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Abstract

Soils serve as critical carbon reservoirs, playing an essential role in climate change miti-
gation and agricultural sustainability. Accurate soil property determination relies on soil
spectral reflectance data from Earth observation (EO), but current vegetation models often
oversimplify soil conditions. This study introduces a novel approach that combines radiative
transfer models (RTMs) with open-access soil spectral libraries to address this challenge.
Focusing on conditions of low soil moisture content (SMC), photosynthetic vegetation (PV),
and non-photosynthetic vegetation (NPV), the coupled Marmit–Leaf–Canopy (MLC) model
is used to simulate early crop growth stages. The MLC model, which integrates MARMIT
and PRO4SAIL2, enables the generation of mixed soil–vegetation scenarios. A simulated EO
disturbed soil spectral library (DSSL) was created, significantly expanding the EU LUCAS
cropland soil spectral library. A 1D convolutional neural network (1D-CNN) was trained
on this database to predict Soil Organic Carbon (SOC) content. The results demonstrated
relatively high SOC prediction accuracy compared to previous approaches that rely only on
RTMs and/or machine learning approaches. Incorporating soil moisture content significantly
improved performance over bare soil alone, yielding an R2 of 0.86 and RMSE of 4.05 g/kg,
compared to R2 = 0.71 and RMSE = 6.01 g/kg for bare soil. Adding PV slightly reduced
accuracy (R2 = 0.71, RMSE = 6.31 g/kg), while the inclusion of NPV alongside moisture led
to modest improvement (R2 = 0.74, RMSE = 5.84 g/kg). The most comprehensive model,
incorporating bare soil, SMC, PV, and NPV, achieved a balanced performance (R2 = 0.76,
RMSE = 5.49 g/kg), highlighting the importance of accounting for all surface components
in SOC estimation. While further validation with additional scenarios and SOC prediction
methods is needed, these findings demonstrate, for the first time, using radiative-transfer sim-
ulations of mixed vegetation-soil-water environments, that an EO-DSSL approach enhances
machine learning-based SOC modeling from EO data, improving SOC mapping accuracy. This
innovative framework could significantly improve global-scale SOC predictions, supporting
the design of next-generation EO products for more accurate carbon monitoring.

Keywords: soil spectroscopy; MARMIT; PROSPECT4SAIL2; convolutional neural
network (CNN); hybrid inversion model; LUCAS-SSL data
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1. Introduction
Accurate estimation of soil organic carbon (SOC) content is essential for understanding

ecosystem functions and supporting sustainable land management, especially given the
significant potential of soils to restore large quantities of carbon, thereby contributing to
the mitigation of climate change [1,2].

Soil spectral reflectance also serves as a critical baseline for interpreting vegetation
signals [3]. Yet, its inherent variability, influenced by factors such as moisture and mineral
composition, can significantly impact the accuracy of vegetation properties assessments [4].
Among the key soil properties affecting this reflectance, SOC stands out due to its profound
influence on soil structure, fertility, and microbial activity [5]. Understanding the interplay
between SOC and the spectral signature is further complicated by the presence of both pho-
tosynthetic vegetation (PV), actively absorbing light for growth, and non-photosynthetic
vegetation (NPV), contributing organic matter to the soil [6]. Therefore, accurately dis-
entangling the spectral contributions of soil, PV, and NPV is essential for reliable SOC
estimation and for developing effective strategies for soil health management and carbon
sequestration [7].

The significant spatial variability of soils presents a major challenge to reliable SOC
assessment, as it impacts both SOC distribution and the spectral reflectance of vegetated
surfaces [8]. Two primary approaches exist for estimating SOC using remote sensing data
(Verrelst et al 2015): (1) Statistical methods: These rely on empirical relationships or machine
learning to correlate spectral features with target variables. While effective, they often face
limitations in generalizability across diverse conditions and require extensive ground-truth
data. (2) Physically based methods: These employ radiative transfer models (RTMs) to simu-
late light interactions within vegetation canopies and soil layers, offering a more mechanistic
understanding but often requiring complex parameterization [9]. The effectiveness of RTMs
depends on accurate soil reflectance data to separate canopy and background signals,
improving the retrieval of biophysical parameters [10,11]. Recently, hybrid approaches
combining the physical realism of RTMs with the flexibility and scalability of statistical
techniques have gained traction, demonstrating significant potential for improving predic-
tive accuracy and computational efficiency in large-scale applications [12–15]. Advanced
machine learning algorithms, such as deep neural networks, have been increasingly em-
ployed to accelerate predictions by learning from RTM-generated datasets, enabling rapid
application across global, regional, and local scales. For example, Kattenborn et al. [16] used
convolutional neural networks (CNNs) trained on RTM-generated datasets to estimate
vegetation traits globally, while Zhang et al. [17] applied deep learning models for leaf
biochemical property retrieval at the regional level.

A promising approach for monitoring vegetation and soil properties across scales is
the use of full-range hyperspectral remote sensing data, which provides detailed spectral
information for characterizing plant and soil traits [18,19]. Spaceborne missions such as
EnMAP [20,21] and PRISMA [22] have demonstrated the potential of hyperspectral imag-
ing; however, their limited temporal coverage and tasking constraints restrict their use
for consistent, broad-scale applications. In contrast, upcoming missions like CHIME [23]
and SBG [24], designed for routine global observations, are expected to deliver consis-
tent, high-resolution hyperspectral data. Robust modeling frameworks will be essential
to fully leverage these capabilities [25,26]. Radiative Transfer Models (RTMs) simulate
solar radiation interactions with vegetation and soil surfaces, offering a non-invasive,
cost-effective alternative to field-based assessments. The fine spectral resolution of hyper-
spectral data enables discrimination between bare soil, photosynthetic vegetation (PV),
and non-photosynthetic vegetation (NPV), which is critical for accurate soil organic carbon
(SOC) estimation. Combining VNIR and SWIR bands enhances model performance, with
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SWIR wavelengths being particularly sensitive to SOC [27,28]. Additionally, hyperspectral
imagery supports the separation of PV and NPV components, which is vital for semi-bare
soil modeling and for improving algorithms such as HYSOMA and ENSOMAP [29,30].

