimental design consisted of three parts, as depicted 
in Fig. 2: i) feature selection, ii) internal validation test, and 
iii) independent validation test.

Feature Selection

To select the relevant features, the wrapper method was used. 
The wrapper consists of using a learning algorithm as a black 
box to evaluate the subset of features resulting from the search 
algorithm [21]. The parameters available in WEKA to con-
figure the wrapper method are initial state, search method, 
search direction, stopping criterion, and evaluation metric. 
In the initial state, we must inform how the feature vector 
will be started. It can be empty, complete, or with just a few 
attributes. As a search method, WEKA makes available the 

Fig. 2  Experimental design 
step. A Feature selection 
procedure consisting of three 
steps. B Shows the internal 
validation test, which used 30 
training sets with the previously 
selected features (obtained from 
original training set shuffle) 
and the tenfold cross-validation 
method to yield 30 neural 
network models. C Depicts the 
validation test that used both the 
model with the best evalua-
tion in (B) and an independent 
test set to perform the final 
evaluation. E = evaluation. 
IS = initial state. SM = search 
method. SD = search direction. 
SC = stopping criterion
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GreedyStepwise or BestFirst options. Both algorithms perform 
a greedy search in the attribute space. However, in GreedyStep-
wise, the search is interrupted when an added (or removed) 
feature reduces the performance. In the case of BestFirst, a 
backtracking function is added to the algorithm allowing to 
compare the performance of each added/removed attribute 
with a defined number of past performances. Search direction 
can be set as forward, backward, or bi-directional. Forward is 
used when the initial state is empty, and the features are added 
to the subset of attributes to be evaluated. The backward option 
is used when the initial state is complete, and the features are 
deleted one by one during the process. With the bi-directional 
option, two simultaneous searches are carried out, one pro-
gressive and one regressive, with the aim of meeting in the 
middle of the path. The stopping criterion specifies how many 
attributes must be analyzed consecutively without improving 
the algorithm's performance. When that number is reached, 
the search stops. Finally, the evaluation metric is the measure 
that is used to compare the algorithm's performance for each 
subset of features.

In this work, we used the wrapper method in three steps. 
The MLP algorithm (previously specified) with tenfold 
cross-validation was chosen as the black box for all the 
steps. In addition, the BestFirst algorithm was selected as 
the search method, and the AUC ROC evaluation metric was 
picked to evaluate the performance of the features subset. 
The remaining parameters were set as follows:

• First Step: initial state = empty, search direction = for-
ward, stopping criterion = 20 consecutive expansions 
without improvement, and evaluation metric = AUC 
ROC.

• Second Step: initial state = complete (all resulting fea-
tures from the previous step), search direction = back-
ward, stopping criterion = 10 consecutive removals with-
out improvement, and evaluation metric = AUC ROC

To set the initial state of the last step, the attributes result-
ing from the second step were ranked using the ReliefF filter. 
Thus, those with a score > 0.03 were chosen to initialize the 
feature vector in the third step.

• Third Step: initial state = features with ReliefF 
score > 0.03, search direction = forward, stopping crite-
rion = 10 consecutive expansions without improvement, 
and evaluation metric = AUC ROC

Figure 2A depicts this process.

Internal Validation Test

The training set containing 100 VCFs (54 benign and 46 malig-
nant) with the features subset resulting from the feature selection 

step was used for internal validation. To assess the robustness of 
the radiomic features found in the feature selection process, the 
training set was shuffled 30 times. For each of these datasets, 
a new model was trained and validated using a tenfold cross-
validation. Although the k-fold cross-validation technique is 
widely used to assess the generalization of a model, when it is 
performed only once on the training set, bias related to the split 
of the dataset may occur. This means that for a single execu-
tion, by chance, the data set could be split in a way that would 
generate the best classification, thus showing a resulting perfor-
mance above the real averages. A previous random shuffle can 
minimize such bias. Overall performance was evaluated using 
the averages of accuracy, AUC ROC, sensitivity, and specificity. 
Figure 2B shows this process.

Independent Validation Test

The independent validation test aimed to evaluate the perfor-
mance of the best model resulting from the internal valida-
tion test. For this, an independent test set with 30 VCFs (15 
benign and 15 malignant), which had not been used at any 
time previously, was used. Data from this set were classified 
in a single run of the algorithm and the measures of accu-
racy, AUC ROC, sensitivity, and specificity were computed. 
Figure 2C depicts this process.

