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On the Realization of Impulse Invariant Low-Rank
Volterra Kernels

Phillip M. S. Burt

Abstract—Volterra models can accurately model numerous non-
linear systems of practical interest, but often at an unacceptable
computational cost. If the Volterra kernels of a system have low-
rank structure (like, e.g., kernels of bilinear systems), this major
drawback can in principle be mitigated. Yet, when one seeks an
exact discrete-time model of a mixed-signal chain involving that
system, the existing formula that generalizes the impulse invariance
principle to Volterra kernels yields discrete-time kernels that do
not share the same low rank. At first sight this would seem to
seriously complicate the otherwise simple discrete-time realization
of low-rank kernels. We show here that this not the case. By defining
a cascade operator, the structure of generalized impulse invariance
can be unveiled, leading to a realization without an inordinate
increase in computational complexity. Finally, we give a numerical
example involving a physical system that shows the relevance of
our proposal.

Index Terms—Nonlinear systems, bilinear systems, Volterra
model, impulse invariance.

I. INTRODUCTION

OLTERRA models are a popular choice for the modeling
V of non-linear systems of various kinds [1]-[7]. In particu-
lar, the most commonly used variant in digital signal processing
applications, known as a Volterra filter (VF), is essentially a feed-
forward polynomial model whose output is linear in the model
parameters—a desirable feature for system identification—and
whose wide applicability has been established by Boyd and
Chua in the eighties [8]. Unfortunately, though, the amount of
parameters of a VF grows quite rapidly with the system memory
length and the order (nonlinearity degree) of the model, whose
practical realization thus often becomes too costly.

Motivated by this drawback, a whole line of research has
been devoted to devising more practical alternatives which
trade some generality of the VF—and often also the linear-
ity in the parameters—by a lower parametric complexity [9]—
[18]. One of the most effective and elegant proposals is based
on the simple assumption that the pth-order Volterra kernel
hp(na,...,n,) (high-order analogues of the impulse response,
see Section III for a definition) approximately decomposes as
a sum of a few separable functions, that is, hy,(n1,...,n,) ~

Zf:”l hg)(nl) B )(np) with a sufficiently small R,,. This
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Fig. 1.  Signal chain starting in discrete-time, passing through continuous-time
and then returning to discrete-time.

amounts to a low-rank (specifically, rank-R,) approximation
of the kernels, viewed as tensors [13]. Besides the potential
dramatic reduction in computational complexity, one major
advantage of this approach is its straightforward realization by
a combination of linear blocks and instantaneous nonlinearities
or multipliers.

However, in applications where an exact discrete-time mod-
eling of a mixed-signal chain consisting of discrete-time and
continuous-time parts is desirable (for instance, in the cancella-
tion of signals originating from discrete-time, such as in acoustic
echo cancellation or nonlinearity mitigation [10], [19]), the
low-rank realization is not as simple anymore. The reason is that
the well-known impulse invariance [20] between discrete-time
and continuous-time linear time-invariant (LTI) systems does
not generalize “cleanly” to nonlinear systems, but has to be
somewhat modified so as to incorporate a factor which depends
on the pattern of repeated kernel arguments, as pointed out
in [21], [22]. We show that, as a consequence, the computational
cost of a naive realization of generalized impulse invariance,
while still much smaller than that of a VF realization (whose
cost is not affected by generalized invariance), would increase
by as much as 2P~ ! times. We then deduce a much more efficient
realization, preserving the great attractiveness of the low-rank
approach.

To the best of our knowledge this problem has not been
previously addressed. Apart from its practical relevance, as
discussed above, the result we present is of interest in itself
as an addition to the theory of signal processing.

II. IMPULSE INVARIANCE OF LTI SYSTEMS

A continuous-time LTI system bandlimited to 1/2 7 Hz, with
impulse response h.(t), can be implemented [20, p. 173] with
a mixed-signal chain containing the impulse invariant discrete-
time system with impulse response’

h(n) = he(nT). (1)

Impulse invariance also comes into question when modeling
the mixed-signal chain depicted in Fig. 1, which is of greater

!Hereafter, the subscript c is used to distinguish a continuous-time signal from
its discrete-time version. For convenience, we have dropped the factor 7" from
the definition h(n) = Th.(nT) of impulse invariance of [20].
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concern here and is now described. From the input sequence
u(n), an impulsive D/A converter’ with sampling period T
provides
uc(t) = >, 6(t—kT)u(k). (2)
k=—oc0

