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Abstract: The expansion of sugarcane production has led to increased nitrogen (N) fertilizer
use, contributing to greenhouse gas emissions and environmental concerns. Optimizing
N management is crucial for sustainable agriculture. Soil apparent electrical conductivity
(ECa) has emerged as a valuable tool for mapping soil spatial variability and yield potential,
potentially guiding more efficient fertilization strategies. This study evaluated sugarcane
yield and N responsiveness across two areas with distinct soil types over two crop cycles.
Experimental plots were classified into high (HC) and low (LC) ECa zones, with randomized
blocks receiving four N rates and a control. Higher yields were generally observed in HC
plots, except for the second ratoon in area 2 (Ultisol). HC plots required lower N rates to
achieve maximum yield compared to LC plots. In area 1 (higher clay content), optimal N
rates were lower than in area 2 (lower clay content), indicating that yield potential is linked
to soil attributes and spatial variability. Although ECa alone may not define precise N
doses, it effectively identifies zones with different yield potentials, supporting site-specific
N management. These findings highlight the potential of ECa to improve nitrogen use
efficiency and contribute to more sustainable sugarcane production.

Keywords: precision agriculture; nitrogen; site-specific management; proximal soil sensing

1. Introduction
Sugarcane is one of the most important crops in tropical and subtropical regions of the

planet, as it generates high value-added products considered ecologically and economically
viable. In the last crop season, Brazil produced about 713 million tons of sugarcane in
approximately 8.3 million hectares, with São Paulo state accounting for more than 50% of
the production [1].

Proper soil management correlates with high yields and the longevity of sugarcane
plantations. Physical, chemical, and biological soil attributes must provide a physical
environment for roots to explore the largest volume of soil possible. This enables plants to
meet their demand for water and nutrients, resulting in the full potential of their yield [2].
Nitrogen (N) stands out as one of the essential elements involved in several physiological
processes closely linked to increased crop yield. However, uncertainties in quantifying N
in the soil to enable the most efficient and economical way of supplying this nutrient to
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the plant still need to be resolved. Some authors observed some promising results when
testing chemical extractants to determine N in soils in 21 sugarcane field experiments [3].

Due to the dynamics of N in the soil and the lack of extraction methods for accurate
quantification of the element, the amount of N fertilizer recommended takes into account
the expected crop yield [4]. To meet the nutritional needs of the plant, a significant difference
in the N amounts applied to the soil (i.e., 120 to 200 kg ha−1) exists [5]. In many cases,
this recommendation range leads to the application of excessive N concentrations without
the expected crop response. The problem is aggravated when the N source used is urea.
Under high soil moisture conditions, urea quickly volatilizes, releasing nitrous oxide (N2O)
into the atmosphere [6–8]. Thus, in addition to the low fertilization efficiency, excess N
contributes to the greenhouse effect and climate change.

Given these facts, the N fertilization recommendation should be optimized consid-
ering other sources of variation such as soil attributes (e.g., pH, cation exchange capacity,
organic matter content, clay content, and soil density), climatic conditions (temperature
and rainfall), and agronomic practices (soil preparation and crop rotation) [9]. Thus, being
able to incorporate parameters into more efficient fertilization recommendation models
will allow for the rationalization of this input. Otto et al. [10] observed that the mainte-
nance of the remaining plant material left on the soil surface, the use of industrial residues,
and rotation with legumes are factors that can reduce the response of sugarcane to N
fertilization. In addition, the soil and not the fertilizer itself is the main supplier of N to
sugarcane [11,12], which partially explains the low N fertilization efficiency. Only 10 to
20% of the total N accumulated by the crop comes from the fertilizer at the harvest time,
but in early developmental stages, this contribution is more significant and can be above
50% [12]. As the crop develops, the contribution of N from the soil becomes the main source.
Therefore, the recommended amount of N for sugarcane should focus on supporting the
crop’s early developmental stages, considering that the remainder can be supplemented
through the mineralization of organic matter in the soil, reducing the risk of N mining from
inadequate fertilization.

