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The problem of an immersed body interacting with the surrounding fluid flow belongs

to the category of external flows, wherein, despite the importance of a plethora of ap-

plications, previous papers have only undertaken incompressible or inviscid compressible

flows. This is the first topology optimisation work for viscous compressible external flows.

Topology optimisation is hereby employed to distribute solid and fluid to feature designs

that are free from shape restrictions, and independent of the initial guess. Fluid-flow gov-

erning equations are solved numerically and sensitivities are obtained by automatic differ-

entiation. Energy dissipation, vorticity, lift and drag forces are considered and combined

into five different objective functions, with a prescribed upper bound on the fluid volume

and a drag constraint. Flow-physics considerations are given to advance the understand-

ing of topology optimisation for maximisation of lift forces and minimisation of drag,

and limitations are highlighted on the use of vorticity as an objective function, linked to

boundary-layer physics. Amongst our findings, intricately-curved, sharp-edged, and non-

intuitive designs are produced, and the resulting flows exhibit superior behaviour in most

instances when contrasted with a renowned aerofoil. In a particular case, a topology remi-

niscent of a well-known aerofoil structure emerges from the application of our method —

called Gurney flap, capable of maximising lift and minimising drag — previously inspected

through trial-and-error approaches and physical intuition, rather than systematically gen-

erated through topology optimisation, as is revealed here.
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I. INTRODUCTION

Many methods have been adopted to exert flow control and harness flow loads. Classical

trial-and-error attempts and parametric evaluations form the mainstay to attenuate flow-induced

vibrations (Baek and Karniadakis, 2009, Fish and Lauder, 2006, Seyed-Aghazadeh and Modarres-

Sadeghi, 2015), find lift-enhanced aerofoils (Desalvo et al., 2012, Giguere et al., 1995, Serson

et al., 2017, Wang et al., 2008), develop passive modifications of the geometry (Bolat et al., 2025,

Chen et al., 2025, Huebsch et al., 2012), sometimes with the inclusion of an external secondary

body and active omnidirectional flow control for large scale systems (Carvalho and Assi, 2023;

2024, Nguyen et al., 2025). Zeroth-order, gradient-based optimisation algorithms and data-driven

methods have more recently been employed to improve active flow-control mechanisms (Fan et al.,

2020, Farias Filho et al., 2015, Gunzburger, 2002, Jia and Xu, 2025), when some parameters are

envisioned for optimisation, such as the position of flow-control devices (Bingham et al., 2018),

geometry dimensions (Yagiz et al., 2012) and actuating mechanisms (Fan et al., 2020). Sensitivity

analysis has also been investigated to locate sensible flow regions for placement of flow-control

devices (Patino et al., 2017, Strykowski and Sreenivasan, 1990). Boundaries of the design can, to

some extent, be optimised by means of shape optimisation. Nevertheless, it is unable to respond

to the question whether it is best to have one or multiple structures (Mohammadi and Pironneau,

2004).

Indeed, in terms of design, none of these methods allow nucleation of material in the pursuit

of optimised topologies, and most of them (e.g., trial-and-error and parametric evaluation or op-

timisation) rely on previous knowledge of the user about the intricate parameters to evaluate or

optimise. Contrastingly, topology optimisation is able to overcome these limitations, since it al-

lows removal and addition of material to different parts of the design domain with the ultimate

goal of detecting regions where fluid and solid are optimally distributed. An exemplification of

the topology optimisation process is given by figure 1: An objective function, constraints and an

initial guess are specified (left of figure 1). The solution of the direct problem requires boundary

and initial conditions. Over the iterations, the objective function is improved. At the end, an op-

timised flow is obtained (right of figure 1). The method allows insertion and removal of material

from all parts of the design domain in order to meet the formulation.

Originally from the context of structural mechanics (Bendsøe and Kikuchi, 1988), the topology

optimisation method has ramified to a broad range of fields (Sigmund and Maute, 2013). The
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FIG. 1: Topology optimisation.

seminal work of Borrvall and Petersson (2003) in Stokes flow set the stage for the use of topology

optimisation for fluid flows. Since then, this method has found its way into a multitude of these

problems, spanning the Navier-Stokes equations (Evgrafov, 2004, Olesen et al., 2006), heat trans-

fer (Dbouk, 2017), lattice Boltzmann (Kong et al., 2025) and other formulations (Boscolo et al.,

2025). Such advancement is justified principally by its robustness in finding optimised design so-

lutions, which translate into optimised fluid flows, meeting desirable flow functionals, such as lift,

drag, energy dissipation, vorticity, body forces and so on.

Topology optimisation has been majorly applied for the design of internal flow devices in in-

compressible regime, as exemplified by two-dimensional swirl flow of Tesla-type turbines (Alonso

et al., 2019), rotors (Romero and Silva, 2014), rotor-stator devices (Moscatelli et al., 2022), chan-

nel flows (Gersborg-Hansen et al., 2005, Papoutsis-Kiachagias and Giannakoglou, 2016) and fluid-

structure interaction problems (Azevêdo et al., 2024, Yoon, 2010, Yoon et al., 2007).

However, published articles on the matter of topology optimisation of compressible fluid flows

remain scarce. Evgrafov (2006) first published a paper on the matter, where the incompressible-

flow equations were relaxed to produce a slightly-compressible flow. A frozen-density approach

was followed by de Villiers and Othmer (2012), whereby a constant density was imposed in an

otherwise compressible flow, whilst Lapointe et al. (2017) and Sá et al. (2021) considered the full

compressible Navier-Stokes equations. Maffei et al. (2023) introduced geometry trimming for

topology optimisation of subsonic flows with discrete variables. Tang et al. (2024) optimised a

film-cooling device based on an active mechanism of flow control driven by an objective function

comprised of vorticity intensity. Progress was made by Garcia-Rodriguez et al. (2025) in tak-

ing into account compressible and turbulence effects in topology optimisation considering Favre-

averaged Navier-Stokes equations.

Nevertheless, to the best of our knowledge, topology optimisation of external flow problems

has been treated only in the context of Stokes (Borrvall and Petersson, 2003) and incompress-
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ible Navier-Stokes (Ghasemi and Elham, 2022, Kondoh et al., 2012) problems, besides inviscid

compressible flows (Payot, 2020) leaving a gap for compressible external flows of viscous fluids.

Viscosity is prime to describe practical applications, such as in stall conditions of aircraft (Carr,

1988) or in the Kármán wake of bluff structures (such as large oil platforms employed in the off-

shore environment). In such cases, to employ potential-flow theory creates discrepancies because

the boundary layer is nonexistent (Carvalho et al., 2021).

In compressible regime, the Mach number surpasses 0.3 and relevant variations occur in den-

sity. To account for these effects, and properly describe the flow, the energy equation has to be

considered (in contrast with the incompressible case). Besides, further specification on the fluid is

necessary, such as the assumption of a perfect gas behaviour. To solve the resulting Navier-Stokes

equations, the numerical framework requirements change by and large, stemming from the inclu-

sion of the additional equations. From the viewpoint of computational fluid dynamics, different

discretisation schemes and relaxation factors (when contrasted with incompressible flows) have to

be employed.

Adjoint equations allow the computation of the sensitivities in an efficient manner (Nadarajah

and Jameson, 2000) in topology optimisation, where the design variable adopts a value for each

cell of the design domain. These equations also differ from incompressible to compressible flow.

Present incompressible, external, flow works typically employ the continuous adjoint model (Zhao

et al., 2023) with the exception of the article from Kondoh et al. (2012), which employs discrete

adjoint equations, based on Olesen et al.’s (2006) implementation in incompressible regime. Al-

though computations with continuous adjoint are efficient in terms of computational cost, the

derivation thereof for compressible flows by hand-differentiation becomes rather cumbersome and

error-prone due to the energy equation in the already highly non-linear system. Its derivation is

problem-dependent and may take years to become ready for use as the equations become more

involved (Nielsen and Kleb, 2006), leaving room for exploring the application of discrete adjoint

models to compressible external flow problems, as we seek in the present paper.