After a reconstruction filter h,.(t), an application-specific
system h,(t), and an anti-aliasing filter h,,(t), all LTI, it follows
from (2) that

Ye(t) = i > he(t = KT)u(k), 3)
where h.(t) is the overall impulse response given by the convo-
lutions h,.(t) * hy(t) * he(t). Finally, an A/D sampler gives the
output y.(nT). It follows that a system with impulse response
h(n) = h(nT), input u(n) and output y(n) = >3~ h(n —
k)u(k) is an exact discrete-time model of the signal chain® in
the sense that

y(n) = ye(nT),
as desired, for instance, in acoustic echo cancellation [23].

Remark The sampling of y.(¢) in (4) and of h.(t) in (1) must
be consistent at discontinuities. For instance, let h.(t) = e~
if t >0 and h.(t) =0 if ¢t < 0. From (3) then, y.(¢) is dis-
continuous at t = nT if u(n) # 0. Assuming the A/D sampler
always provides the right-side limit y.(nT'}) (respectively, the
left-side limit y.(nT-) or [yc.(nT%) + y.(nT-)]/2), it follows
from (3) that, to achieve (4), h(0) must be given by h.(04) =1
(respectively, h.(0_) = 0 or [h.(0)+ + h.(0-)]/2 = 1/2).

It should be noted that when h.(t) represents an actual
physical system, the impulse response h(n) = h.(nT') will, in
general, have infinite duration. As long, though, as the system
h.(t) is rational, the exact realization (with a finite number of
operations) of a discrete-time system with impulse response
h(n) is straightforward [24].

“)

III. GENERALIZATION OF IMPULSE INVARIANCE TO
VOLTERRA KERNELS

Let the analog portion of the chain in Fig. 1 be now nonlinear.
(This can arise, for instance, from a nonlinear loudspeaker
in acoustic echo cancellation [19].) We assume then that its
input/output relation is given by the (causal) Volterra series
Ye(t) = )21 Yep(t), with homogeneous outputs given by

[e¢] 00 p
ym,(t):/.../ Be(rty oy 7p) [ [ et — 7)dbry ... dr,
0 0 i=1

&)
where 7; = 30, 7 and h. (71, ..., 7p) is a regular Volterra
kernel of order p [21, p. 15], continuous for 7q,...,7, > 0.

Although the existence of the realization problem addressed in
this paper is independent of employing conventional* or regular
Volterra kernels, the latter are more convenient for the required
algebraic manipulation.

To provide a discrete-time model of the signal chain, let n; =
Z?:i n;, where n; always represents discrete time, and, for

25(t) is the Dirac delta function. The assumption of ideal impulsive excitation
is not restrictive, since the reconstruction filter h,.(t) can absorb the rectangular
impulse response of a real-world zero-order hold D/A.

3In this case, is not required that system h..(t) be bandlimited.

4With a conventional kernel h(cc’(;w)(ﬁ JT2 ey Tp) = hgfg)(n —To, .,
Tp—1 — Tp, Tp), (5) assumes the more familiar form with 7; instead of 7;.
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Fig. 2. Cascade realization of a separable kernel, p = 3, R3 = 1. Double

arrows denote vector-valued signals.

some causal discrete-time kernel v, : ZP — R let

o0 oo P

yp(n) = Z e Z vp(n1, ..., np) Hu(n —n;), (6)
np,=0 n1=0 =1

withu(n) and u.(t) still being related by (2). It follows from [22]

that achieving y,(n) = y.,(nT), p > 1, assuming right-side

sampling at discontinuities, requires generalizing (1) as

hep(mi T, ...,npT)

Vp(Ny, ..o ny) = 7
p(ns--mp) mil.. . myg! ’ 7

where ¢ is the number of groups of consecutive null indices
among nq,...,np—1 and my — 1,...,my — 1 are the numbers

of indices in each group.’ For instance, if p="5, ny =ny=0 #
ng and ny =0, then ¢g=2, m; =3 and my =2.

This generalized impulse invariance results from the impul-
sive terms of the integrand in (5) and the possible discontinuity
of the kernel on the border of the domain 7q,...,7,-1 > 0.
In the interior of this domain we retrieve a direct extension of
the invariance condition (1), that is, we have v,(n1,...,n,) =
hep(miT,...,n,T)forng,...,ny_1 > 0. For more details on
the steps leading to (7), the reader is referred to [22].