As the soil is the main N supplier to plants and determining soil N contents is quite
challenging, researchers have looked for tools that can help optimize N application in
sugarcane plantations, including remote and proximal sensing [13]. Apparent soil electrical
conductivity (ECa) values are adequate to evaluate the variability of chemical and physical
soil attributes (e.g., soil moisture and temperature) [14–18], as well as the crop yield
potential [18,19]. Although ECa alone may not provide a direct measurement of N content
or determine exact fertilizer doses, its ability to identify zones with different yield potentials
represents a significant step toward more targeted fertilization strategies. By mapping soil
spatial variability, ECa can help delineate areas where crop responsiveness to N is likely
to differ, enabling a more efficient allocation of inputs. This study seeks to highlight the
role of ECa as a complementary tool in site-specific nitrogen management, bridging the gap
between generalized fertilization practices and more precise, localized interventions that
can enhance yield while minimizing environmental impacts.

In this context, the characterization of the soil spatial variability using ECa sensors
can help to optimize the application of N in sugarcane plantations in terms of time and
efficiency, ensuring an economic return to the farmers. Here, we hypothesize that the
spatial variability of the ECa would allow us to define regions in the sugarcane field that
could be optimized for N fertilization. Therefore, our objective was to investigate the
response of sugarcane in terms of yield and N fertilization as a function of the spatial soil
variability identified by the ECa. Finally, we propose a conceptual framework of future
studies would investigate ECa variability for nitrogen management.
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2. Materials and Methods
2.1. Study Areas

The study areas are in the municipalities of Ipaussu (area 1—23◦02′30.25′′ S—
49◦34′40.66′′ W) and Monte Alto (area 2—21◦13′18.20′′ S—48◦27′41.97′′ W), São Paulo,
Brazil. The soils were classified as “Latossolo Vermelho Distroférrico” (Oxisols—Soil Tax-
onomy) in area 1 and “Argissolo Vermelho Amarelo eutrófico” (Ultisols—Soil Taxonomy)
in area 2 according to “Sistema Brasileiro de Classificação do Solo” (SiBCS), in which
sugarcane varieties RB966928 and CTC 9005HP were planted, respectively. The sugarcane
varieties were chosen by mill’s agronomists according to soil types. ECa was measured at
a spacing of 1.0 m between soils using the electromagnetic induction sensor EM38-MK2®

(Geonics, ON, Canada) pulled by a quadricycle and connected to a GPS receiver. Sub-
sequently, the thematic map of the ECa spatial distribution of the respective areas was
produced using the ordinary kriging interpolation method (Figure 1). High (values above
the median value of the dataset) and low (values equal to or below the median of the data)
zones were defined in both areas.
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Figure 1. Thematic map of ECa in study areas 1 (a) and 2 (b). HC and LC are sites with high and low
apparent electrical conductivity, respectively.

2.2. Experimental Design
2.2.1. Area 1

In study area 1, treatments [N rates of 0 (control—no fertilization) 50, 100, 150, and
200 kg ha−1)] were established in high and low ECa zones. N was applied as ammonium
nitrate (NH4NO3) in October 2019 (first ratoon) and November 2020 (second ratoon)
150 days after harvest (DAH). Treatments were arranged in randomized block design with
four replications. Each plot consisted of six rows of sugarcane (40 m long, spaced 1.5 m
apart), with the four central rows considered the useful plot area and the two lateral rows
being the borders.
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2.2.2. Area 2

In study area 2, treatments [N rates of 0 (control—no fertilization), 0, 54, 109, 163,
and 218 kg ha−1 of N, respectively] followed a randomized block design treatment and
four replications were established in high and low ECa zones. N was applied as NH4NO3

during 2020 (first ratoon) and 2021 (second ratoon) crop cycles. Each plot (900 m2) consisted
of four sugarcane rows (150 m long, spaced 1.5 m apart), the two central rows considered
the useful plot area, and the two lateral rows being the borders.