This paper presents solutions to overcome the aforementioned difficulties and bridge research

gaps by solving topology optimisation problems of compressible external flows. We contribute to

the current literature with the following achievements: 1) We provide physical insights based on

flow loads and boundary-layer physics to describe unexplored limitations and strategies, particu-

larly, for the extremisation of lift and vorticity in unstable flows within a steady-regime formula-

tion. This allows generating optimised topologies even when instabilities arise. 2) We formulate
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forces exerted by the fluid on the solid, modelled as a porous medium, using a volume integral. 3)

We devise a set-up and numerical schemes capable of solving compressible unstable flows, thereby

circumventing divergence in the simulations. 4) We generate innovative, non-intuitive topologies

that successfully optimise various functionals.

Resulting topologies are assessed by body-fitted grids and compared with the NACA 0012

aerofoil. Our method is validated by generating — inherently from the optimisation — a Gurney

flap, a device previously inspected strictly on the basis of physics intuition. Here, a systematic

approach is followed.

A. Objective

We contribute to the current body of knowledge on topology topology optimisation of exter-

nal flows of viscous fluids by considering the optimisation of compressible subsonic flow with

different objective functions and constraints. Multiobjective functions are also explored.

Since previous works have minutely focused on the method and implementation details, the

fluid flow features and their relation with the optimisation process remain mostly abstruse. We

sustain discussions on the limitations of the method to contribute with insights for promisingly

more complex applications of topology optimisation which will require a robust, cost-effective,

implementation.

B. Outline

The paper is structured as follows: In section II, governing equations are introduced. In sec-

tion III, the topology optimisation problems are formulated. In section IV, the numerical frame-

work is described. In section V, results are discussed by first presenting the boundary conditions

(section V A), grids (section V B), finite volume numerical scheme (section V C), and then the

optimisations (sections V D to V H). In section V I, body-fitted results are presented. Finally, in

section VI, the main results are summarised. Compiled data are found in the appendix.

II. GOVERNING EQUATIONS

This work considers the direct problem of an external compressible flow of far-field velocity,

pressure and temperature given by U∞, p∞ and T∞ upon a solid or a body-fitted structure. By solid,
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we specifically refer to the case wherein the structure is represented by means of a porous material

(employing a pseudo-density approach). By a body-fitted structure we refer to cases wherein the

solid representation is collapsed to the definition of the boundary conditions for the fluid flow in a

body-fitted grid, without material model.

In general, mass, momentum and energy conservations for viscous compressible flow of a

Newtonian fluid including the material model are given by the following expressions:

∇ · (ρu) = 0 (1)

∇ · (ρ uu) = ∇ · (µ(∇u+∇u⊺))−∇p+λ∇(∇ ·u)−κ(α)u (2)

∇ ·
[

ρ
(

h+
u ·u

2

)

u
]

=−∇ ·
(

− k

cp
∇h

)

+∇ · (T ·u) (3)

with the stress tensor T given by

T = µ(∇u+∇u⊺)+λ (∇ ·u)I. (4)

In the above, u, p and T are the flow velocity, pressure and temperature; ρ , µ and λ describe

the density, dynamic viscosity and bulk viscosity (λ := −2/3µ) of the fluid, respectively; h is

the enthalpy, k is the thermal conductivity and cp is the specific heat of an isobaric process. I

denotes the identity matrix. The fluid is modelled as perfect gas, following ρ = cp p/(Rh), where

R stands for the gas constant, and h− href = cp(T − Tref) (where href = 0 for Tref = 0 K), and

cp is kept constant with respect to the temperature. κ represents the inverse permeability (or

absorption coefficient), which stems from the presence of the porous medium. Its dependence on

the design variable (or pseudo density) α is discussed in section III A. The term −κ(α)u represents

a resistance to the fluid motion that drives the local velocity to zero when α = 0 and is inactive

when α = 1. When κ = 0 throughout the domain, the Navier-Stokes equations without porous

effects are retrieved from the equation set above.

III. TOPOLOGY OPTIMISATION

A. Material model

The spatial distribution of material within the design domain as fluid or solid is performed

alongside a design variable, which allows the use of the same grid to accommodate the changes

in topology over the iterations. The goal of the optimisation is to find a distribution of material
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within the design domain which is discretely divided as either fluid or solid. However, to strictly

use the binary form of κ = {κmin,κmax} (where κmin and κmax offer, respectively, null and full

resistance to the flow, e.g., κmin = 0 and κmax → ∞) to represent the resistance of the solid against

the flow poses a challenging ill-conditioned problem within the scope of topology optimisation

[although recent advances have tackled this issue with integer linear programmin, as in Sivapuram

and Picelli (2018)]. Therefore, the design variable continuously varies from α = 0 (to represent

solid) to α = 1 (fluid) with allowable intermediate (grey) values 0 < α < 1.

Following the approach first used by Borrvall and Petersson (2003), the inverse permeability κ

is relaxed by a convex q-parametrised interpolation function

κ(α) = κmax +(κmin −κmax)α
1+q

α +q
(5)

to accommodate intermediate values to ease convergence, so that the resistance of the porous

medium in equation (2) is given by the term −κ(α)u. According to Borrvall and Petersson (2003),

this relaxation steers the solution away from local minima more often than when it is not applied.

The variable q > 0 is a penalty parameter: The lower the value of q, the steeper is the curve

κ(α) between the lower and upper bounds, κmin and κmax, whilst higher values of q renders the

interpolation linear and are bound to produce less “grey structures”. Balance is found between

these effects to produce a discretised solution with clearly discernible fluid and solid regions.

Table I compiles all the relevant topology optimisation parameters.

B. Relevant functionals for the objective functions

At each iteration of the optimisation, the direct problem is iteratively solved to provide the

relevant fields p, u, T , and α for the subsequent computation of the objective function. In this

work, energy dissipation (Φ), vorticity (w), drag (FD) and lift (FL) forces as presented below,

Φ =
∫

Ω

[

1

2
µ(∇u+∇u⊺) · (∇u+∇u⊺)

]

dΩ+
∫

Ω

λ (∇ ·u)(I ·∇u)dΩ−
∫

Ω

κ(α)u ·udΩ (6)

w =
∫

Ω

√

(∇×u) · (∇×u)dΩ (7)

FD =−Fres, mat ·x (8)

FL =−Fres, mat ·y (9)

are used and combined to provide the five optimisation problems of section III D. In equations (8)

and (9), x and y are unit vectors, and Fres, mat is the total force exerted by the fluid on the body
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incorporating the material model.

C. Total force exerted by the fluid on the body

Pressure and velocity fields allow the computation of the total force exerted by the fluid upon

the body as follows. The total force, Fres projected on the e direction, Fres · e, expressed by a

surface integral, is transformed into a volume integral by means of the Gauss divergence theorem:

Fres · e =
∫

Γ

n · (T · e)dΓ =
∫

Ω

∇ · (T · e)dΩ. (10)

In this equation, n is a unit vector normal to the surface Γ, which encloses the volume Ω of the

entire domain, and e is a unit vector in a specified direction (e.g., x or y for obtaining drag or lift).

The right hand integrand is rewritten to avoid computing a second-order derivative in the finite

element implementation in FEniCS (see section IV) as:

∫

Ω

∇ · (T · e)dΩ =
∫

Ω

(∇ ·T) · edΩ+
∫

Ω

T ·∇edΩ, (11)

then, ∇ ·T is replaced by the finite element approximation (∇ ·T)approx. Now, using equation (11)

— with wg instead of e — the following integration is performed:

∫

Ω

(∇ ·T)approx ·wg dΩ =
∫

Ω

∇ · (T ·wg)dΩ−
∫

Ω

T ·∇wg dΩ. (12)

Subsequently, we apply the divergence theorem to determine the weak form:

∫

Ω

(∇ ·T)approx ·wg dΩ =
∫

Γ

n · (T ·wg)dΓ−
∫

Ω

T ·∇wg dΩ, (13)

which is solved to compute (∇ ·T)approx.