Similarly to the discretized h(n) of (1), (7) gives in general
an infinite duration v, (n1, ..., n,). This raises the issue of its
realization with a finite number of operations, not addressed
in [22]. We do this now, for the class of low-rank kernels.

IV. REALIZATION OF LOW-RANK KERNELS

We consider systems with low-rank Volterra kernels
RP
hep(T,oesmp) = > Hﬁf’)(Tp)...HS}.(n), (8)
r=1

for any set of (vector- and) matrix-valued functions Hgi(n) of
compatible dimensions,® and a given IR, € N*, termed the rank
of he . Of particular practical interest are bilinear systems [21],
[25], further discussed in Section V, for which R, = 1. We
consider I?, = 1 from here onward, and thus look into the
realization of one of the parallel branches of (8).

A. Cascade Structure and Operator

From (8) and (5) it follows directly that low-rank kernels
can be realized quite simply by a cascade of linear blocks and
multipliers. This is depicted in Fig. 2 (p = 3, R3 = 1), where

z1(t) = [ HY (T)ue(t — 7)dr]uc(t)
= [Hgl) * ue(t) ue(t) = H((:‘l) o uc(t),

SA related result is stated without proof in [21, p. 254]. For simplicity, the
dependence of m; on ni,...,np_1 is omitted. If y,(n) =y p(nT-) or
Yp(n) = [Ye,p(nT-) 4+ ye,p(nT4)]/2 at discontinuities, the result is similar.

©For uniformity of notation, HC{’ o (resp., Hé}z) is denoted as a matrix, though
being a row (resp., column) vector. If R, = 1, we drop subscripts 7.
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25(t) = [HP x 2 ()] ue(t) = HP o 2(1),

Yes(t) = H® s zy(t).

Here, * stands for convolution and o stands for the cascade
operator defined, given wu.(t), by hoz(t) £ [h* x(t)uc(t),
which is linear in A and in z. Also, with it we can write

yes(t) = HY « {HP o [HY o u,(t)] }.

Hence, the realization can be expressed as a sequential calcu-
lation with p — 1 applications of the cascade operator, followed
by a convolution at the final stage.

B. Parallel-Cascade Realization of Impulse Invariance

Consider the sampled kernel factors H® (n;) = Hgi)(niT).
We can readily verify that, assuming the input has the form (2),
the cascade structure has this very particular property:

Property Replacing H\"” (r;) with H® (n;) and u.(t) with
u(n) in the cascade structure that realizes hc p(71,...,7,) =
HY (7,)...H" (1), gives a realization of’

op(n1,...,np) = HP (n,) .. . HY (ny). )

This discrete-time kernel, however, is not impulse invariant in
relation to A (71, . .., 7p), since the term 1/m;! ... mg!in (7)
is missing. To include the missing term, let us initially rewrite
the invariance condition (7), assuming R, = 1, as

vp(n1, ..., mp) = cp(n, ..., np 1) HP (n,) .. . HY (n)),
(10)
where ¢, (n1,...,n, 1) = 1/m;!...m,!. We note then that c,
can be decomposed as
2r-1

cp(n, ... np_1) = Y arcg)(nl) . c$1"1)(np,1),
r=1

an

where e (n;) is either the unit impulse® §(n) or its complement
5(n) = [1 - 3(n)].

Example Since c3(ni,n2)=1 when nq,ns > 0, cs(ni,n2)
= 1/2ifeithern; =0o0rny = 0 (butnotboth), and c3(ny,n2) =
1/3!if ny = ny = 0, it decomposes as

c3(ny,no) = 8(n1)d(ng) + %5(711)5(712)

Now, from (10) and (11) we get
op-1
vp(ny,...,np) = Y arGﬁp)(np)...Gﬁl)(m), (13)
r=1

where G (n;) is either given by (n;)H®(n;) or by
5(n)H® (n;),1 < i < p,and G (n,) = H® (n,,). Tt follows
that v, can be realized by summing the output of 27! parallel

cascade structures. Nevertheless, because all blocks Gg) (n;)in
(13) come from the decomposition (&(n;) + 6(n;)) H® (n;),
we can largely mitigate this increase in computational complex-
ity by “sharing” computations among the branches of the parallel
structure. We describe next a systematic way of implementing
this strategy.