Evaluation

The performance of the models was evaluated in terms of 
accuracy, area under the receiver operating characteristic 
curve (ROC AUC), sensitivity (corresponding to the true 
malignancy rate -TMR), and specificity (corresponding to 
the true benign rate—TBR). To evaluate the performance of 
the classifier over the 30 datasets in the internal validation 
test, the average with a 95% confidence interval for each 
of the above measures was used. To compare the accuracy, 
sensitivity, and specificity of the best model between internal 
and independent validation the hypothesis test for difference 
in two proportions was used.

Results

Patient Characteristics

A flowchart indicating the number of patients excluded for 
each exclusion criterion is shown in Fig. 3, and detailed demo-
graphic and clinical information is provided in Table 1. Of the 
91 patients included in this study, 47 (52%) were diagnosed 
with fractures secondary to osteoporosis and 44 (48%) were 
diagnosed with fractures due to cancer. The most prevalent 
cancer type in the dataset was multiple myeloma (16.5%), 
followed by breast cancer (12%) and lung cancer (3.3%).
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Feature Selection

After the first run of the wrapper, 16 features were selected 
from the 93 initially extracted, as shown in Table 2. Of 
these 16 attributes, one was first-order-based, and 15 
were texture-based. After the execution of the second step 
of the wrapper, the glrlm_ShortRunEmphasis, glszm_
LowGrayLevelZoneEmphasis, and glszm_ZoneVariance 
features were removed. The remaining 13 attributes from 
Step 2 (Table 3) were then ranked using the ReliefF filter, 
and their scores were computed as shown in Table 4. Features 
that scored > 0.03 after running the ReliefF filter (which were 
ngtdm_Busyness, firstorder_10Percentile, ngtdm_Strength, 
and gldm_LowGrayLevelEmphasis) initialized the feature 
vector in the execution of the third and last wrapper running, 
whose result is shown in Table 5. These ten features selected 
at the end of the entire feature selection process are the  
variables we aimed to find. In this work, this set of features 
we are denominating as radiomic signature.

Internal Validation Test

Figure 4 presents the results obtained in the internal valida-
tion test. Figure 4A plots the accuracy, true malignancy rate 
(sensitivity), and true benign rate (specificity) for each of the 
30 models trained with tenfold cross-validation. The aver-
ages for accuracy, sensitivity, and specificity were as follows: 
90.97% (95% CI: 90.22%, 91.72%), 89.36% (95% CI: 88.18%, 
90.54%), and 92.33% (95% CI: 91.34%, 93.32%), respectively. 
These results are displayed in Fig. 4B. Figure 4C shows the 
average ROC AUC calculated for the 30 models, which was 
0.97 (95% CI: 0.966, 0.974), and the plot of the ROC curves 
generated for each model.

The best model of the 30 yielded values for accuracy, 
ROC AUC, sensitivity, and specificity were as follows: 95% 
(95 of 100), 0.98, 93.5% (43 of 46), and 96.3% (52 of 54), 
respectively. The false negatives are depicted in Fig. 5.

Independent Validation Test

To perform this validation test, the independent test set was 
used to reevaluate the best model from the internal valida-
tion test. The accuracy, ROC AUC, true malignancy rate 
(sensitivity), and true benign rate (specificity) of the test 
classification were as follows: 93.3% (28/30), 0.97, 93.3% 
(14/15), and 93.3% (14/15), respectively. These results are 
presented in Fig. 6.

Table 6 shows the results of the hypothesis test to com-
pare the accuracy, sensitivity, and specificity of the best 
model between internal and independent validation. The 
p-value for all metrics was > 0.05, meaning the model was 
not overfitting and could generalize learning.

Discussion

In this study, the ability of the radiomics approach to differ-
entiate benign from malignant VCFs using MRI was investi-
gated. Our results showed high average values with narrow 
confidence intervals for the training set, indicating that the 
generated models were robust and the selected features were 
stable. The best proposed model had excellent performance 
for both the training set, using tenfold cross-validation, and 
the test set. Regarding performance based on tenfold cross-
validation, the model resulted in just five instances of mis-
classification (two false positives and three false negatives). 
The false-negative cases were VCFs secondary to multiple 
myeloma. In two of these cases, the bone marrow exhibited a 
salt-and-pepper infiltration pattern, and we presume that the 
neural network would need more cases in the MRI database 
to reach appropriate training to recognize this specific pattern.