Combining equations 10, 11 and 13 yields the resulting force, entailing the finite element ap-

proximation:

Fres · e =
∫

Ω

(∇ ·T)approx · edΩ+
∫

Ω

T ·∇edΩ. (14)

In order to include the material model, the term (∇ ·T)approx is penalised by means of an adjusted

inverse permeability κplty to yield no contribution from the solid (α = 0). κplty is defined based on

equation (5), but setting κmax = 1 and κmin = 0 and employing as argument 1−α (instead of α ,

as in Borrvall and Petersson, 2003):

κplty = 1− (1−α)
1+q

(1−α)+q
. (15)
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Equation 14 alongside equation 15 give the resulting force:

∫

Ω

κplty (∇ ·T)approx · edΩ+
∫

Ω

κplty T ·∇edΩ. (16)

Finally, the forces associated with the far-field surfaces are removed to derive the resulting force

upon the solid topology considering the material model, Fres, mat:

Fres, mat · e =
∫

Ω

κplty (∇ ·T)approx · edΩ+
∫

Ω

κplty T ·∇edΩ

−
∫

Γsym

n · (T · e)dΓ−
∫

Γinlet

n · (T · e)dΓ−
∫

Γoutlet

n · (T · e)dΓ (17)

where Γsym, Γinlet and Γoutlet refer, respectively, to the symmetry (top and bottom surfaces of

figure 1), inlet and outlet. These will be further clarified in section V A.

D. Optimisation problem statements

The first problem set concerns with the minimisation of the objective functions J1, . . . ,J4 subject

to an upper fluid volume constraint on the design domain fV,d [the subscript d in fV,d stresses the

fact that the volume fraction refers to the volume of the design domain], and reads in general form

as:

Minimise J(ω,α)

subject to:

fV,d =

∫

Ωd
α dΩ

∫

Ωd
dΩ

≤ fV,d

0 ≤ α ≤ 1

(18)

where the vector ω encompasses all the state variables with their dependence on the design variable

(p(α),u(α),T (α)), and the objective functions assume the forms:

J1 := Φ (19)

J2 := we ln(Φ)+wv ln(|w|2) (20)

J3 := FD (21)

J4 :=−wL sign(FL) ln(|FL|)+wD sign(FD) ln(|FD|). (22)

with their functionals specified in section III B, so that J is accordingly set to J1, J2, J3 or J4. In

equations (20) and (22), we, wv, wL and wD denote, respectively, weights for the energy dissipa-

tion, vorticity, lift and drag forces in the composition of the multiobjective functions, respecting
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we +wv = 1 and wL +wD = 1. The weights of this section, along with other parameters, are com-

piled in table I.

Relative to multiobjective functions, we carry forward two considerations in their formulation.

The first is in the use of the natural logarithm function, ln, to transform the exponents into multi-

plicative scalars, and so prevent our optimisation from becoming biased by the largest scales (e.g.,

in equation (22) the scale of lift and drag are generally different). The second alludes to the sign

function. Because the absolute value of the lift is used as the argument of the ln function, its sign

is introduced outside of ln, in order to maximise this objective function. This precludes divergence

of J4, which could occur due to a negative argument in ln. Analogously, similar procedure is con-

ducted for the drag, even though this force is unlikely to become negative (since the bulk of the

flow adopts the direction from left to right, see figure 3).

The second problem set reads:

Minimise J(ω,α) = J5

subject to:

fV,d =

∫

Ωd
α dΩ

∫

Ωd
dΩ

≤ fV,d

FD ≤ βF∗
D

0 ≤ α ≤ 1

(23)

and is focused on maximizing the lift (J5)

J5 :=−FL (24)

with volume fraction and drag constraints, where F∗
D represents the drag-minimised value resultant

from the optimisation of the first set employing J3 (equation (21)). The parameters β = 1.0 and

β = 1.4 are inspired by the procedure adopted by Ghasemi and Elham (2022, in incompressible

flow) to vary how strictly this drag constraint is asserted.

In terms of lift, problems employing the objective functions J4 and J5 aim their maximisation

(hence the negative sign in their formulations).

IV. NUMERICAL FRAMEWORK

The employed numerical framework, termed FEniCS TopOpt Foam (Alonso et al., 2021,

Alonso and Silva, 2023), leverages and modifies the robust and highly efficient C++ OpenFOAM
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Topology initial guess

Initial 𝛼 distribution

Finite volume discretisation

Boundary conditions

Objective function, 

constraints, 

sensitivities

Adjoint model

Optimisation iteration

Topology update

Yes

No

Annotate the forward 

model from FEniCS

Forward model

Topology Optimisation

Convergence?

Optimised topology

OpenFOAM FEniCS/dolfin-adjoint IPOPT

FIG. 2: Flow chart of the numerical framework.

library (Weller et al., 1998) to account for the design variable and porous effects (see section III A)

in finite volume simulations. The main advantage of this method lies in the conservation of fluxes

across the interface of adjacent cells, providing numerical stability (Ferziger et al., 2002). The

discrete adjoint model is derived in the same framework in a flexible manner through a high-level

finite element implementation made in FEniCS (Logg et al., 2012) to compute sensitivities using

automatic differentiation from dolfin-adjoint (Farrell et al., 2013, Mitusch et al., 2019).

As figure 2 shows, firstly an initial guess is provided, specifying an initial distribution of fluid

and solid in the grid. The forward model is annotated from FEniCS. The primal (direct) problem

is solved for this initial distribution with OpenFOAM, where the SIMPLEC algorithm is applied

with the rhoSimpleFoam solver for solving compressible steady flows in a body-fitted grid. We

include the porous term in this solver to account for the material model as well (see, e.g., Alonso

et al., 2024, and Garcia-Rodriguez et al., 2025, for a successful application and implementation

details).

The same governing equations and boundary conditions employed in the direct problem are

provided to FEniCS in weak form for a finite element implementation with nodal (P1) and equal-

order linear interpolation with pressure-velocity elements. Flow fields computed cell-wise by

OpenFOAM are read by FEniCS TopOpt Foam and projected onto a finite element stencil in FEn-

iCS, where the objective functions are calculated. Consecutively, with the dolfin-adjoint library,

the adjoint model is assembled and sensitivities are computed through automatic differentiation.

Because the sensitivities are affected by the cell volume in non-uniform meshes, these are adjusted
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as presented in Alonso et al. (2021) to lead to grid independence. Design variable (Helmholtz) fil-

ters (Lazarov and Sigmund, 2011) are used in section V F twice, explicitly stated.

Lastly, the optimisation is carried out by the Interior Point Optimizer (IPOPT). Should conver-

gence be reached to the tolerance of 10−10 of IPOPT optimality criterion (Wächter and Biegler,

2006), the final optimised topology is determined and the process ends. Otherwise, the topology

is updated and the process continues iteratively.

Further details and the code structure of FEniCS TopOpt Foam framework are found in Alonso

et al. (2021).

We post-process two cases in section V E by means of a threshold in α: α-values below the

threshold are set to 0; and those above it are set to 1. This is deemed relevant inasmuch as, despite

slight residual grey, the topologies are largely defined over numerous iterations. Thresholding

should be considered by the reader only when explicitly stated in the text.

V. RESULTS

We solve equations (1) to (3) with the perfect gas equation for a subsonic flow at a Reynolds

number Re = ρ∞U∞D/µ = 100 and Mach number Ma =U∞/a∞ = 0.5, where D = 0.4825 m is the

diameter of a fixed solid cylinder, a∞ =
√

γRT∞ is the speed of sound and γ is the ratio of specific

heats.

Other than the far-field density (ρ∞ = 1.212 kg/m3) and viscosity (µ = 1.000 Pa s), we employ

air properties at T∞ = 291.15 K and p∞ = 1.01325× 105 Pa: The ratio of specific heats is γ =

cp/cv = 1.4, where cv = 719 J/kg K is the specific heat at constant volume and cp = cv +R (both

coefficients are considered constant relative to T ); R = 287 J/kg K; the molar weight is 28.96

g/mol; and k = 1437 kg/m3 s.

Our choice of Re = 100 allows a two-dimensional flow to form in laminar regime, taking as

a reference the flow over a cylinder. This dimensionless value also precludes the occurrence of

transient turbulence and three-dimensionality (which would otherwise occur for Re & 180) and the

formation of creeping flow (Re . 45, Williamson and Govardhan, 2004). Ma = 0.5 is chosen to

comprehend compressible, yet subsonic, flow effects, therefore necessarily requiring the solution

of the energy equation. In order to resolve unsteady flows, a transient formulation would be

required, which falls outside the scope of the present paper. Steady three-dimensionality and

turbulence, on the other hand, may be easily integrated into our framework (see Garcia-Rodriguez
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Symmetry

Inlet Outlet

Symmetry

∂p/∂n=0 p = p∞

∂U /∂n = 0

Physical domain (Ω)

Design domain (Ωd)
(0 ≤ ɑ ≤ 1)

Fluid (ɑ = 1)

∂T/∂n =0T = T∞

Lu Ld

Lu,d Ld,d

Ls,d

Ls

U = U∞

Solid (ɑ = 0) or structure
(adiabatic, no-slip)D

y

x

FIG. 3: Physical domain (Ω) dimensions Lu, Ld and Ls represent the distance from the

non-optimisable solid cylinder centred at the origin (red) to the inlet, outlet, and symmetry

surfaces. Analogous dimensions Lu,d , Ld,d and Ls,d delimit the design domain (grey). The initial

guess of a solid is schematically represented by the black streamlined geometry. For clarity sake,

the figure is not to scale.

et al., 2025).