Vegetation RTMs, such as PROSAIL [31], SLC [32], SCOPE [33], FLIGHT [34], and
DART [35], are widely used to simulate the interaction between vegetation and remote sens-
ing data. While advanced 3D models like DART and FLIGHT are capable of incorporating
detailed soil and surface parameterizations, they are typically applied in vegetation-focused
contexts and require extensive input data, making their operational use for soil property
retrievals, such as SOC, less common. Moreover, many RTMs still rely on simplified soil
representations or assume homogeneous backgrounds, which limits their ability to capture
spatial variability in SOC, texture, moisture, and vegetation cover. Soil-specific RTMs,
including Hapke-based models [36] and SOILSPECT [31], have improved soil reflectance
modeling, while others like BSM [37] and Kubelka–Munk-based models [38] enhance mois-
ture estimation. The MARMIT model [39] advances the simulation of soil moisture for
dry, measured soils and is further extended by accounting for particle–water interactions,
improving its applicability under varying soil moisture conditions. Nonetheless, most
soil RTMs have been validated under controlled conditions and focus on single-variable
estimation, such as moisture. A key challenge remains their limited capacity to simulate the
spectral complexity of mixed pixels, where bare soil, PV, and NPV coexist, thus constrain-
ing accurate SOC retrieval. Addressing this limitation is critical for leveraging upcoming
spaceborne hyperspectral missions for global soil monitoring.

Therefore, this study aims to analyze how surface disturbances (e.g., soil moisture,
green/dry crop residues) influence soil reflectance and SOC prediction accuracy. Hence,
the study is based on the following hypothesis: H1: Incorporating surface disturbances
(moisture, residues) improves SOC prediction accuracy. H0 (baseline): Models calibrated
only on dry (without disturbances) yield inferior predictions.

2. Materials and Methods
2.1. Overview of the Marmit–Leaf–Canopy Model Structure

The Marmit–Leaf–Canopy (MLC) RTM is designed to construct the Disturbed Soil
Spectral Library (DSSL), an EO-simulated soil spectral database incorporating SMC, PV,
and NPV coverage. It consists of three key sub-modules: MARMIT for soil moisture,
PROSPECT4 for leaf optics, and 4SAIL2 for canopy architecture, collectively forming the
PRO4SAIL2 module within the SLC model [32], as shown in Figure 1. These modules
are integrated with the Hapke-based soil BRDF model to simulate hyperspectral images
and retrieve plant biophysical and biochemical variables, with an emphasis on the role
of soil background in enhancing canopy retrieval accuracy [40]. The original Hapke
model, validated with GER-SIRIS spectrometer measurements, is replaced by the multilayer
radiative transfer model (MARMIT) to more accurately simulate the effects of SMC on
soil reflectance due to limitations in its uniform surface assumption [39]. MARMIT is
parameterized using spectral data from a wetting experiment conducted on different
agricultural soils in Europe. The PROSPECT4 and 4SAIL2 modules generate top-of-canopy
reflectance spectra between 400 and 2500 nm for vegetation with green, brown, or mixed
leaf types under varying soil conditions. The vegetation types are defined separately,
with LAI quantified independently for green and brown vegetation (Table 1). A total of
822,572 DSSL simulations are generated by varying SMC, PV, and NPV. These simulations
are categorized into four scenarios for evaluating SOC prediction, including the measured
bare soil (Table 2). Descriptions of each module are provided below.
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Figure 1. Conceptual framework of the developed MLC model for simulating soil and canopy
reflectance under varying conditions.

2.1.1. MARMIT Model

The Multilayer Radiative Transfer model (MARMIT) of the soil reflectance model (origi-
nal version) is well-suited for this study due to its simplicity, efficiency, and low computational
demand. This ‘equivalent slab’ radiative transfer model, rooted in Ångström [41]’s ‘wet soil
darkening’ concept, was refined to include spectral reflectance and water’s refractive in-
dex [42]. However, this model assumption of negligible water absorption in the visible and
near-infrared (VIS-NIR) spectral regions limited its applicability to the shortwave infrared
(SWIR), where water exhibits strong absorption bands. Bach and Mauser addressed this
limitation in 1994 by introducing water absorption into the reflectance model using the
Beer–Lambert law [43].