2.3. Evaluated Parameters
2.3.1. Soil

Soil samples (0.00–0.20 m and 0.20–0.40 m depths) were collected for characterizing soil
chemical attributes (pH, Ca, Mg, K, P, H + Al, and organic matter) and soil granulometry.
Ten randomized subsamples were collected at each plot in both areas to characterize the
soil fertility. The soil cation exchange capacity (CEC), sum of bases (SB), and base saturation
(BS) were calculated as described by Raij et al. [20].

2.3.2. Crop Yield
Area 1

The sugarcane yield for each plot was evaluated at the end of the crop cycle, specifically
at 411 days after harvest (DAHs) during the 1st and 2nd ratoon seasons. The harvest
process was carried out mechanically to ensure uniformity across all plots. After cutting,
the harvested sugarcane stalks were collected and transported using a transshipment truck
equipped with a calibrated load cell. The load cell measured the total mass of stalks
harvested from each plot with high precision. The mass of stalks recorded by the load cell
was normalized and converted into yield expressed in mega grams per hectare (Mg ha−1).
This approach provided an accurate and standardized measurement of sugarcane biomass
accumulation across all experimental plots.

Area 2

Crop yield was estimated at five points distributed in the two central rows of each plot.
At each point, stalks (1.5 m in the crop rows) were harvested and weighed, and the average
mass of stalks was used to estimate crop yield (Mg ha−1) in each plot. Unlike area 1, here
the evaluation was carried out at different developmental stages (at 103, 179, 220, 271, and
366 DAH in the 1st ratoon and at 88, 117, 173, and 471 DAH in the 2nd ratoon), allowing for
a more detailed understanding of biomass accumulation and growth dynamics throughout
the crop cycle (Figure 2).

2.4. Data Analyses

The first step of data analysis aimed to identify outliers that could affect subsequent
analyses. For all data collected in the field or laboratory, values greater or less than three
standard deviations from the mean were considered outliers. After excluding outliers, data
were submitted to descriptive analysis (measures of central tendency and dispersion includ-
ing mean, median, standard deviation, coefficient of variation, maximum and minimum,
and asymmetry and kurtosis). The effects of N fertilization on ECa, soil attributes, and
crop yield were assessed by analysis of variance (ANOVA). When statistically different, the
means were compared by the Tukey test (p-value < 0.05). Additionally, Pearson’s coefficient
(r) was used to verify the correlation between the variables. Finally, for each experimental
area, crop yield data were adjusted (α = 0.05) to regression models as a function of N rates.
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3. Results
In study area 1, higher values of soil chemical attributes and soil granulometry were

observed where ECa values were higher (HC plot), except for P content in the 0.00–0.20 m
depth (Table 1). In contrast, the opposite was observed in study area 2, i.e., lower values
of attributes were found where the ECa values were higher, except for P content in both
depths and Mg content in the 0.00–0.20 m depth. In area 2, negative ECa values were
observed, which according to Killick [21] are theoretically impossible under ideal conditions.
However, indirect ECa measurements, such as those derived from the ratio of secondary to
primary magnetic fields using electromagnetic induction (EMI) equipment, can occasionally
result in negative values. These anomalies are often attributed to interference from nearby
metal objects, improper calibration of the instrument, or localized environmental factors
that disrupt the signal. Additionally, other authors [22,23] have documented negative
ECa values in field mappings like here, where metal interference was absent, and the
calibration of the EMI equipment was verified. This suggests that specific soil properties,
local conditions, or unique interactions between the sensor and the soil environment might
also contribute to this phenomenon.

Soil attributes differed in absolute terms between the HC and LC plots for both
study areas (Table 1), and these differences were reflected in the crop yield in the two
crop seasons evaluated (Table 2). In study area 1, the HC plot produced 97.53 Mg ha−1

and 82.91 Mg ha−1 (average of 90.22 Mg ha−1 year−1) for the first and second ratoon,
respectively, whereas the LC plot produced 89.63 Mg ha−1 and 71.14 Mg ha−1 (aver-
age of 80.39 Mg ha−1 year−1). In study area 2, the HC plot produced 85.18 Mg ha−1