A. Boundary conditions

Boundary conditions are prescribed as Dirichlet’s for the velocity and temperature, U = U∞,

T = T∞, and Neumann’s for the pressure ∂ p/∂n = 0 at the inlet; and vice versa for the outlet.

For the top and bottom edges of the domain Ω (as indicated by figure 3), a symmetry condition

is applied to represent the symmetric unperturbed far-field flow. The structure (or solid) is mod-

elled with null gradient for the pressure and temperature (adiabatic), and no-slip condition for the

velocity. Within the design domain Ωd (grey rectangle in figure 3) material is distributed.

In general, within the design domain, we specify an initial guess of one or more solids (black in

figure 4) immersed in fluid. Outside of the design domain, a fixed fluid-only region is maintained

throughout the simulations. The domain spans a length Lu +Ld = 136.2D, with the downstream

distance Ld from the origin to the outlet equal to 2/3 of the entire length. The non-optimisable
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y

x

(a)

y

x

(b)

y

x

(c)

FIG. 4: Solid initial guesses (black): (a) A cylinder at the origin, (b) an optimised structure from

another case and (c) three separate cylinders. The red dashed circumference marks the boundary

of the non-optimisable solid region. Fluid is portrayed in blue and the design domain is the

region delimited by the black dashed line.

solid region centred at the origin fills a circle of diameter D. Sideways, the domain is symmetric,

with half the height, Ls = 45.4D. These dimensions agree with the previous investigation of

the compressible flow upon a cylinder by Canuto and Taira (2015). The design domain spans

Lu,d +Ld,d = 9D in length (with Ld,d = 2Lu,d), and 2Ls,d = 6D in height. Upper and lower surfaces

yield a blockage ratio D/(2Ls) = 1.1%.

As a single body, initial guesses encompass a solid cylinder of diameter D (figure 4a) and an

initial guess from another optimisation problem (figure 4b), motivated by speed-up and ease of

convergence. As an initial guess with multiple separate structures, we employ three cylinders with

uniform radii, specified to match the volume constraint (figure 4c). Other than the described solids,

the domain is filled by fluid.

B. Grids

Discretisation of the domain in triangular cells is conducted in the same way for the grid em-

ployed with and without material model, see figure 5a. Distinction is made only within the design

domain, as depicted, respectively, by the same zoom-ins of figures 5b and 5c; outside of it, the

discretisation is the same. Of course, the body-fitted grid is adjusted to the topology for each

structure. The grid employed for the optimisation (figures 5a and 5b) is comprised of 30,164 cells.

The number of cells in the body-fitted case ranges from 37,761 to 63,513 cells (as specified in

table II), and the surface of the bodies are discretised with 200 to 800 cells to capture features of

the nearby flow. Refinement is concentrated in the design domain, toward the origin (where, as a
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(a) (b) (c)

FIG. 5: (a) General aspect of the grids, and close-up view of (b) the grid with material model and

(c) the grid for body-fitted simulations. Distinction amongst the grids is found in the design

domain.

premise made a priori, and confirmed a posteriori, the structure is formed) as well as in the wake

region. All meshes are unstructured and were generated in Gmsh (Geuzaine and Remacle, 2009).

C. Finite volume numerical scheme

To provide numerical stability and sufficiently accurate results in OpenFOAM, all gradients are

addressed in our unstructured grid by means of a least squares approximation; the convective term

∇ · (ρuu) of equation (2) is discretised by means of a linear upwind scheme. The Laplacian term

∇
2u, the transport of kinetic energy and enthalpy, as well as ∇ · (µ∇u⊺) follow a linear interpola-

tion, which allows assessment of cell-centred values to estimate cell surface values (for application

of the divergence theorem for integration of the equations). The Laplacian term is corrected for

non-orthogonality (Versteeg and Malalasekera, 2007), since the centres of adjacent cells do not, in

principle, form an orthogonal direction to the interface between them. All interpolants ensure at

least a second-order truncation error.

Because we employ a collocated grid, the checkerboard effect is prevented by an implicit Open-

FOAM application of Rhie and Chow’s (1983) pressure-velocity coupling (as described in Kär-

rholm, 2006). The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE), in the consis-

tent version (SIMPLEC), including the material model, allows to iteratively solve the governing

equations in porous medium through a guess-and-correct procedure (Versteeg and Malalasekera,

2007). SIMPLEC is deemed converged when the residual reaches a value lower than 10−3, re-
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quiring concomitantly, at each SIMPLE iteration, a residual lower than or equal to 10−4 for the

pressure and 10−8 for each velocity component and for the enthalpy. Relaxation is necessary to

obtain a stable solution. For the density, a relaxation of 0.95 is applied; whereas for the momen-

tum, continuity, energy and enthalpy equations, relaxation factors are of 0.95, 0.001, 0.95 and 0.01

to preserve stable simulations. OpenFOAM simulations run up to 20,000 iterations, although in

most cases convergence occurred in fewer iterations.

Topology optimisation is conducted for the five problems described in section III D, each in a

section. Fair comparison is made in the following sections by contrasting cases only when they

share the same inverse permeability κ . By the end, we evaluate body-fitted results, and include a

comparison with NACA 0012 aerofoil — which is a reference for practical applications.

D. Minimisation of energy dissipation (J1)

It is of practical interest to attenuate the energy dissipation in a variety of fluid flows, namely

those that are obstructed by a structure. In such cases, when the body is bluff, it establishes a

large region leeway where the pressure is very low compared to that upfront. In steady cases, the

difference in pressure fore and aft of the structure amounts to pressure drag that contributes to

almost the entirety of the drag on the structure. Although the viscous contribution to the total drag

is low, still, the presence of highly vortical bubbles past the structure is related with the separation

points that precede its very formation [the term “bubble” here refers to the vortical recirculation

regions that form downstream of the structure of opposite vorticity content, see Williamson, 1996].

This rationale inspires this choice of objective function. Under these considerations, we infer that

attenuation of the energy dissipation will occur if the structure is rather streamlined than bluff,

downsizing the bubbles and closing-in the separation points.

The formal optimisation problem statement is expressed by equation (18) with J := J1. A small

cylinder of diameter D is used as the initial guess. Here we consider maximum volume fractions

spanning the range from fV,d = 0.60 to 0.90. For the low end of volume fractions, fV,d = 0.60 and

0.65, convergence of the direct problem is challenging due to the structure’s large size and the flow

instability at this Re. As a result, vortex-like structures form alternately from one iteration to the

next, preventing residuals from achieving lower values and SIMPLEC from reaching convergence.

This is rather due to the inherently unstable, transient-prone, nature of the problem (Williamson

and Govardhan, 2004), in spite of our steady-regime formulation. Notwithstanding this difficulty
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(a) fV,d = 0.60. (b) fV,d = 0.65. (c) fV,d = 0.70. (d) fV,d = 0.87.

FIG. 6: Flow-field of the optimised topologies employing the energy dissipation, J1, as the

objective function with a maximum fluid volume constraint, fV,d , as indicated in the subcaptions.

Keys apply to the common colour maps.

in the forward problem, our optimisation procedure is able to produce the streamlined structure of

figure 6 (departing from a solid cylinder), capable of reducing the objective function compliantly

with the volume constraint. The curved leading edge (frontmost region of the body relative to the

incoming flow) accommodates the incoming flow and attempts to mitigate the pressure increase

due to the stagnation region there. The streamlined aspect reduces the distance between separation

points.