The MARMIT model represents a further advancement, explicitly accounting for light
transmittance across the water–air interface. The model calculates total wet soil reflectance
(Rws) as a geometric series of multiple reflections and refractions at the surface:

Rws = r12 + t12 · r21 · Tw · Rd
/
(1 − r21 · Rd · Tw), (1)

where r12 and t12 are Fresnel reflection and transmission coefficients at the air–water
interface, r21 and t21 are the corresponding coefficients at the water–air interface, Rd is dry
soil reflectance, and Tw is water transmittance calculated using the Beer–Lambert law:

Tw = exp(−αB · L), (2)

where αB is the water absorption coefficient and L is the equivalent water layer thickness.
The model employs average Fresnel coefficients for unpolarized light.
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To simulate mixed wet and dry soil conditions, MARMIT introduces an efficiency
parameter (ε) representing the wet soil fraction. The resulting soil surface reflectance
(Rmod) is a linear combination of wet and dry soil reflectances:

Rmod = ε · Rws + (1 − ε) · Rd (3)

2.1.2. PROSPECT4 Model

The Leaf Optical Properties Spectra model (PROSPECT-4), an extension of the original
PROSPECT model [44], simulates leaf optical properties [45]. The PROSPECT model was
initially developed based on the assumption that leaves behave as homogeneous plates with
multiple scattering and absorption processes, primarily accounting for chlorophyll content
and leaf structure. PROSPECT-4 improves upon this by introducing water content (Cw)
as an additional input variable, enhancing its capability to analyze water stress and plant
physiology. The PROSPECT-4 model simulates directional-hemispherical reflectance and
transmittance for a single leaf, with input variables including the leaf structure parameter
(N) and leaf biochemical constituents such as leaf chlorophyll content (LCC), leaf dry matter
content (Cm), leaf water content (Cw), and leaf senescent matter content (Cs). PROSPECT-4
further differs by combining chlorophyll and carotenoid variables and incorporating brown
leaves to represent leaf senescence, enabling the simulation of reflectance for both green
and brown pigments. This version, integrated into the MLC model, is widely used to
simulate leaf reflectance under various physiological conditions.

2.1.3. 4SAIL2 Model

Building upon the Scattering by Arbitrary Inclined Leaves (SAIL) canopy model [46],
4SAIL2 simulates canopy reflectance (400–2500 nm) for various sun–target–sensor geome-
tries by incorporating leaf properties from PROSPECT4 [32]. Unlike its predecessor, it
employs a 4-stream method for improved accuracy, making it suitable for diverse canopies
like row crops and forests. 4SAIL2 introduces a double-layer model for green and brown
leaves to improve reflectance simulations for heterogeneous canopies. Although the struc-
tural properties are assumed to be identical, their LAIs can differ, with the leaf angle
distribution (LIDF) described by parameters a and b. The green and brown leaf LAI divi-
sion is controlled by the fraction of brown leaves (fB) and the dissociation factor (D), where
D = 1 indicates complete separation and D = 0 indicates a homogeneous mixture. The tree
shape factor (Zeta) is based on crown diameter to height ratio, with crop height and crown
diameter values.

The vertical projection of vegetation elements (fCover) can be estimated from the SLC
model, using the gap fraction theory and considering LAI, LIDF parameters, and crown
coverage as shown in the equation below:

f Cover = Cv ∗
(

1 − e−k∗LAI
)

, (4)

where k is the extinction coefficient in the vertical direction, and Cv is the vertically projected
crown cover fraction.
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Table 1. Overview of the model input variables of look-up tables (LUTs) used for generating wet soil
and canopy spectra for green and brown.

Variable Unit PV NPV Source of Information

Soil Variables (MARMIT)

Reflectance bare soil (Rb) Unitless LUCAS data Jones et al. [47]
Refractive index of water (nw) Unitless - Bablet et al. [39]
Specific absorption coefficient of water (K) cm−1 - Bablet et al. [39]
Steepness of curve (ψ) Unitless - Bablet et al. [39]
Wet soil surface ratio (ε) Unitless - MARMIT model
Thickness of water layer (L) cm - MARMIT model
Soil moisture content (SMCg) Unitless 0.015, 0.035, 0.07 Prior knowledge

Leaf Variables (PROSPECT-4)

Internal leaf structure (N) Unitless 1.5 Kooistra and Clevers [48]
Leaf chlorophyll content (LCC) µg cm−2 80 0 Prior knowledge
Water content (Cw) cm 0.0317 0.001 Kooistra and Clevers [48]
Dry matter content (Cm) g cm−2 0.005 0.02 Botha et al. [49]
Senescent material (Cs) Unitless 0 1 Wang et al. [50]

Canopy Variables (4SAIL2)

Leaf area index (LAI) m2 m−2 0.05 to 1 Prior knowledge
Leaf inclination distribution (LIDFa/b) Unitless 1 (a), 0 (b) Wang et al. [50]
Hotspot coefficient (hot) m m−1 0.05 Casa and Jones [51]
Vertical crown cover (Cv) Unitless 1 Prior knowledge
Tree shape factor (ζ) Unitless 0.3 0 Abdelbaki et al. [52]
Layer dissociation factor (D) Unitless 1 Prior knowledge
Fraction of brown vegetation ( fb) Unitless 0 1 Prior knowledge
Solar zenith angle (θs) Degree 35 Abdelbaki et al. [52]
Viewing zenith angle (θo) Degree 0 Abdelbaki et al. [52]
Relative azimuth angle (ψ) Degree 0 Abdelbaki et al. [52]

Table 2. Summary of MLC variables, scenarios, and resulting sample sizes.