Fig. 3  Diagram for inclusion/exclusion of the patients
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Concerning the diagnostic performance achieved using 
the independent test set, the model misclassified just one 
instance of each class. It is worth noting that in classifi-
cation models applied to health care, a false negative-type 
error is more worrying than a false positive, because the 
former would delay or prevent treatment. False negatives 
become even more critical when dealing with diseases such 

as cancer, where early diagnosis is essential for improving 
patient survival [22].

Regarding radiomic signature, of the ten characteristics 
selected in the feature selection step, nine were texture-
based, and one was intensity-based. This shows that the 
patterns found by the neural network are more related to 
the spatial relationship of the voxels than to their intensity 

Table 1  Demographic and 
Clinical Characteristics of the 
Included Patients

ML machine learning, L lumbar
a Data in parentheses are percentages

Parameter Training Group Test Group P-Value

Nº patients 61 30
Age 63.2 ± 12.5 66.4 ± 9.9 0.19
Sexa

  Man 25/61 (41) 11/30 (37) 0.69
  Woman 36/61 (59) 19/30 (63) 0.83

Nº patients per  diagnosisa

  Osteoporosis (Benign Group) 32/61 (52) 15/30 (50) 0.83
  Cancer (Malignant Group) 29/61 (48) 15/30 (50) 0.83
    Multiple Myeloma 12/29 (41) 3/15 (20) …
    Breast Cancer 8/29 (28) 3/15 (20) …
    Lung Cancer 2/29 (7) 1/15 (7) …
    Squamous Cell Carcinoma 2/29 (7) 0/15 (0) …
    Prostate Cancer 1/29 (3) 1/15 (7) …
    Throat Cancer 0/29 (0) 2/15 (13) …
    Inflammatory Myofibroblastic Leukemia 1/29 (3) 0/15 (0) …
    Cholangiocarcinoma 1/29 (3) 0/15 (0) …
    Chronic Lymphocytic Leukemia 1/29 (3) 0/15 (0) …
    Paraganglioma 1/29 (3) 0/15 (0) …
    Thyroid Cancer 0/29 (0) 1/15 (7) …
    Testicular Cancer 0/29 (0) 1/15 (7) …
    Bladder Cancer 0/29 (0) 1/15 (7) …
    Kidney Cancer 0/29 (0) 1/15 (7) …
    Non-Hodgkin’s Lymphoma 0/29 (0) 1/15 (7) …

Nº patients per nº fractured lumbar  vertebraea

  1 Fractured vertebra 39/61 (64) 22/30 (73) 0.35
  2 Fractured vertebrae 12/61 (20) 4/30 (13) 0.43
  3 Fractured vertebrae 6/61 (10) 1/30 (3) 0.20
  4 Fractured vertebrae 1/61 (2) 2/30 (7) 0.30
  5 Fractured vertebrae 3/61 (5) 1/30 (3) 0.71

Nº fractured vertebrae 100 46
Nº fractured vertebrae used in the ML 100 30
Nº fractured vertebrae per  classa

  Benign fracture 54/100 (54) 15/30 (50) 0.70
  Malignant fracture 46/100 (46) 15/30 (50) 0.70

Nº fractured vertebrae per  typea

  L1 29/100 (29) 6/30 (20) 0.30
  L2 19/100 (19) 6/30 (20) 0.90
  L3 19/100 (19) 5/30 (17) 0.77
  L4 19/100 (19) 9/30 (30) 0.23
  L5 14/100 (14) 4/30 (13) 0.93
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values. Such a phenomenon was expected since, in contrast 
to CT images, which allow for a correlation between the 
signal intensity and the X-ray attenuation coefficient of the 
tissue, in MR images, this is not possible due to the nature 
of their acquisition. In this case, the signal intensities arise 
from the interaction between tissue properties, such as 
relaxation time, and acquisition parameters. Two features 
that stood out in this study were busyness (or fineness) and 
strength. A busy texture occurs when there are fast intensity 
changes between a pixel/voxel and its neighbors. Strength 
refers to how easily a primitive can be clearly definable and 
visible [23]. The results showed that malignant VCFs tended 
to have high busyness and low strength, while benign VCFs 
tended to show the opposite features.