and 86.79 Mg ha−1 (average of 85.93 Mg ha−1 year−1) for the first and second ratoon,
respectively, while the LC plot produced 81.11 Mg ha−1 and 92.83 Mg ha−1 (aver-
age of 86.97 Mg ha−1 year−1). These data correspond to differences of approximately
+4.9 Mg ha−1 year−1 and −0.5 Mg ha−1 year−1 between HC and LC plots for study areas 1
and 2, respectively. Thus, sugarcane yield directly correlates with soil type as a function of
ECa, but high ECa patches (HC plot) have lower yields in study area 2, an Ultisol. A higher
coefficient of variation (CV) was observed for plots LC compared with HC for both areas
and both seasons.
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Table 1. Soil chemical and physical fertility and apparent electrical conductivity (ECa) of the HC and
LC plots of study areas 1 and 2 in the 0.00–0.20 m and 0.20–0.40 m depths.

Plot
Clay

Content pH OM P K Ca Mg SB CEC V% ECa

g kg−1 --mg dm−3-- ---------------mmol dm−3--------------- % mS m−1

Area 1 (0.00–0.20 m) (0.00–0.75 m)

HC 610 5.7 30 24 2.3 71 21 94.3 122.3 77 35.46
LC 606 5.2 25 14 1.6 37 10 48.6 90.6 54 24.69

Area 1 (0.20–0.40 m)

HC 633 5.7 27 16 1.9 53 16 70.9 104.9 68 -
LC 605 4.5 22 17 1.2 18 6 25.2 89.2 28 -

Area 2 (0.00–0.20 m) (0.00–0.75 m)

HC 108 5.6 5.9 22 1.1 25 13 38.7 56.6 68 −25.58
LC 143 5.8 8.5 19 1.3 28 11 40.5 56.2 72 −29.08

Area 2 (0.20–0.40 m)

HC 123 5.56 11 21 0.8 22 11 33.6 51.8 65 -
LC 160 5.72 15 19 1.1 25 13 38.7 56.6 68 -

OM: organic matter; P: phosphorus; K: potassium; Ca: calcium; Mg: magnesium; SB: sum of bases; CEC: cation
exchange capacity; V%: base saturation.

Table 2. Descriptive statistics of sugarcane yield (Mg ha−1) in study areas 1 and 2 in their plots of
high (HC) and low (LC) apparent soil electrical conductivity (ECa).

Average Median Min. Max. SD CV

Area 1

1st ratoon

Plot HC 97.53 α 98.06 82.78 109.44 7.30 7.49
Plot LC 89.63 β 90.07 66.25 108.33 10.75 12.00

2nd ratoon

Plot HC 82.91 α 84.86 59.72 108.33 12.16 14.66
Plot LC 71.14 β 71.67 45.83 98.33 13.63 19.16

Area 2

1st ratoon

Plot HC 85.18 α 83.23 77.08 96.05 7.60 8.92
Plot LC 81.11 α 80.71 67.84 93.67 9.31 11.47

2nd ratoon

Plot HC 86.79 β 86.74 80.13 93.68 4.79 5.52
Plot LC 92.83 α 95.36 81.14 99.72 7.06 7.60

Min.: minimum; Max.: maximum; SD: standard deviation; CV: coefficient of variation. Significant differences
(p < 0.05%) are indicated by Roman letters comparing yield averages of HC and LC plots.

In study area 1, yield was positively correlated with ECa in HC plots for the first
and second ratoon cycles (r = 0.51 and 0.49, respectively—Table 3). In study area 2, this
correlation was only seen in the first ratoon (r = 0.43—Table 3). The N rates statistically
differed in terms of yield for the plot’s HC and LC for both areas (except for the first ratoon
in the LC plot for area 1 and second ratoon in the HC plot in area 2) (Table 4). Yield differed
between HC (97.53 and 82.91 Mg ha−1 for the first and second ratoons, respectively) and
LC (89.63 and 71.14 Mg ha−1 for the first and second ratoons, respectively) plots in study
area 1 for both ratoons. For study area 2, HC (86.79 Mg ha−1) and LC (92.83 Mg ha−1)
differed only in the second ratoon. Except for the second ratoon of evaluation in study area
2, HC plots tended to have higher yield compared to LC plots. HC and LC differed for both
areas in both ratoons, maintaining the same N rates (capital letters in Table 4). In study
area 1, yield was higher in HC compared to the LC plot by the same N rates, while in study
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area 2, the second ratoon showed an inverse trend, with lower yields in the HC compared
to the LC plot by the same N rates.