ID Variables Modeling Sample Size
Scenario 1
Bare soils - 8941
Scenario 2

(Bare Soils + Bare Soils × SMC) SMC: 0.015, 0.035, 0.07 35,764
Scenario 3

(Bare Soils + Bare Soils × SMC × LAI-PV) LAI: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1 393,404

Scenario 4

(Bare Soils + Bare Soils × SMC × LAI-NPV) LAI: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1 393,404

Scenario 5—DSSL
(Bare Soils + Bare Soils × 3SMC + Bare Soils

× 3SMC × 11PV + Bare Soils × 3SMC
× 11NPV)

All previous variables 822,572

2.2. LUCAS Database Description

The Land Use/Land Cover Area Frame Survey (LUCAS) topsoil database is a com-
prehensive resource of soil information across Europe, supporting research in soil science,
geochemistry, biology, and ecology. Freely accessible through the European Soil Data Cen-
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ter (ESDAC), it also informs environmental and agricultural policy decisions [47]. Initiated
between 2009 and 2012, the database covered 23 EU Member States and expanded to all
28 EU regions and areas above 1000 m altitude. The dataset includes 21,859 soil samples
collected to a depth of 20 cm, with 540 points dedicated to soil biodiversity analysis across
croplands, woodlands, shrublands, wetlands, bare land, and artificial land. However,
potential sampling biases may affect the spatial variability representation. Each sample was
analyzed for chemical and physical properties, including soil organic carbon (SOC) content,
quantified via dry combustion at 900 °C, and complemented with spectral measurements
(400–2500 nm, 2 nm resolution).

This research focuses on the 8941 cropland records, representing a wide range of soil
taxonomic classes, horizons, and textures across European countries (Figure 2). The SOC
content of the cropland points averages 17.6 g/kg (median = 14.3 g/kg), ranging from
0.10 g/kg to 519.10 g/kg. This soil spectral library (SSL) of the LUCAS dataset is used as
input and background for the proposed model to simulate SMC, PV, and NPV.

Figure 2. Geographic distribution of soil Samples in the LUCAS Soil Spectral Library.

2.3. Deep Learning Spectral Modeling for SOC Estimation

Following the integration of the MLC model, the hybrid model implementation in-
volved two key steps. First, the MLC-RTM model was employed as a forward model to
simulate reflectance from soil and canopy. Second, the resulting simulated reflectance
data, along with associated SOC values, served as input for the deep learning algorithm.
A convolutional neural network (CNN), a prominent machine learning architecture, is
utilized effectively in the prediction of SOC [53,54].

2.3.1. 1D-CNN Model Architecture

Convolutional neural networks (CNNs) are deep learning models with one or more
convolutional layers. A typical CNN includes an input layer, multiple hidden layers (convo-
lutional, pooling, and fully connected layers), and an output layer. This study uses a CNN
architecture based on [54]. The input layer receives 2100 bands (400–2499 nm, 1 nm intervals)
in a 2D format. Three convolutional blocks, each with increasing filters (32, 64, 128) and
followed by max-pooling, extract features. These features are passed through two fully
connected layers with ReLU activation and a dropout layer to reduce overfitting. The
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output layer contains a single neuron for regression, and the loss function is computed
for training, as shown in Table 3. The model was implemented in MATLAB R2022b on
Windows (GPU) with 64 GB of memory.

Table 3. Description of the CNN network architecture along with the various layers.

Layer Type Filters Kernel Size Width Activation Function

Convolutional + Batch Normalization 32 3 × 1 20 ReLU
Max Pooling – 2 × 1 – –
Convolutional + Batch Normalization 64 3 × 1 20 ReLU
Max Pooling – 2 × 1 – –
Convolutional + Batch Normalization 128 3 × 1 20 ReLU
Max Pooling – 2 × 1 – –
Fully Connected – – 256 ReLU
Fully Connected – – 64 ReLU
Dropout – – 0.2 –

2.3.2. Data Handling and Model Evaluation Metrics

A standard data partitioning and evaluation methodology is used to predict SOC from
simulated DSSL and SSL data (Table 4). The datasets (DSSL and SSL) are classified into
organic and mineral soils using a threshold of 120 g/kg: samples exceeding this value are
considered organic, while the remainder are classified as mineral [55]. For convolutional
neural network (CNN) analysis, we exclude organic soil samples (SOC > 120 g/kg) due to
their limited number, focusing solely on mineral soils for prediction using DSSL (Table 1).
Each mineral soil subset is then randomly split into training (80%), validation (10%),
and testing (10%) sets for robust evaluation. To avoid overfitting and enhance model
performance, 5-fold cross-validation is applied on the combined training and validation
sets. This involves splitting the data into five folds, training on four, and evaluating on
the fifth, repeated five times to create five trained models. Performance is assessed using
the coefficient of determination (R2), root mean square error (RMSE), residual prediction
deviation (RPD), and ratio of performance to inter-quartile range (RPIQ), where higher R2

and RPIQ, and lower RMSE, indicate better performance.

Table 4. Scenarios -based data splitting in CNNs.

Scenarios Number of Samples Training Validation Testing
1—Bare soil-SSL (Baseline)

(A) All measured datasets (organic and mineral soils) 8941 7152 894 894
(B) Mineral soils 8896 7116 890 890
(C) Organic soils 45 - - -

2—Mixed scenario DSSL
(A) All simulated datasets (organic and mineral soils) 822,572 658,057 82,257 82,258

(B) Simulated datasets based on mineral soils 818,432 654,745 81,843 81,844
(C) Simulated datasets based on organic soils 4140 3312 414 414

(D) Bare soil and SMC (mineral soils) 35,764 28,467 3558 3559
(E) Bare soil, SMC, and PV (mineral soils) 393,404 313,139 39,142 39,143