To the best of our knowledge, our work yielded bet-
ter results than previous studies that used computer-aided 

techniques in MRI to differentiate benign from malignant 
VCFs. Frighetto-Pereira et al. [14] achieved a ROC AUC of 
0.91 and an accuracy of 86.41%. Azevedo-Marques et al. [15] 
used k-NN and tenfold cross-validation and obtained an aver-
age accuracy of 82.9% and an average ROC AUC of 0.81. 
Frighetto et al. [16] achieved an accuracy of 85.3% and a ROC 
AUC of 0.92. Casti et al. [17] obtained an accuracy of 92% 
using the QDA, SVM, and k-NN classifiers and a ROC AUC 
of 0.95 (with QDA). Finally, Arpitha and Rangarajan [18] 
proposed a segmentation and classification method based 
on shape and texture to differentiate benign from malignant 
VCFs. The authors did not use accuracy and AUC for evalu-
ation, but it was possible to estimate accuracy from the recall 
value and the number of vertebral bodies used, yielding a 
value of approximately 93.1%.

In a recent study, Chee et al. [24] evaluated the predic-
tion of malignancy in vertebral fractures using a combined 
radiomics-clinical model on CT. Although such a model also 
performed a 3D evaluation, our results outperform theirs con-
sidering both the radiomics model alone and the combined 
model. In addition, as the authors themselves mention, MRI 
is the modality of choice for the differential diagnosis of verte-
bral compression fractures since it is more sensitive for detect-
ing neoplastic bone marrow infiltration. Another substantial 
advantage of MRI is that it does not use ionizing radiation.

There are limitations to our study. We used only 
T1-weighted sagittal images. The vertebral bodies of the 
thoracic and cervical regions were not evaluated. Although 
evaluation with an independent test set was performed, it 
consisted of patients from the same institution as the training 
set. The segmentation is a limitation of our study as well. We 
used a semiautomatic method; however, to implement the 
methods proposed in clinical practice, it would be desirable 
to have a fully automatic segmentation method. Some stud-
ies have focused their efforts on developing these tools [18, 

Table 2  Selected features after the first step of the wrapper method

firstorder_10Percentile
glcm_Id
glcm_Idm
glcm_InverseVariance
gldm_DependenceNonUniformityNormalized
gldm_LowGrayLevelEmphasis
gldm_SmallDependenceLowGrayLevelEmphasis
glrlm_LongRunLowGrayLevelEmphasis
glrlm_ShortRunEmphasis
glrlm_ShortRunLowGrayLevelEmphasis
glszm_GrayLevelNonUniformityNormalized
glszm_HighGrayLevelZoneEmphasis
glszm_LowGrayLevelZoneEmphasis
glszm_ZoneVariance
ngtdm_Busyness
ngtdm_Strength

Table 3  Selected features after the second step of the wrapper method

firstorder_10Percentile
glcm_Id
glcm_Idm
glcm_InverseVariance
gldm_DependenceNonUniformityNormalized
gldm_LowGrayLevelEmphasis
gldm_SmallDependenceLowGrayLevelEmphasis
glrlm_LongRunLowGrayLevelEmphasis
glrlm_ShortRunLowGrayLevelEmphasis
glszm_GrayLevelNonUniformityNormalized
glszm_HighGrayLevelZoneEmphasis
ngtdm_Busyness
ngtdm_Strength

Table 4  Ranking of features after executing the ReliefF filter

Average score Feature

0.067 ± 0.007 ngtdm_Busyness
0.061 ± 0.008 firstorder_10Percentile
0.046 ± 0.004 ngtdm_Strength
0.031 ± 0.006 gldm_LowGrayLevelEmphasis
0.023 ± 0.003 glrlm_LongRunLowGrayLevelEmphasis
0.023 ± 0.007 glrlm_ShortRunLowGrayLevelEmphasis
0.02 ± 0.005 glszm_GrayLevelNonUniformityNormalized

0.014 ± 0.002 glcm_Idm
0.015 ± 0.005 gldm_SmallDependenceLowGrayLevelEmphasis
0.014 ± 0.002 glcm_Id
0.015 ± 0.004 glcm_InverseVariance
0.014 ± 0.004 glszm_HighGrayLevelZoneEmphasis
0.007 ± 0.003 gldm_DependenceNonUniformityNormalized
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Table 5  Radiomic Signature