Table 3. Pearson correlation coefficient (r) between the attributes evaluated in the experimental fields
of high (HC plot—below the main diagonal) and low (LC plot—above the main diagonal) apparent
electrical conductivity of the soil in study areas 1 and 2.

N rate ECa Yield (1st Ratoon) Yield (2nd Ratoon)

Area 1

N rate - 0.25 −0.02 0.15
ECa −0.47 * - −0.30 −0.09

Yield (1st ratoon) −0.45 * 0.51 * - 0.29
Yield (2nd ratoon) −0.38 ** 0.49 * −0.15 -

Area 2

N rate - 0.00 0.06 0.29
ECa −0.20 - 0.09 −0.34

Yield (1st ratoon) −0.08 0.43 * - −0.11
Yield (2nd ratoon) 0.14 0.28 0.15 -

* Significant at 5%; ** significant at 10%. N Dose: nitrogen dose applied; ECa: apparent electrical conductivity;
Prod.: productivity.

Table 4. Analysis of variance of yield in plots of high (HC) and low (LC) apparent soil electrical
conductivity (ECa) as a function of N rates applied in study areas 1 and 2.

Yield (Mg ha−1)

Area 1 Area 2

Plot HC

N rate 1st ratoon 2nd ratoon N rate 1st ratoon 2nd ratoon

0 100.00 A a 91.11 A a 0 96.05 A a 80.13 A a
50 103.89 A a 79.91 A b 54 77.08 B b 86.64 B a

100 96.39 A b 88.52 A a 109 83.23 A ab 86.77 B a
150 93.33 A b 80.00 A b 163 89.38 A a 93.68 A a
200 94.03 A b 75.00 A b 218 80.13 A b 86.74 B a

Average 97.53 α 82.91 α Average 85.18 α 86.79 β

Plot LC

0 88.06 B a 58.06 B b 0 67.84 B b 81.14 A b
50 90.94 B a 74.81 A ab 54 84.10 A ab 95.36 A ab

100 91.46 A a 79.13 B a 109 80.71 A ab 95.73 A ab
150 89.90 A a 81.94 A a 163 93.67 A a 92.20 A b
200 87.81 A a 61.76 B ab 218 79.26 A ab 99.72 A a

Average 89.63 β 71.14 β Average 81.11 α 92.83 α

Units: N rate [kg ha−1], yield [Mg ha−1]. Significant differences (p < 0.05%) are indicated by letters. Small letters
(a and b) compare N rates within same plot, capital letters (A and B) compare HC and LC plots within same N
rates, and Roman letters (α and β) compare HC and LC plots.

Concerning the regression of N rates as a function of yield, HC and LC plots were
adjusted to the linear and quadratic models, respectively, for study area 1 in both ratoon
cycles. In the HC plot, the highest N rates led to lower yields and fitted the linear model
negatively in both seasons evaluated (Figure 3). For study area 2, the N rates were adjusted
to the quadratic model in the LC plot for both seasons evaluated but only in the first
ratoon for the HC plot. The quadratic adjustment in the LC plots of both areas and seasons
evaluated was derived to find optimal N rates to be applied, which were 109.30 kg ha−1

and 109.50 kg ha−1 (area 1) and 134.30 kg ha−1 and 185.70 kg ha−1 (area 2) for the first and
second ratoon cycles, respectively. For the HC plot of study area 2 in the second ratoon, the
optimal N rate was equal to 146.02 kg ha−1.
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rior to the LC plot over time, except at 455 DAH in the second ratoon (Figure 4). The 

Figure 3. Linear and quadratic fit of yield as a function of N rates for the high (HC—green) and low
(LC—red) apparent soil electrical conductivity (ECa) plots in study areas 1 (a,b) and 2 (c,d) for the first
(a,c) and second (b,d) ratoon. Adjustment of HC plot on area 2 in the first ratoon was not significant.