(F) Bare soil, SMC, and NPV (mineral soils) 393,404 313,139 39,142 39,143

3. Results
3.1. Descriptive Statistics of LUCAS Bare and Dry Soil Database

Table 5 summarizes the statistical properties of the dataset. It includes a wide range of
soil attributes, such as SOC content, which varies substantially from 0.1 to 560.2 g/kg. The
high coefficient of variation (CV) observed for variables like OC, CaCO3, and N content
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reflects the considerable variability within the LUCAS dataset, which is collected from
diverse locations across Europe. This variation likely stems from differences in soil types,
land management practices, topography, climate, and land use. Such heterogeneity is
crucial for developing robust and generalizable soil models. The OC statistics exhibit a
high standard deviation, a large CV, and a positively skewed distribution, highlighting
the inherent variability in soil and land characteristics. Although the data are skewed,
no transformation is applied, as preserving this variability is important for augmenting
the representation of mineral and organic matter in the dataset. Figure 3 shows a boxplot
illustrating the distribution of OC normalized to a scale between 0 and 1. The boxplot
displays the interquartile range with the median marked, and red points indicate outliers
beyond 1.5 multiplied the IQR. This histogram illustrates the overall distribution of the
original (unnormalized) values.

Table 5. Statistical analysis of topsoil properties from the LUCAS 2015.

Properties Samples Mean Median Std. Dev. Max Min CV (%) Kurtosis Skewness

Clay (%) 830 25.53 25.00 11.71 45.86 2.00 45.86 2.72 0.38
Sand (%) 830 33.90 31.00 18.47 93.00 2.00 54.47 2.69 0.63
Silt (%) 830 40.55 40.00 11.55 67.00 5.00 28.48 2.76 −0.08
pH 8941 6.86 7.09 1.07 9.63 3.58 15.59 2.12 −0.50
OC (g kg−1) 8941 17.62 14.30 19.15 519.10 0.10 108.63 196.00 10.97
CaCO3 (g kg−1) 8941 84.86 2.00 157.48 976.00 0.00 185.59 7.63 82.21
EC (mS/m) 8941 22.12 17.47 22.95 383.00 0.45 103.71 61.17 6.51
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Figure 3. Boxplots and histograms showing the distribution of selected soil variables from the LUCAS
dataset (organic carbon), normalized to a 0–1 scale. The boxplots display the interquartile range (IQR)
with the median marked by a line. Points represent outliers beyond 1.5 × IQR from the quartiles.

3.2. Simulation of MLC Model

Figure 4 illustrates the influence of varying soil organic carbon (SOC) content on soil
reflectance across the 400–2500 nm spectral range. In panel (a), spectral reflectance curves
corresponding to four different SOC levels (2.1, 4, 6.6, and 8.8%) reveal that while the general
shape of the spectra remains consistent, subtle variations are evident with increasing SOC.
Notably, the spectrum for the lowest SOC level (2.1%) exhibits a slight upward convexity
near 800 nm, likely due to the reduced organic matter not fully masking the underlying
mineral features. In the visible region (400–700 nm), the reflectance differences between
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the samples are more pronounced at lower SOC levels, while the NIR and SWIR regions
(700–2500 nm) show greater divergence with increasing SOC content, indicating enhanced
absorption by organic matter. Prominent absorption features near 1400 nm and 1900 nm
are attributed to water-related vibrational overtones, whereas the dip around 2200 nm is
associated with clay minerals, particularly kaolinite. Focusing on a specific soil type with
2.1% SOC (Figure 4b), the full spectral profile highlights regions known to be sensitive
to organic carbon, marked as shaded areas. The bands around 600–780 nm, 1400 nm,
1900 nm, and 2200 nm correspond to molecular vibrations of water, organic functional
groups (such as C–H and C=O), and mineral-related absorptions. These spectral features
are critical for accurate SOC prediction in hyperspectral analysis. Figure 4(b.2) reveals
that as the leaf area index (LAI) increases, the simulated photosynthetic vegetation (PV)
spectra over bare soil type (1) exhibit enhanced reflectance in the NIR region (750–1100 nm),
and reduced reflectance in the visible (400–750 nm) and SWIR (1100–2500 nm) regions—
characteristic of healthy canopy growth. Conversely, for non-photosynthetic vegetation
(NPV) in Figure 4(b.3), increasing LAI values lead to a general decrease in canopy reflectance
across the full wavelength range, indicating higher biomass cover and absorption.

Figure 4. Impact of organic carbon content, soil moisture, and canopy biophysical properties on soil
and canopy reflectance. Top row: (a) presents four representative soil spectra, demonstrating the
variation in soil types under different organic carbon (OC) concentrations. (b) Shows a selected soil
spectrum with a high OC level (8.80%), where the shaded region indicates OC-sensitive wavelengths.
Bottom row: Building on the soil type displayed in (b), plot (b.1) illustrates the change in soil
reflectance with varying SMC. Plots (b.2,b.3) depict simulated canopy reflectance as a function of
increasing green and brown LAI, respectively.
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3.3. Model Application
3.3.1. SOC Prediction with Various Associated SMC-LAI PV and NPV

To assess the model’s generalizability across green and non-green vegetation, the
DSSL pooled database is randomly split into 80% training and 20% validation, ensuring
reproducibility with a fixed random seed. A separate dataset of PV and NPV-LAI with
SMC is used for testing. For PV, predictive accuracy improves as PV-LAI and SMC decrease,
achieving optimal accuracy (R2 = 0.8, RMSE = 4.93 (g/kg)) (Figure 5a,b). In NPV conditions,
SOC predictions remain more stable, with consistently high R2 and low RMSE, peaking at
R2 = 0.81 and RMSE = 4.59 (g/kg) (Figure 5c,d). Even at low NPV-LAI, R2 remains high,
indicating a stronger SOC correlation than PV. Under arid conditions, both PV and NPV
scenarios show reduced accuracy with higher PV-LAI, highlighting the model’s sensitivity
to vegetation and moisture variations.
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Figure 5. Performance of CNN SOC prediction models represented as heat maps for different mixed
scenarios: (a,b) dry and wet soils-PV, and (c,d) dry and wet soils-NPV. Note: PV and NPV content are
shown in terms of green and brown LAI values and model performance results are shown in terms of
R2 (top) and RMSE (bottom).