It becomes clear from figure 6 that the higher the volume fraction, the more streamlined is the

resulting structure and the bubble region downstream is downsized. Because of that, we reduce

the initial guess and the non-optimisable solid cylinder for the cases with fV,d ≥ 0.80 to a diameter

of 0.5D. For the flows represented in figure 6, we verify that the Mach numbers confirm the

presence of a compressible subsonic flow. On the topology side, notably, the optimiser attempts to

streamline the structure, mostly focused on the leading edge of the aerofoil-like structure for the

lower fV,d (where the amount of solid is higher) and then also for the trailing edge (rearmost region

of the body relative to the incoming flow) when fV,d adopts higher values (where the amount of

solid is lower, so the optimiser is offered greater freedom to adjust upstream and downstream parts

of the topology).

Figure 7a exhibits reduced initial values for these lower volume fractions than those optimised,

due to the violation of the constraint (as emphasised in figure 7b by the shaded region, where the

constraint is violated), since we began the optimisation with a small cylinder which corresponds to

a fluid volume fraction of 0.985 (greater than the constraints fV,d = 0.60 to 0.90). As the optimiser
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FIG. 7: Minimisation of energy dissipation (J1) with fV,d = 0.60 to 0.90.

increases the amount of solid in the design domain (thus decreasing fV,d to meet fV,d), the objective

function increases to peak value. Afterwards, the optimiser decreases the objective function until

it flattens out to the lower plateau, maintained until the final iterations.

Now, for higher volume fractions, convergence of the direct problem is achieved for all opti-

misation iterations or, at least, for those that already define well the topology (with marginal or no

grey). Figures 7a and 7b present, respectively, the objective and the constraint curves. In these,

abrupt fluctuations of the curves are due to the iterative procedure itself, but they are further mag-

nified by the difficulty faced by the flow solver to converge, which, in turn, is due to the insertion

of grey into the design domain and to the unstable flow.

E. Minimisation of energy dissipation and vorticity (J2)

Although vorticity is indirectly affected by the minimisation of the energy dissipation, we also

follow the approach whereby the vorticity is explicitly minimised in a multiobjective function,

according to equation (18) with J := J2 given by equation (20). Here we perform continuation

in α by employing the optimised topology with the same fV,d from the previous section as the

initial guess (schematically depicted by figure 4b). This procedure serves as a paradigm: We

assume a priori the possibility that the addition of vorticity could offset the minimisation of the

energy dissipation to a midway solution that diminishes vorticity, should they be conflicting; or

the reduction of both, for an existing correlation.

For the first set of weights of the energy dissipation and vorticity, (we,wd)= (0.6,0.4), figure 8a

shows that the objective function final value reduces below the initial one, i.e., that obtained in

section V D for all cases, meeting the volume fraction constraints (figure 8b). Moreover, both

18

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
8
9
4
2
4



0 200 400 600
Iteration

1.42

1.44

1.46

J
2,
(w

e
,w

v
)
=
(0
.6
,0
.4
) ×104

(a)

0 1000 2000
Iteration

0

1

2

f
V
,d
−

f
V
,d

fV,d = 0.70

fV,d = 0.80

fV,d = 0.85

fV,d = 0.90

(b)

0 1000 2000
Iteration

0.5

1.0

1.5

|w
|2
(s

−
2 )

×106

(c)

0 1000 2000
Iteration

2

4

6

Φ
(W

)

×106

(d)

FIG. 8: Minimisation of energy dissipation and vorticity (J2) with weights (we,wv) = (0.6,0.4).

In (a) the optimisation history of J2, (b) volume fraction constraint, and the break-down

composition in (c) vorticity squared and (d) energy dissipation.
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FIG. 9: Minimisation of energy dissipation and vorticity (J2) with weights (we,wv) = (0.9,0.1).

In (a) the optimisation history of J2, (b) volume fraction constraint, and the break-down

composition in (c) vorticity squared and (d) energy dissipation.

the vorticity (figure 8c) and the energy dissipation (figure 8d), which comprise the multiobjective

function, decrease, probably due to the benefit of explicitly incorporating the vorticity into the

objective function and its close relation with the energy dissipation, safeguarding the latter from

increasing.

Results for (we,wv) = (0.7,0.3) are similar to those of (0.9, 0.1). Hence, we describe only

the latter for succinctness, although both were assessed. Compared with the results of (we,wv) =

(0.6,0.4), the curves for weights (we,wv) = (0.9,0.1), reproduced by figure 9, demonstrate fewer

oscillations and faster convergence, due to the lower weight wv attributed to the vorticity.

To the best of our efforts, vorticity has proven a challenging objective function for the optimi-

sation. On physical grounds, we reason that this is driven by the high levels of vorticity generated

in the boundary layer which are inherent to any external optimisation problem. The optimiser

algorithmically attempts to reduce |w|2 whilst the interaction between the fluid flow and the solid
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(we,wv) = (0.6,0.4)

(a) fV,d = 0.70.

(b) fV,d = 0.80.

(c) fV,d = 0.85.

(we,wv) = (0.9,0.1)

(d) fV,d = 0.75.

(e) fV,d = 0.80.

(f) fV,d = 0.90.

FIG. 10: Flow-field of the optimised topologies resultant from the minimisation of the energy

dissipation and vorticity (J2). On the left, the weights assigned to energy dissipation and vorticity

are (we,wv) = (0.6,0.4), whilst on the right (we,wv) = (0.9,0.1).

necessarily generates vorticity essential to comply with the no-slip boundary condition. Ergo,

emphasis on the vorticity weight renders the optimisation not only more difficult, but also less

compatible with the physics of the problem. The optimised topologies and the associated flow are

shown in figures 10 and 11, with zoomed-in views of the topology. Post-processing was carried

out for figure 11 with a threshold in α of 0.2.

The explanation above elucidates the difficulty found in the optimisation for wv ≥ 0.6. In

fact, for high fV,d , note that the optimiser fills the entire design domain with grey, except for the

fixed non-optimisable region that we have fixed. For fV,d = 0.65, one of the lowest values of our

evaluation (see figure 11d), we note some resemblance with an actual structure, but grey fills a

large part of the design domain nonetheless. Results for fV,d = 0.60 are not presented. Despite

the similar aspect found to that of fV,d = 0.65, the energy dissipation increased significantly for

fV,d = 0.60, leading J2 overall to increase as well.

We relate the present section with the previous one in terms of the weights for the energy

dissipation and vorticity. For briefness, we zoom in only on the structure with fV,d = 0.75, see
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FIG. 11: Minimisation of energy dissipation and vorticity (J2) with weights (we,wv) = (0.4,0.6)

for fV,d = 0.65. In panels (a) optimisation history, (b) vorticity squared, (c) energy dissipation,

(d) volume fraction constraint and (e) flow and unconverged topology. Post-processing of the

topology was made using a threshold of 0.2 in α .

figure 12. Although the topologies look similar in the present section to those of figure 6, now

the optimiser smoothes out some of the rough-like aspect of the leading edge. This nuance can be

better seen by comparing the result of the previous section (figure 12, left) with that employing

the multiobjective function with (we,wv) = (0.6,0.4) (figure 12, right). This results in a more

easily circumvented structure by the flow. Consequently, the surface of the structure produces

lower velocity gradients. By visual inspection, figure 12 conveys that as the vorticity is weighted

more significantly (e.g., wv = 0.4 and 0.2 in the top and middle of the right side of figure 12) the

structure becomes smoother than in the case wv = 0.1 (bottom right of figure 12). The smoothing

effect of the vorticity (as an objective function) fades away as its weight reduces, and the solid

resulting from (we,wv) = (0.9,0.1) retrieves then some of the rough-like aspect of the left side of

figure 12, where only the energy dissipation is employed.

F. Minimisation of drag (J3)

Drag minimisation is investigated following the optimisation problem of equation (18) with

J := J3 = FD. We set out with three separate solid cylinders as the initial guess (as exhibited by
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Vorticity 
weight

𝑤𝑒 , 𝑤𝑣 = (0.6, 0.4)
𝑤𝑒 , 𝑤𝑣 = (0.8, 0.2)
𝑤𝑒 , 𝑤𝑣 = (0.9, 0.1)

Surface 
roughness

Energy dissipation (𝐽1) Energy dissipation and vorticity (𝐽2)
FIG. 12: Upper half of the optimised topologies using the energy dissipation, J1 (left), and the

present multiobjective function, J2 (right) involving energy dissipation and vorticity. On the right,

vorticity weighting wv decreases from top to bottom. The use of vorticity leads to smoother

topology. Here, fV,d = 0.75. Post-processed topologies are represented using a threshold of 0.5 in

the represented α .

figure 4c), to evaluate the robustness of the method. Their diameters are uniformly specified to

match the respective fV,d constraint (with values equal to 0.80, 0.85 or 0.87).