Evaluating the biomass accumulation of study area 2, the HC plot was always superior
to the LC plot over time, except at 455 DAH in the second ratoon (Figure 4). The difference
between HC and LC plots was small until 173 DAH and greater at 271 DAH of the first crop
season (first ratoon) when an inflection in the biomass accumulation curve was observed
(Figure 4).
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4. Discussion
ECa has been increasingly used to assess soil spatial variability in crop fields world-

wide [24] and in Brazil [23], including clay content and soil organic matter [23], soil pH [25],
crop yield potential [26], and for defining management zones [27]. However, the applica-
tion potential of this technology associated with the crop response to N fertilization is still
little explored.

Given that ECa is highly correlated with the clay content (Table 1) and, consequently,
with the crop yield potential (Tables 2 and 3), it can be an auxiliary tool for establishing
N recommendations in sugarcane. Moreover, it is important to note that the soils tested
in this study represent the predominant soil types in the São Paulo state, which enhances
the relevance of these findings for this region [28]. However, our findings suggest that soil
type and its attributes also influence ECa. As observed in study area 2, the soil clay content
was higher for the low-conductivity plots (LC plot). The soil in this area, Ultisol, has higher
sand content in its superficial layers and therefore lower levels of chemical attributes. This
explains the fact that high-conductivity sites (HC plot) have lower fertility. Although the
soil in study area 1 has a very clayey texture in both plots, a small difference in clay content
(4 g kg−1 in the 0.00–0.20 m depth) was relatively detected by measuring the soil ECa by
the EMI equipment. Although ECa does not directly measure clay content, these findings
underscore the tool’s strong potential for delineating yield potential across variable ECa

field conditions. Despite the inverse correlation between ECa and soil texture, fertility
levels also differed between the plots in area 2.

One critical factor influencing ECa measurements is soil moisture, as it directly affects
the conductivity of the soil. ECa measurements taken during periods of extreme soil mois-
ture conditions, such as waterlogged or drought conditions, may obscure true variability in
soil texture. In this study, we ensured measurements were conducted under non-extreme
soil moisture conditions to minimize this effect. Additionally, the ECa mappings were
performed in the same soil moisture condition, that is, during the same day. In qualitative
terms, the ECa is an excellent parameter for distinguishing the spatial variability of crop
yield within the field [23]. In quantitative terms, ECa positively correlated with yield only
in HC plots, showing that in regions of low conductivity, characterized by lower relative
fertility levels, other factors may govern crop yield besides soil fertility. Concerning the
crop response to N fertilization, lower N rates can be applied to maintain crop yield in the
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HC plots (Figure 3), characterized by high conductivity and higher soil fertility levels. Our
results showed that an optimal N rate can be defined in the LC plots. For the second ratoon
in study area 2, where N rates were adjusted to a quadratic model in both plots, the optimal
N rate was lower for the HC (146.02 kg ha−1) than LC (185.70 kg ha−1) plot. Despite the
lower yields in the HC plot for study area 2 in the second ratoon (Figure 3d), the HC plot
showed a lower optimal N rate than the LC plot. Also, in study area 1, characterized by
high clay content, the optimal N rates are lower compared to study area 2. These findings
show that high ECa sites (HC plot) tend to need lower N rates than LC plots (low ECa sites).

Historical fertilizer applications, particularly blanket N applications, may have con-
tributed to spatial heterogeneity in nitrogen availability, influencing crop responses to N
fertilization. Variations in past over- or under-fertilization likely created uneven residual
N levels, which could impact nitrogen use efficiency (NUE) and crop productivity in the
studied zones. Future research should include detailed assessments of residual soil nitrogen
levels and historical fertilization records to better understand their influence on current
crop performance. Incorporating these insights into N management strategies will allow
for a more refined approach to site-specific fertilization.