3.3.2. SOC Prediction with Mineral and Organic Soil Data

Figure 6 compares CNN-based SOC prediction under two conditions: bare soil-SSL
(baseline) and DSS data, highlighting improved accuracy with the DSSL dataset. The
DSSL dataset is split into training (80%), validation (10%), and testing (10%). In the
bare soil scenario (Figure 6(a.1,b.1)), the model performs worse than with DSSL data
(Figure 6(a.2,b.2)), as most bare soil samples correspond to mineral SOC rather than organic
SOC. Consequently, SOC predictions for mineral soils show the highest accuracy, with
superior R2, lower RMSE, and higher RPD. In contrast, DSSL results show organic SOC (c.2)
achieving the highest accuracy (R2 = 0.87, RMSE = 36.62 g/kg), followed by mineral SOC
(b.2) (R2 = 0.87, RMSE = 25.6 g/kg), though organic soil samples are limited. Scatterplots
confirm this trend, showing better alignment along the 1:1 line in DSSL-based predictions.
These findings underscore the importance of diverse spectral data in improving SOC
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prediction, particularly for mineral SOC, while bare soil conditions limit accuracy due to
reduced spectral information.
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Figure 6. Performance of CNN SOC prediction based on LUCAS (1) and the entire DSSL (2)
data: (a.1,a.2) without splitting mineral and organic SOC, (b.1,b.2) mineral SOC, in addition
(c.2) for organic SOC using DSSL dataset. However, Figure (c.1) not shown (N/a) due to too
few points of LUCAS data.

3.3.3. SOC Prediction for Mixed Dry/Wet Soils and Separated PV or NPV Scenarios

Figure 7 illustrates the model’s SOC prediction accuracy. Trained with DSSL and
evaluated on a scenario of PV, the model achieves R2 = 0.64, RMSE = 8.14 (g/kg), and
RPD = 1.80. Performance improves in scenario of NPV, with R2 = 0.72, RMSE = 5.96 (g/kg), and
RPD = 1.90 (Figure 7b). Both datasets show consistent underestimation, more pronounced
for green vegetation (Figure 7a).

(a) (b)

Figure 7. Trained CNN Model Performance: (a) Scenario 2 (Mixed dry/wet soil, PV); (b) Scenario 3
(Mixed dry/wet soil, NPV).

For retraining, Figure 8 compares observed and predicted SOC values under scenarios
2 and 3. Both show strong performance, with R values of 0.93 and 0.92, R2 of 0.86 and 0.85,
low RMSE (4.35 and 0.47 (g/kg)), and favorable RPD (2.257 and 2.50) and RPIQ (2.302 and
2.24) for green and non-green vegetation, respectively. A paired t-test found no significant
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difference between datasets. However, underestimation is stronger for green vegetation
(Figure 8a), while non-green vegetation predictions (Figure 8b) align more closely with
the identity line, indicating better predictive accuracy. The NPV histogram (Figure 8b,
3509 data points) shows a gradual decline and broader predicted value distribution, cap-
turing greater variability. In contrast, the PV histogram (Figure 8a, 2992 data points) has a
sharp peak at lower predicted values (10–20), indicating a more constrained range.

(a) (b)

Figure 8. Retrained CNN Model Performance: (a) Scenario 2 (Mixed dry/wet soil, PV); (b) Scenario 3
(Mixed dry/wet soil, NPV).

3.3.4. The Impact of Mixed Scenarios on the Accuracy of SOC Prediction

The impact of different scenarios on SOC prediction accuracy is evaluated, as shown in
Table 6. Without vegetation effects, the model performs moderately well (R2 = 0.71, RPIQ = 1.51),
but SOC predictions are consistently overestimated (RMSE = 6.01, bias = 0.5). Incorporating
soil moisture improves accuracy (R2 = 0.86, RPIQ = 2.44, RMSE = 4.05 (g/kg)) with min-
imal bias (0.05), emphasizing its importance. Vegetation type also influences accuracy,
with NPV yielding better results (R2 = 0.74, RPIQ = 1.71, RMSE = 5.84 (g/kg)) than
PV (R2 = 0.71, RPIQ = 1.58, RMSE = 6.31 (g/kg)). While adding NPV reduces overes-
timation, it still introduces more bias than “bare soil + moisture”. Including all factors
(moisture, green, and non-green vegetation) minimizes bias (0.45) while maintaining strong
performance (R2 = 0.76, RPIQ = 1.82, RMSE = 5.49 (g/kg)).

Table 6. Overview on the impact of different scenario variations on the accuracy of SOC predictions.