Figure 13a indicates reduction of the objective function for all constraints. As before, the oscil-

lation in the objective function, particularly across the initial iterations is due to the appearance of

grey in the design domain, which, with further iterations, disappears, giving rise to a well defined

design, meeting the specified constraint (figure 13b). In this section, except for fV,d = 0.85, a

design variable filter was used, with radius equal to half the size of the smallest cell.

Reductions in the objective function of 51.8%, 55.6% and 56.0%, are verified, respectively,

for the resulting topologies shown in figures 13c through 13e. The higher the fV,d values, the

more streamlined is the resulting solid, with ever sharper trailing edge, in connection with the

progressively greater drag reduction. Indeed, it is well known that most of the drag force results

from the relative imbalance between frontal and rear pressure regions. The peak-shaped trailing

edge allowed for the separation points to close in one another, thereby fostering a lower pressure

decay downstream. The two- ( fV,d = 0.85) and three-pronged ( fV,d = 0.80 and 0.87) formation

upstream allow for better accommodation of the incoming flow, alleviating the obstruction of the

solid and smoothing the deceleration of the flow. In a nutshell, the optimised designs privilege the

decrease of the (positive) pressure upfront and the increase of the (negative) pressure downstream,

leading to minimised drag.
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(a) Optimisation history of J3.
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(b) Volume fraction constraint.

(c) fV,d = 0.80. (d) fV,d = 0.85. (e) fV,d = 0.87.

FIG. 13: Minimisation of the drag force (J3) subject to a maximum fluid volume fraction. a)

Convergence curves of the objective function, (b) constraint, while flow and optimised topologies

are exhibited from (c) to (e).

For comparison, we also carry out the optimisation with fV,d = 0.87 with an initial guess com-

prised of a single solid cylinder, rather than 3 disjoint solid structures. The two procedures are

contrasted in figure 14. Figures 14a and 14b correspond to drag forces of 7.29 × 103 N and

7.80×103 N. Their relative difference of 7.0% is probably due to the differing convergence paths

adopted by the optimiser, departing from different initial guesses. Reportedly, topology optimi-

sation depends on the initial guess. Choosing an initial guess in a feasible region and allowing

convergence of the direct problem in the first optimisation iteration might ease the optimisation

entirely. Surely, when the direct problem does not converge in the first iterations, the optimiser

will be provided with residuals from the direct problem, which may hinder successive iterations.

For even greater fV,d = 0.95, the results of figure 15 are obtained. The initial guess involves

a single solid cylinder of diameter 0.5D. By the end of the optimisation, the drag reduces in

77.8% (figure 15a), complying with the constraint with a fluid volume fraction lower than 95%
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(a) Resulting topology with an initial guess

comprised of a single solid cylinder.

(b) Resulting topology with an initial guess

comprised of three separate solid cylinders.

FIG. 14: Optimised topologies for different initial guesses with fV,d = 0.87. Red and blue

circumferences outline the edges of the non-optimisable regions and initial guesses, respectively.

On the left, the two circumferences coincide.
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(a) Optimisation history of J3. (b) Volume fraction. (c) Topology and flow.

FIG. 15: Minimisation of the drag force (J3) for a maximum volume fraction fV,d = 0.95. The

topology is represented through a threshold of 0.5 in α .

of the design domain (figure 15b). The topology exhibited in figure 15c does not exhibit the two-

or three-pronged sharp edges on the front, but retains the streamlined structure along the trailing

edge. Although the justification for this topology is not clear-cut, we deem most likely that because

in general the drag force FD diminishes as the solid size scales down and here we allow a superior

amount of fluid, the optimiser focuses on smoothing the downstream flow with the sharp edge.

Furthermore, the frontal obstruction here is smaller, due to fV,d . So, to prevent larger separation

downstream might be more reasonable than to shrink the frontal stagnation region. The resulting

flow is also shown in figure 15c.

G. Maximisation of lift and minimisation of drag (J4)

Feasible designs often envision structures that not only are able to reduce drag, but that can also

sustain large lift values. From an optimisation standpoint, this goal is formulated as a multiobjec-
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FIG. 16: Maximisation of lift and minimisation of drag (J4). In panels (a) optimisation history,

(b) volume fraction constraints (red shade highlights the region where the constraint is violated

for fV,d = 0.80. The other curves remained in the feasible region) and (c) break-down of lift and

drag, respectively depicted by dark- and light-coloured curves.

tive function problem, as expressed by equation (18), with J := J4, in agreement with equation (22).

Figure 16a reveals that for the sets { fV,d = 0.80; (wL,wD)= (0.2,0.8)}, { fV,d = 0.87; (wL,wD)=

(0.5,0.5)}, as well as for { fV,d = 0.90; (wL,wD) = (0.5,0.5)} the objective function values reduce

— for the first and second cases, in 88%, whilst for the third case, in 3.0% in terms of absolute

values of J4. In fact, for the first two sets, the objective function not only reduces to null value, but

below, to a negative one. For reference, figure 16b exhibits that the volume fraction curves respect

the constraints by the end of the optimisation. The curve for fV,d = 0.80 violates the constraint (red

region of the figure) only initially, whilst those for fV,d = 0.87 and 0.90 stay within the feasible

region throughout the iterations.

To scrutinise J4 values, the break-down composition of the optimisation history, introduced by

figure 16c, unveils that for fV,d = 0.80 and 0.87 the lift increases from the initial value and the

drag decreases, driving J4 to a minimised value. A different tendency is delineated by fV,d = 0.90:

Initially, both lift and drag (blue and cyan curves of figure 16c) increase to meet the constraint,

then successively diminish, thereby approaching J4 to zero and later on are brought down to a

negative value until convergence.

Figures 17a and 17b expose the final topologies and the resulting flow. For { fV,d = 0.80;

(wL,wD) = (0.2,0.8)}, the direct problem converges; whilst for the latter this is not achieved

{ fV,d = 0.90; (wL,wD) = (0.5,0.5)}. In comparison with fV,d = 0.90, similar flow and topology

are found for 0.87, omitted in this section for conciseness.
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(a) fV,d = 0.80, (wL,wD) = (0.2,0.8). (b) fV,d = 0.90, (wL,wD) = (0.5,0.5).

FIG. 17: Maximisation of lift and minimisation of drag (J4) with respective weights (wL,wD),

constrained by maximum volume fraction fV,d . Topologies are shown in black. Keys apply for

the common colour maps. The topology in (a) is represented through a threshold of 0.5 in α .

In relation to the fluid flow solver, we anticipate that for the latter set this strictly reflects the

challenging character of the simulation due to the material model. When the material model is

considered, some of the smoothness of the body surface is lost, because even small grey areas (ar-

tificial surfaces with artificial boundary layer, i.e., low κ) impact the flow. Numerically, the system

of equations becomes more ill-posed, since the material model adds −κ(α)u to equation (2), ren-

dering the solution harder.

Despite that, the solver was able to surmount a converged flow in a body-fitted grid, with the

same topology. This discussion is deferred to section V I, and the resulting improved performance

will justify the insertion of the present results to this section.

Indeed, detrimental effects culminate in difficult convergence when maximisation of the lift is

desired, as it (partly) is for J4. Since the difference in pressure underneath and above the structure

is encouraged, in order to maximise lift (see figure 18) — insomuch as this imbalance leads to

greater force — the downstream flow is led to a wider wake for an already unstable flow. This is

in stark contrast with the problems of the previous sections V D, V E and V F. In those problems,

this imbalance countered the minimisation of J1, J2 and J3, for they seek streamlined structures,

albeit with different topologies.
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FIG. 18: Normalised pressure p/p∞ contours for the case of maximisation of lift and

minimisation of drag (J4) with respective weights (wL,wD) = (0.5,0.5) constrained by maximum

volume fraction fV,d = 0.90. The topology is shown in black.

H. Maximisation of lift with a drag constraint (J5)

We now strictly undertake the maximisation of the lift force as the objective function, J :=

J5 = FL , given by equation (24), for the problem outlined by equation (23), where the drag is

constrained by a multiple (β ) of the minimised drag (F∗
D) of section V F as FD ≤ βF∗

D.