The results of the present study reinforce the role of ECa as a promising tool not
only for mapping soil spatial variability but also for guiding N fertilization strategies in
sugarcane fields. By demonstrating the capacity of ECa to delineate zones with different
yield potentials, this research provides practical evidence that ECa can be integrated into
site-specific management approaches. This represents an important step toward reducing
the reliance on generalized fertilization recommendations, enabling more precise and
sustainable input applications. Even in the absence of direct N uptake measurements, the
ability to identify areas of greater and lesser responsiveness to N through ECa mapping
highlights the potential of this technique to enhance yield efficiency and optimize resource
allocation in sugarcane cultivation. However, it is important to acknowledge that this study
evaluated only two crop cycles, which limits the insights into the long-term effects of N
fertilization strategies and soil variability. Future multi-year studies are recommended to
better understand the consistency and robustness of these findings over time.

The recent study of Sanches and Otto [29], together with the present research, indicates
that areas with higher yield potential are less responsive to N. If this is true for most
areas cultivated with sugarcane in Brazil, the criterion of fertilization recommendation
by yield expectation using a single fertilization factor for different levels of yield may
not only be penalizing yield in the most restrictive environments but also oversizing
the ratoon fertilization in the most productive environments. Although N fertilization
recommendations based on the expected yield have been adopted for more than 50 years
throughout the United States and in several other regions of the world, the definition of
N use factors has been based on a few agronomic principles [30]. The main advantage of
fertilizer recommendation systems based on expected yield is their ease of interpretation,
which has facilitated their wide-scale adoption [31]. However, most of the time, those
systems do not have a solid agronomic basis and can lead to over- or under-fertilization,
as shown here. While this study was conducted in two specific areas, it is important to
emphasize that these areas are representative of São Paulo’s predominant soil types, making
the findings regionally relevant [28]. Future studies should focus on testing this approach in
different soil types and climates to enhance the regionalization and generalizability of these
findings across other sugarcane-producing regions. The same may occur indiscriminately
when using the factors of 1.0 kg N Mg−1 or 1.2 kg N Mg−1 previously adopted in burnt or
raw sugarcane in Brazilian conditions, respectively.

Most of the studies in the literature that assessed technologies to improve N fertiliza-
tion in sugarcane fields focused on proximal [13,32] or remote [33] sensing by assessing
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biomass crop reflectance indexes. On the other hand, few studies in the literature proposed
to assess N responsiveness assessing soil spatial variability parameters like ECa [34,35].
Although these last studies assess ECa on N responsiveness, neither of them was for sug-
arcane fields like the present study. So, as the soil is the main N supplier to plants and
determining soil N contents is quite challenging, the present findings could help farmers to
improve N fertilization by assessing the ECa spatial variability. On-farm experiments could
be proposed in this sense to better advance this present topic for precision agriculture in
the digital industry.

Although N recommendation methods based on soil analysis have been sought for
decades with encouraging results [36–38], they have not been widely adopted so far.
No method has identified the precise N rates for the fertilization of sugarcane ratoon
cycles [3]. Even when such a method will be available in the future, advances are needed
to calibrate it under field conditions. In this context, tools that assist in the optimization of
N application, such as the measurement of spatial variability of ECa presented here, can
improve the management of Brazilian sugarcane plantations toward low-carbon and more
sustainable agriculture.

Conceptual Framework

The proposed conceptual framework (Figure 5) leverages ECa data to address the chal-
lenges of site-specific N management in agricultural systems. By systematically combining
field data collection, spatial analysis, and tailored fertilization strategies, this framework
provides a structured approach for improving N application. It encompasses five key steps,
namely data collection, data analysis, N management recommendations, implementation,
and continuous improvement. Each step builds upon the previous one, forming an iterative
process that adapts to varying field conditions.
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This framework aims to bridge the gap between technological advancements in preci-
sion agriculture and practical field applications. By incorporating ECa data into decision-
making processes, it empowers farmers to make informed choices about N fertilization,
enhancing both productivity and environmental stewardship. The next sections describe
each step of the framework, highlighting its role in achieving precise and adaptive N
management strategies.