Scenarios
SOC Prediction Metrics

R R2 RMSE RPD RPIQ Bias

1—Bare soil 0.84 0.71 6.01 1.81 1.51 0.5
2—Bare soil and moisture effects 0.93 0.86 4.05 2.69 2.44 0.05
3—Bare soil, moisture effects, and PV 0.85 0.71 6.31 1.77 1.58 1.27
4—Bare soil, moisture effects, and NPV 0.87 0.74 5.84 1.91 1.71 0.40
5—DSSL:Bare soil, moisture effects, PV, and NPV 0.87 0.76 5.49 2.03 1.82 0.45

Note: This table summarizes the impact of various scenario variations on SOC prediction accuracy. Metrics
include R (correlation coefficient), R2 (coefficient of determination), RMSE (root mean squared error (g/kg)),
RPD (residual prediction deviation), RPIQ (residual prediction interquartile range), and bias. Highlighted values
indicate improved SOC predictions.
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4. Discussion
4.1. RTM-Based Disturbed Soil Spectral Library (DSSL)

This research introduces MLC, a novel RTM framework for improving SOC prediction
from Earth Observation data by considering surface disturbances (SMC, PV, and NPV). Tra-
ditional vegetation-oriented RTMs (e.g., PROSAIL, SLC, SCOPE, SPART) oversimplify soil
reflectance [44,56–58], while soil-specific RTMs (e.g., MARMIT, SOILSPECT, KM, SMART)
neglect vegetation [31,39,59,60]. MLC addresses this limitation by combining MARMIT
with PRO4SAIL2 to simulate diverse soil types from the LUCAS laboratory spectra, cre-
ating more realistic landscape scenarios for Earth Observation applications. Including
surface disturbances in the SOC model calibration improves accuracy using a hybrid CNN-
based retrieval approach. Training a 1D-CNN on simulated mixed spectra from DSSL
achieved superior accuracy (R2 = 0.76, RMSE = 5.49 (g/kg)) over [50], which used SCOPE
with LSTMs (R2 = 0.71, RMSE = 10.60 (g/kg)), highlighting the role of vegetation and
soil moisture. Previous studies explored inversion methods, including hybrid ML-based
approaches. For instance, Ref. [61] used SVR and PLSR for SOC prediction (R2 = 0.55, 0.69;
RMSE = 4.42, 3.68 (g/kg)), while Wu et al. [60,62] applied a modified KM-based RTM with
ML retrieval (R2 = 0.68, RMSE = 3.72 (g/kg)). Yuan et al. [63] estimated SOM using spectral
indices (R2 = 0.73, RMSE = 4.23 (g/kg)), and Ou et al. [64] used a sensitive band inversion
model (R2 = 0.42, RMSE = 5.02 (g/kg)) (Table 7). However, these studies often overlooked
soil–vegetation–atmosphere interactions, a gap MLC aims to bridge.

Table 7. Summary of predicted SOC accuracy using RTM-based approaches.

Method Input Data Accuracy Metrics Reference

- MLC with CNN (hybrid model) Mixed scenarios based on LUCAS R2 = 0.87, RMSE = 5.49 Present study
- SCOPE with LSTM (hybrid model) Mixed scenarios based on USDA-SSL R2 = 0.71, RMSE = 10.60 Wang et al. [50]
- Inversion of KM theory Local soil spectra (no disturbance) R2 = 0.86, RMSEP = 0.18% Yuan et al. [65]
- KM theory with wavelength selection Local soil spectra (no disturbance) R2 = 0.86, RMSEP = 0.234% Yuan et al. [63]
- SESMRT model with SVR
(hybrid model) ICRAF–ISRIC–SSL datasets R2 = 0.66, RMSE = 3.923 (GF5); R2 = 0.69,

RMSE = 3.54 (HyMap)
Wu et al. [62]

4.2. Disturbing Factors in SOC Estimation

In addition to these findings, Figure 7 demonstrates improved SOC prediction accuracy
under wet conditions, particularly when wet spectra are included in the calibration model,
in agreement with previous studies and where vegetation influence is minimal, consistent
with prior studies [66,67]. Weak soil moisture data reduced prediction error to 4.05 (g/kg),
aligning with [68], who reported accuracy gains within the 25–48% SMC range (Table 6).
However, SOC accuracy stabilized around 0.035 m3/m3 and declined beyond 0.25 m3/m3 [50].
Our refined SMC categories (very low: 0.015, low: 0.035, moderate: 0.07 m3/m3) improve
accuracy over [50].

Beyond SMC, vegetation type also influenced SOC estimation. Models incorporating
PV, NPV, and SMC outperformed PV-LAI or NPV-LAI models by 31% (Figure 7). NPV-LAI
performed better (R2 = 0.69–0.81, RMSE = 4.83–6.02 (g/kg)) than PV-LAI (R2 = 0.42–0.80,
RMSE = 5–8.5 (g/kg)) [50]. However, incorporating all factors did not further enhance
accuracy, likely due to dataset size and variability, crucial for CNN model calibration.
While adding PV, NPV-LAI, and SMC strengthened SOC prediction, the accuracy remained
comparable to using only dry and wet soils with PV-LAI or NPV-LAI (scenarios 3 and 4).
This suggests CNN performance depends on dataset size and diversity, with training data
quality and reliability being critical for effective calibration and validation.
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4.3. SOC Estimation Using CNN for Soil Spectral Library (SSL)

By applying the 1D-CNN model on bare soil of LUCAS data, the results indicate
that separate modeling of mineral and organic soils yields superior SOC predictions over
a single model for the combined dataset (Figure 6). The best performance for mineral
soils achieved an RMSE of 5.49 (g/kg), improving by up to 1.56%, aligning with previous
studies [50,69]. Despite these improvements, SOC modeling on the combined dataset
also demonstrated acceptable accuracy, with an R2 of 0.85 and an RMSE of 7.05 g/kg.
This suggests that some organic soils remain mixed with mineral soils in the topsoil layer,
possibly due to agricultural practices like deep ploughing [70]. Recent studies highlight
the superior precision of deep neural networks (DNNs) for SOC prediction, surpassing
other machine learning techniques [50,53,54,71]. In particular, Saberioon et al. [54] reported
impressive predictive metrics (R2 = 0.73, RMSE = 5.43%, RPD = 3.67) after soil spectral
data preprocessing. Aligning with these observations, our findings exhibited comparable
accuracy, with an R2 of 0.71, RMSE of 6.01 (g/kg), and RPD of 1.81.