We preface our discussion with the fact that our evaluation shortlists β values to 1.0 and 1.4,

although 1.8 was considered. We found for this last value that too loose a constraint on the drag

means a higher emphasis directed by the optimiser toward the lift, which in turn renders the topolo-

gies bluff, altogether onerous to the entire optimisation. We observe that Ghasemi and Elham

(2022) were successful to perform this procedure with β = 1.8 in incompressible flow. Differ-

ent from incompressible flows, where more dissipative schemes may be used to ease convergence,

these schemes do not result in a reduction of the residuals of the fluid flow equations for compress-

ible flow. To test our methodology respecting our premise of a subsonic flow, one could consider a

flow with a lower Re, and a Ma sufficiently high for compressible flow behaviour, but this proves

restrictive, because a subsonic flow inherently leads U∞ to high values (thus offsets the idea of

considering a flow with a lower Re in order to ease convergence).

In this section, we restrict our discussion to fV,d = 0.87 for conciseness. Firstly, we compare the

optimisation employing as the initial guess one and three structures with β = 1.0. From inspection

of figures 19a and 19b the resulting topologies show to be the same.

The entire optimisation of figure 19b is illustrated in figure 20, where it is seen that topology

optimisation is able to merge together separate solid bodies to provide a single optimised structure.
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(a) Initial guess as a solid cylinder. (b) Initial guess as three solid cylinders.

FIG. 19: Lift-maximised topologies for fV,d = 0.87 and β = 1.0 with different initial guesses.

FIG. 20: Topology optimisation. The red circle illustrates the non-optimisable region. The initial

guess is given by three separate solid structures (in black), immersed in the external flow (white).

After the initial iterations (where grey appears), the optimiser reduces grey whilst improving the

solid topology; focus is then given to the trailing edge until convergence, which resembles the

well known Gurney flap — intrinsically obtained through optimisation.

More importantly, we observe that the small tab on the trailing edge of the optimised topology

of figure 20 resembles a Gurney flap, a simple solution previously devised by Giguere et al. (1995,

portrayed by figure 21) by means of an experimental parametric evaluation (rather than through

numerical simulations using an optimisation algorithm as it is done in this work) for Re as high

as 250,000. This flap is located at the trailing edge and is perpendicular to the chord. This small

device was shown by these authors to enhance lift “at a very little cost in drag”(Giguere et al.,

1995), and to provide a performance comparable with more complex designs. In that study, the

authors also explored parametrically the height of the Gurney flap, hereby found in a single pass

as a result of the overall optimisation.

Figure 22 shows that the topologies experience higher lift values for both drag constraints

(β = 1.0 and 1.4, refer to figure 22a, where −FL is plotted) relative to the initial guess. Strong

oscillations in the curves develop, due to the difficult converging aspect of the direct problem.

For β = 1.0, the direct problem converges for the final optimisation iterations with 70 fluid solver
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GurneyFD

FL

Chord line

flap

FIG. 21: The Gurney flap is able to enhance lift (FL) with little increase in drag (FD).
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(a) Optimisation history of J5. (b) Volume fraction constraint. (c) Drag constraint FD ≤ βF∗
D.

FIG. 22: Maximisation of lift (J5) with an upper drag constraint and volume fraction. Here,

fV,d = 0.87.

iterations (although SIMPLEC was allowed to run up to 200 iterations).

Higher β frees the optimiser to give further emphasis to the maximisation of the objective (lift),

by allowing greater drag. In agreement with our discussion on the last paragraph of section V G,

convergence is more difficult, both for the optimisation problem as well as for the fluid simulation

solver. Notwithstanding none of these were achieved with the material model for β = 1.4, the next

section shows that convergence is successfully achieved with a body-fitted grid of the resulting

topologies of figure 23. For the present section, the verified trend of reduction in the objective

function (captured by figure 22a) suffices to corroborate with the mainstay of robustness of the

method, respecting the required constraints as confirmed by figures 22b and 22c. Besides, the

optimisation generated a feasible design reminiscent of the Gurney flap (investigated in a different

manner by Giguere et al., 1995, with the same aim as ours), thus, validating our method.

I. Body-fitted grid evaluations

The present section introduces body-fitted results relative to the optimised topologies found

in previous sections. For briefness, this discussion is restricted to the constraint fV,d = 0.87.
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(a) β = 1.0. (b) β = 1.4.

FIG. 23: Lift-maximised topologies for fV,d = 0.87. The constraint FD ≤ βF∗
D reads with β equal

to (a) 1.0 and (b) 1.4.

FIG. 24: Reference compressible flow fields of figure 25c normalised by inlet-specified values. A

Mach number greater than 0.3 (left) and fluid density variation of 55% (middle) confirm the

premise of a compressible flow regime. The temperature (right), in contrast, varied little.

Figure 24 corroborates with our specification of a compressible flow, with a Mach number up

to 0.7 and density variation of 55%.

Figure 25 exhibits the main body-fitted flows (equivalent to the topologies found in sections V D

to V G, with material model) and their grids. Table III compiles performance metrics for the

following discussion.

For the resulting body-fitted flows from the minimisation of the energy dissipation (J1),

the attained value for the optimised structure of figure 25a is 1.61×106 W/m whilst our ini-

tial guess of a cylinder of diameter D (violating the constraint) produces an energy dissipa-

tion of 1.65×106 W/m, 2.36% higher. Now, considering a reference cylinder of diameter

D fV,d
=

√

4(1− fV,d)(Lu,d +Ld,d)(2Ls)/π (which is compliant with fV,d , see figure 3), the en-

ergy dissipation is of 1.02×107 W/m, 533% higher than our J1-optimised structure. We also

simulate the same flow conditions upon the NACA 0012 aerofoil (figure 25e), sizewise compliant

with our volume constraint. In such case, the energy dissipation is of 1.69×106 W/m, higher

4.87% than our solution, see table III for numerical values.

Our flow conditions allow the assessment of a compressible external flow at reasonable cost,
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(a) Body-fitted topology with minimised energy dissipation (J1).

(b) Body-fitted topology with minimised drag (J3).

(c) Body-fitted topology with maximised lift and minimised drag, (wL,wD) = (0.5,0.5) (J4).

(d) Body-fitted topology with maximised lift with a drag constraint, β = 1.0 (J5).

(e) Body-fitted flow evaluation of the NACA 0012 aerofoil model.

FIG. 25: Contours of body-fitted flows normalised by inlet velocity (left) and grids (right).

however, to the best of our knowledge, experimental results are unavailable. Therefore, we chose

NACA 0012 as a benchmark, since this aerofoil is widely studied and data thereof are easily found.

Drag and lift are appraised in this section in terms of their coefficients, CD = FD/(ρ∞U2
∞D) and

CL = FL/(ρ∞U2
∞D), where D is employed as the characteristic length as a reference, taking into

consideration that its definition is unclear a priori, since the solid may adopt different topologies
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(a)
(b) (c)

FIG. 26: Body-fitted variations of the solid material distribution for the drag minimisation (J3) of

section V F. These are due to the discretisation employed for the solid distribution. In (a)

non-smoothed structure with frontal tips (in contrast to figure 25b) (zoom-in is provided), (b)

smoothed structure (without frontal tips) and (c) non-smoothed structure (without frontal tips).

during the iterative process (where FD was used, instead of CD). The motivation for the use of CD

and CL is to vanish with the effect of the size of the body, since the premise of an external flow

is considered, i.e., a fully immersed body an infinite medium, with negligible free-surface effects.

The use of FD or FL would render the following discussion biased, favouring the smallest body.

Minimisation of the drag force (J3) led to the structure depicted by figure 25b. Compared with

the solution found for the energy dissipation (with CD = 2.75×10−2), the difference is negligible

in terms of drag. Considering the economical discretisation we have employed, the exact topology

to be smoothed from the solid found is not clear cut, and may assume the topologies evaluated in

figure 26. For such cases, CD adopt values 2.71×10−2, 2.85×10−2 or 3.05×10−2, from left to

right. This shows that one of the topologies presents a lower value than the J1-optimised structure.

Furthermore, relative to the NACA 0012 model, the solution of figure 25b, and the variations from

figure 26 are subject to 10.3% to 24.1% greater drag depending on the smoothing of the solid

surface (to generate the body-fitted grid) and on the presence or not of the upfront tips.

Figure 25c corroborates with the assertion that convergence of the flow with the material model

in section V G is strenuous. For the same topology, with a body-fitted grid, a steady-state fully

converged solution is found. Its topology is unintuitive.