Step 1: Data Collection
The first step in the framework involves comprehensive data collection. First of

all, field mapping is conducted using electromagnetic induction (EMI) tools and GPS to
measure apparent electrical conductivity (ECa). After that, divide the field into two zones
(quantile division) with high and low ECa values. After that, soil sampling is performed
in representative areas across ECa zones to analyze critical attributes such as soil texture,
organic matter, and other nutrient levels. Once the ECa zones are defined and sampled,
experimental N response plots are installed across the identified zones to evaluate crop
yield and response to varying N rates. These plots allow for the assessment of localized
crop performance and soil behavior under different N management strategies. In addition,
yield and biomass data are collected at the end of the crop cycle, with values normalized to
account for plot size, providing a clear picture of yield and soil variability.

Step 2: Data Analysis
After data collection, the next step is to analyze the relationships between ECa, soil

properties, and yield. Correlation analysis is employed to identify patterns and depen-
dencies among these variables. Data from the N plots are specifically used to model crop
response curves to N applications within each ECa-defined zone, providing insight into the
variability of N use efficiency and yield potential across the field.

Step 3: N Management Recommendations
The third step focuses on investigating optimal N application strategies in zones

characterized by high and low ECa. The results from N response plots are analyzed in
conjunction with soil attributes to determine how these factors interact to influence crop
yield and nitrogen use efficiency. This investigation aims to identify the best N application
doses for each zone rather than providing immediate recommendations for large-scale
implementation. By understanding these interactions, the framework lays the foundation
for scaling validated strategies to broader areas in future applications.

Step 4: Implementation
Once insights from Step 3 are obtained, validated N management strategies are imple-

mented in larger field areas. GPS-guided variable rate technology is employed to apply
N based on the findings from previous steps. Monitoring crop performance during the
growing season and after harvest is critical, as it provides feedback on the effectiveness of
the implemented strategies and highlights areas for further refinement.

Step 5: Continuous Improvement
The final step emphasizes the importance of iterative improvement and regional

adaptation. Data from multi-year studies and diverse fields are integrated to refine and
validate the framework further. This approach ensures that N management strategies
remain robust and adaptable across varying soil types, climatic conditions, and crop
systems. The continuous feedback loop enhances the scalability and sustainability of
precision N management using ECa.

5. Conclusions
Our results suggest that while soil apparent electrical conductivity (ECa) can reflect

spatial variability in sugarcane yield, its direct use for optimizing N rates requires further
investigation. Although higher yields were observed in high ECa sites (HC plots) compared
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to low ECa sites (LC plots) in most cases, exceptions, such as the second ratoon in study
area 2, highlight the complexity of the relationship between ECa, soil attributes, and crop
response to N fertilization.

For the HC plots, we observed that lower N rates are needed to reach the maximum
yield potential. In study area 1, characterized by high clay content, the optimal N rates are
lower compared to study area 2, which has lower clay contents. This is consistent with
crop yield potential being intrinsically associated with N fertilization, in which lower N
rates can be applied in areas of greater potential. Indeed, in the LC plots of study area
1 (higher clay contents), the optimal N dose was ~109 kg ha−1 against 134.30 kg ha−1

(first ratoon) and 185.70 kg ha−1 (second ratoon) in study area 2. However, the lack of
consistent crop response to N across different areas and cycles indicates that other factors,
such as soil N availability and plant N uptake, must be considered to refine site-specific N
recommendations.

This study highlights ECa’s capacity to map soil variability and yield potential—an
asset for guiding site-specific N management. While direct measurements of soil and plant
N could further enhance interpretations, ECa-based zones already provide practical insights
for optimizing fertilizer use. Nevertheless, broader soil types, climates, multi-year studies,
and an actionable N management framework are needed and will be crucial to validate
and expand these findings. Future research incorporating these elements can improve
our understanding of ECa’s role in precision agriculture, advancing sustainable sugarcane
management with more efficient fertilization strategies and reduced environmental impacts
from excessive N applications.
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