4.4. Limitations and Future Prospects of SOC Estimation

While the proposed MLC model shows promising results, further research is needed to
better understand the interplay between soil properties and spectral characteristics. Factors
such as surface roughness, soil texture, particle and pore size distributions, mineralogical
composition (e.g., clay content, iron oxides, carbonates), and plant nutrient levels are criti-
cal for accurate soil characterization and require further investigation to improve model
reliability [72]. These properties significantly influence spectral responses and are essential
inputs for process-based models that simulate soil carbon dynamics under various carbon
farming practices, including reduced tillage, cover cropping, and organic amendments.
To support large-scale assessment of these practices, the current study employs original
(unprocessed) SSL spectra within an MLC model grounded in an RTM framework. This ap-
proach simulates real-world variability in spectral measurements and enhances the model’s
generalization across diverse soil conditions. To improve computational efficiency and
model interpretability, future work will incorporate feature band selection via global sensi-
tivity analysis to identify the most informative spectral bands. Additionally, active learning
strategies may be employed to optimize training with large hyperspectral datasets [73].
Beyond the current architecture, future model development will consider more advanced
and hybrid machine learning approaches, such as recurrent neural networks (RNNs), graph
neural networks (GNNs), and CNN-ensemble models (e.g., combining CNNs with random
forests), to better capture spatiotemporal soil–vegetation interactions and potentially im-
prove prediction accuracy and model adaptability. Moreover, an evaluation of the model’s
real-time processing capabilities will be important for developing lightweight, deployable
solutions suited for operational EO-based soil monitoring. These enhancements will be
addressed in future research or incorporated into the broader methodological roadmap
to ensure scalability, robustness, and practical applicability. Although in situ validation
remains limited, the current MLC model demonstrates strong potential for advancing Earth
observation (EO)-based soil monitoring by upscaling soil spectral libraries and enabling
large-scale SOC estimation, critical for carbon sequestration tracking and sustainable land
management assessment.

5. Conclusions
The MARMIT–Leaf–Canopy (MLC) model, integrating MARMIT and PRO4SAIL2, de-

livers a novel Disturbed Soil Spectral Library (DSSL) that comprehensively accounts for key
surface disturbances: soil moisture content (SMC), photosynthetic vegetation (PV), and non-
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photosynthetic vegetation (NPV). This study conclusively demonstrates that incorporating
these factors dramatically improves the accuracy of soil organic carbon (SOC) prediction.

Our findings validate the hypothesis that a holistic approach, encompassing SMC, PV,
and NPV (scenario 5), significantly enhances SOC prediction. While including SMC alone
(scenario 1) already outperformed the bare soil (SSL) model (scenario 2), the presence of
vegetation initially reduced accuracy, particularly for PV (scenario 3). However, crucially,
the model showed improved accuracy when NPV was combined with bare soil and soil
moisture (scenario 4). This adaptability confirms the MLC model’s capacity to accurately
represent real-world conditions, providing a strong basis for advanced Earth Observation
SOC retrieval and robust soil property mapping.

The MLC model’s hybrid methodology offers substantial promise for remote sensing
applications, especially for upcoming satellite missions. Its proven ability to precisely map
SOC in diverse and challenging surface environments is vital for informing critical policies,
such as the EU soil monitoring law, thereby advancing sustainable land management,
mitigating climate change, and strengthening global food security.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronym Definition
RTM Radiative Transfer Model
SOC Soil Organic Carbon
CNN Convolutional Neural Network
EnMAP Environmental Mapping and Analysis Program
PRISMA PRecursore IperSpettrale della Missione Applicativa
GaoFen-5 High-Resolution Earth Observation System

CHIME
Copernicus Hyperspectral Imaging Mission for
the Environment

SBG Surface Biology and Geology
VIS Visible Spectrum Range
NIR Near-Infrared Spectrum Range
VNIR Visible and Near-Infrared Spectrum Ranges
PV Photosynthetic Vegetation
NPV Non-Photosynthetic Vegetation
PROSPECT Leaf Optical Properties SPECTra Model
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SAIL Scattering by Arbitrarily Inclined Leaves
PROSAIL Combined Model: PROSPECT and 4SAIL2
SLC Soil–Leaf–Canopy
INFORM INvertible FOrest Reflectance Model
SCOPE Soil Canopy Observation, Photochemistry, and Energy Fluxes
DART Discrete Anisotropic Radiative Transfer
PRO4SAIL2 Combined Model: PROSPECT and 4SAIL2
EU-LUCAS European Union Land Use and Cover Area Frame Survey
SOILSPECT Soil Property Estimation Using Spectral Data
MARMIT Multilayer Radiative Transfer Model of Soil Reflectance
MLC Marmit–Leaf–Canopy Model
DSSL Disturbed Soil Spectral Library
LSTM Long Short-Term Memory Model
SVR Support Vector Regression
KM Kubelka–Munk Model
SESMRT Semi-Empirical Soil Radiative Transfer Model

Leaf or Canopy Parameters (g, b)
g = green (photosynthetic) vegetation;
b = brown (non-photosynthetic) vegetation
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