During our attempts, the topology with the open cavity in the back was obtained, see figure 17b.

One question that arises from the comparison of its body-fitted topology of figure 25c (for max-

imisation of the lift and minimisation of the drag) with figure 21 of Azevêdo et al. (2024, where the

authors investigated maximisation of the downforce instead of the lift, also minimising the drag)

is whether there is need for the cavity in the rear part of the topology. Inspired by this question,
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(a) Normalised flow velocity. (b) Grid.

FIG. 27: Closed-rear investigation (of J4), in contrast with our optimised structure (figure 25c),

which presented an open cavity in the back (see figure 19).

we extend our investigation to the case with a closed rear. We manually close the rear cavity of the

topology with a line, and compare forces acting on the topology with and without the rear cavity

(figures 27 and 25c, respectively). We observe that the drag of the two are the same, whilst the lift

of the structure with open rear is 6.27% greater (thus justifying the lower value of J4). Interest-

ingly, both of these structures present some of the lowest drag forces of our minimised topologies

throughout the cases, CD = 6.93×10−3, 71.8% below that of NACA 0012.

Finally, in terms of lift maximisation, the resulting body (see figure 25d) presents the largest

lift value, CL = 3.73×10−2. Most structures present values near zero due to symmetry, differing

in such cases from that as a by-product of numerical errors. An analogous experiment to that

described above for J4 was carried out for J4 with β = 1.4. Functional values are given in table III.

VI. CONCLUSION

Topology optimisation of external compressible flow was successfully carried out for the min-

imisation of the energy dissipation (J1), energy dissipation and vorticity (J2), drag (J3); maximisa-

tion of lift and minimisation of drag (J4); and maximisation of lift (J5) with fluid volume constraint,

and an additional drag constraint for J5 in all cases. The direct problem of a compressible subsonic

flow of a viscous fluid was solved with finite volume simulations in OpenFOAM, whilst the adjoint

sensitivity was computed by FEniCS, altogether within the FEniCS TopOpt Foam framework.

Appraisal of the flow physics and its consequent effects on topology optimisation elucidated

that vorticity may be included in the objective function, however, to a limited extent, otherwise the

optimiser resorts to removing solid as much as possible (leading to grey when compliant with the
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volume constraint) in the attempt to minimise the objective, thus leading to unfeasible solutions

and failure of convergence for both the optimisation and the direct problem. This is by virtue of

the fact that the boundary layer is intrinsically a region that produces high vorticity to comply with

the no-slip condition upon solids.

Different initial guesses were evaluated, including one wherein multiple separate structures

were used. The employed methodology revealed robust enough to handle cases even when the

direct problem was of difficult convergence (throughout the optimisation, and in cases where this

happened only for the initial iterations) due to flow instability.

The tendencies found with the material model, as demonstrated by convergence curves, were

corroborated by body-fitted grid simulations, where only the fluid flow was considered. The re-

sulting topologies were contrasted amongst themselves, with the initial guesses, and with a NACA

0012 aerofoil. The results indicate improved performance of the optimised topologies, and func-

tionals adequately extremised in agreement with the problem specification. Moreover, superior

behaviour was detected relative to NACA 0012 aerofoil in many instances.

Non-intuitive designs were attained and exhibited stark differences relative to the initial guess.

These topologies would not be achievable through parametric or shape optimisation. The resulting

structures require further study, from the perspective of fluid mechanics, to comprehend the im-

provement brought by their topologies to the objective functions. For the problem of J3, two- and

three-pronged tips were introduced by the optimiser (figures 13); for J4, leveraging on removal

of material from the rear part led to the same drag, but higher lift (see figure 25b compared with

the same structure, manually designed, with a closed rear in figure 27); for J5, the Gurney flap

emerged inherently from the optimisation to increase lift at marginal drag increase (see figures 20

and 25d), in agreement with the original purpose of this device (Giguere et al., 1995, but back then

found by experiments and trial-and-error evaluations).

Future work should be concerned with the development of unsteady adjoint formulations for

transient compressible flows, with the outlook of overcoming the challenges of vortex-dominated

unstable flows, ubiquitous in practical applications.
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Appendix A: Reference tables

Table I summarises the parameters used throughout the simulations with the material model.

Table II compiles timing information. AMD threadripper 2950X processors were used with 128

GB random access memory.
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TABLE I: Topology optimisation simulation parameters. All simulations employ κmin = 0.

Following section III D, for multiobjective functions prevail wL +wD = 1 and we +wv = 1, so

only one of the weights of each case are specified in the table.

Objective function composition Constraints Simulation parameters

J
Min Min

wv

Min Max
wL fV,d β ×F∗

D β κmax q
Φ |w|2 FD FL

J1

X - - - - - 0.6 - - 103 0.1

X - - - - - 0.65 - - 103 0.1

X - - - - - 0.7 - - 103 0.1

X - - - - - 0.75 - - 103 0.1

X - - - - - 0.8 - - 103 0.1

X - - - - - 0.85 - - 103 0.1

X - - - - - 0.87 - - 103 0.1

X - - - - - 0.9 - - 103 0.1

J2

X X 0.6 - - - 0.7 - - 103 0.1

X X 0.6 - - - 0.8 - - 103 0.1

X X 0.6 - - - 0.85 - - 103 0.1

X X 0.6 - - - 0.9 - - 103 0.1

X X 0.9 - - - 0.75 - - 103 0.1

X X 0.9 - - - 0.8 - - 103 0.1

X X 0.9 - - - 0.9 - - 103 0.1

X X 0.4 - - - 0.65 - - 103 0.1

J3

- - - X - - 0.8 - - 104 0.1

- - - X - - 0.85 - - 104 0.1

- - - X - - 0.87 - - 104 0.1

- - - X - - 0.95 - - 104 1

J4

- - - X X 0.2 0.8 - - 103 0.1

- - - X X 0.5 0.87 - - 103 1

- - - X X 0.5 0.9 - - 103 1

J5

- - - - X - 0.87 X 1.0 104 0.1

- - - - X - 0.87 X 1.4 104 0.136
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TABLE II: Timing information of the main optimisations carried out in this work. The figures

referenced on the right correspond to the body-fitted simulations carried out without the material

model. The figures referenced on the left refer to simulations carried out with material.

Optimisation with material model
Body-fitted grid equivalent

Grid count: 30,164 cells, fV,d = 0.87

Figure Objective function
Parameters

Iterations Wall-clock time Figure Cells
κmax q

6d J1 103 10−1 1003 10 hours 14min 25a 62,140

13e J3 104 10−1 276 9 hours 26min 25b 60,376

16a J4 103 100 239 25 hours 12min 25c 63,513

19a J5 104 10−1 2263 67 hours 17min 25d 55,613
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TABLE III: Performance metrics. Flow fields and grids of the J1-optimised topology and those

described in bold below are exhibited in figure 25. Manually designed cases are those comparing

an optimised solution with a similar one (section V I) obtained through topology optimisation

with a similae

Simulation Φ (W/m) |w2| (s−2) CD CL

Cylinder with diameter D 1.65×106 1.63×106 3.33×10−2 0

Cylinder compliant with D fV,d
1.02×107 1.01×107 2.06×10−1 0

J1 1.61×106 1.60×106 2.75×10−2 1.84×10−3

J3

Smoothed without frontal tips 1.66×106 1.66×106 2.85×10−2 6.54×10−4

Smoothed with frontal tips 1.64×106 1.62×106 2.75×10−2 −1.14×10−4

Non-smoothed without frontal tips 1.55×106 1.54×106 3.05×10−2 7.57×10−5

Non-smoothed with frontal tips 1.58×106 1.56×106 2.71×10−2 −5.90×10−4

J4

open rear (wL,wD) = (0.5,0.5) 3.92×106 3.89×106 1.39×10−2 3.72×10−2

closed rear (wL,wD) = (0.5,0.5) (manually designed) 3.73×106 3.71×106 1.34×10−2 3.49×10−2

J5

β = 1.0 1.98×106 1.95×106 1.09×10−2 3.73×10−2

β = 1.4: closed rear (manually designed) 3.25×106 3.19×106 9.92×10−3 2.63×10−2

β = 1.4: open rear 3.26×106 3.20×106 1.01×10−2 2.69×10−2

NACA 0012 1.69×106 1.68×106 2.46×10−2 1.15×10−4
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