GLCM gray level cooccurrence matrix, GLDM gray level dependence matrix, GLSZM gray level size zone matrix, NGTDM neighboring gray 
tone difference matrix

Feature class Feature names and descriptions

First Order 10th Percentile: The 10th percentile of the sample
GLCM Inverse Difference: It is a measure of the local homogeneity of an image. The higher the feature score is, the more homogeneous the image

Inverse Difference Moment: Similar to the Inverse Difference, but with higher weights for elements that are close to the main diagonal
Inverse Variance: Measures the heterogeneity of the image

GLDM Low Gray Level Emphasis: Measures the distribution of low gray-level values, with a higher value indicating a greater concentration of low gray-
level values in the image

Small Dependence Low Gray Level Emphasis: Measures the joint distribution of small dependence with lower gray-level values
GLSZM Gray Level Nonuniformity Normalized: Measures the variability of gray-level intensity values in the image, with a lower value indicating greater 

similarity in intensity values
High Gray Level Zone Emphasis: Measures the distribution of the higher gray-level values, with a higher value indicating a greater proportion of 

higher gray-level values and size zones in the image
NGTDM Busyness: It is a measure of the change from a pixel to its neighbor. A high value for busyness indicates a ‘busy’ image, with rapid changes in 

intensity between a pixel and its neighborhood
Strength: It is a measure of the primitives in an image. Its value is high when the primitives are easily defined and visible, i.e., an image with a 

slow change in intensity but larger coarse differences in gray level intensities

Fig. 4  A Performance measure-
ments for each randomized 
training dataset using tenfold 
cross-validation. B Average 
and 95% confidence interval of 
each performance measurement 
for all randomized datasets. 
Acc = accuracy. TBR = true 
benign rate (true negative rate). 
TMR = true malignancy rate 
(true positive rate). C Average 
with 95% confidence interval 
of the area under the receiver 
operating characteristic curve 
(ROC AUC) and receiver 
operating characteristic curve 
for all randomized datasets and 
their mean. TPR = true positive 
rate (true malignancy rate). 
FPR = false positive rate (false 
malignancy rate)
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25–27]. Our future efforts in this regard will be directed to 
the use of U-Net networks [28] to segment VCFs. Although 
the ground truth has been defined based on tests of high 
sensitivity and specificity, which are biopsies (for malig-
nant fractures) and DEXA scan with a follow-up of at least 
2 years (for benign fractures), only one person checking the 
reports was a limitation.

In conclusion, the neural network-based model pro-
posed in this study to differentiate benign from malig-
nant vertebral compression fractures achieved excellent 

diagnostic performance, overcoming the limitations of 
previous studies. The insertion of this model in the clini-
cal routine would have potential benefits for patients, radi-
ologists, and health institutions. For patients, the early 
diagnosis, and the decrease of invasive exams, such as 
biopsies. For radiologists, the work optimization, and the 
increase in visibility of their role in personalized medi-
cine. For health institutions, the cost reduction due to the 
decrease in invasive exams and the recognition due to the 
technological differential.

Fig. 5  Illustration of the false-
negative cases in the internal 
validation test. The three cases 
were of patients with multiple 
myeloma. In A (a 59-year-old 
man), the compressive vertebral 
fracture is associated with a 
focal nodular lesion, posterior 
wall convex bulging (left white 
arrow) and pedicle involvement 
(right white arrow). In B (a 
52-year-old woman), and C (a 
51-year-old woman), the bone 
marrow exhibits a salt-and-
pepper infiltration pattern. The 
micronodules are better seen in 
(C) (white arrowheads). The L4 
vertebral body fracture in (B) 
shows posterior wall retropulsion

Fig. 6  A ROC curve and ROC 
AUC of test set classification. 
B Confusion matrix of test set 
classification. ROC AUC = area 
under the receiver operating 
characteristic curve. TPR = true 
positive rate (true malignancy 
rate). FPR = false positive 
rate (false malignancy rate). 
Acc = accuracy. TMR = true 
malignancy rate. TBR = true 
benign rate

Table 6  Internal versus 
Independent Validation

Metric Internal
Validation

Independent
Validation

Estimate for
difference

95% CI for
difference

P-Value

Accuracy 0.950 0.933 0.017 (-0.082; 0.116) 0.741
Sensitivity 0.935 0.933 0.001 (-0.144; 0.146) 0.984
Specificity 0.963 0.933 0.030 (-0.106; 0.166) 0.669
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