TThis is not true in general for interconnections of linear blocks. For instance,
two discrete-time linear systems f(n) = fo(nT) and g(n) = g.(nT) in series
have impulse response Zk fk)g(n — k) # f fe(T)ge(nT — 7)dr.

8§(n) = 1ifn = 0and §(n) = 0if n # 0.

IEEE SIGNAL PROCESSING LETTERS, VOL. 29, 2022
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Fig. 3. Realization of impulse invariant kernel of order p = 2.

C. Efficient Realization of Impulse Invariance

For simplicity, we consider henceforth low-rank kernels

ho(ri, .. ) =hP (1) .. b (7,) with scalar (instead of
matrix) factors, the extension to matrices being straightforward.

With A (n;) = b (n;T), we define:
hD(n;) 2 §5(n)h D (ny), h{(n;) £ 6(n)hD(0). (14)

With p = 2, initially, from (10) and (14) we have c3(n1) =
0(n1) +1/28(ny), and, therefore,

’1)2(’111, ng) = [5(n1) + %6(’01)} h(l)(nl)h(Q) (77,2)
= [AV ) + 1 (1) | ) (o).

Using this in (6) and a discrete-time version of the cascade
operator h o z:(n) £ [h * z(n)]u(n), we can write the output as

pan) =H® « [(RO + 307 ) oulm)] . (19

Defining now z(n) £ (h® + 1/2h{") o u(n), it follows
from the linearity in h of the cascade operator that

zl(n) = z171(n) + %Zlﬁz(n), (16)

where
z11(n) = A ou(n), (17)
212(n) = h§Y ou(n) = KV (0)u2(n), (18)

and the output is y2(n) = h(? % z;(n). This realization is de-
picted in Fig. 3.
Let, now, p = 3. From (10) and (12) we can write, initially,

’03(11177127713) = {[S(nl) + %5(7“)] S(ng) + %S(nl)d(ng)
+43(n1)d(n2) } RV (1) AP (n2) 3 (ny).
Moving 21 (n1)h(?) (ny) into the brackets, we get then

v3(ni,ne,n3) = {{B(l)(nl) +1 hgl)(nl)} h(?) (ny)

3 WO (ng) + 1 b (n)h (na) } 1) (ns),

so that, using this in (6), introducing another cascade operator
for the second stage, and with (16)—(18), we can write

ys(n) = b3 x [5(2) oz (n) + % (hgf) o 21,1(71))
+4 (th> o zlyz(n))} .

Organizing as for p = 2 then, y3(n) = h®) x z5(n), where

za(n) = 22,1(71) + 522,2(71) + % 22,3(71);
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h3) p———s

kY

Fig. 4.

Realization of impulse invariant kernel of order p = 3.
with

z1(n) = h® o z,(n),

222(n) = h” 0 21,1(n) = h® (0)z1,1 (n)u(n)

205(n) = B 0 21 9(n) = K (0)z1 2 (n)u(n),
which is depicted in Fig. 4. Generalizing, we should compute:
e Fori=1,...,p—1and with zo(n) = 20,1 (n) = u(n),

zi1(n) = [RD  z;_1(n)] u(n),

zii(n) = hD(0)z 1 1(n)uln), j=2,... 041,
i+1 1
zi(n) = 3. 572i,5(n).
Jj=1

° y,(n)= hP) Zp—1(n).

V. EXAMPLE: BILINEAR SYSTEMS

Bilinear systems have state-space equations of the form
xL(t) = Fx.(t) + Gxc(t)uc(t) + buc(t)

Ye(t) = CTXC(t)v
and can approximate, up to any kernel order p, the large class
known as linear-analytic s_?/stems [21], [26], [27]. Their kernels
read he ,(71,...,7p) = eF P GeFP1G ... GeF b, 7; > 0,
thus having the low-rank form of (8) with R, = 1 (that is, rank
one), and H{" (1) = eF71b, HY (7;) = ¥ G, 1< i< p,and
HY (1) =c'eFrG.

As an example, consider the bilinear model of a bass loud-
speaker [22], sampled at a rate of 1.5 kHz. An infinite-memory
discrete-time realization of its fourth-order impulse invariant
Volterra kernel was derived as in Section IV-C, and the cor-
responding output y4(n) obtained for an unit-power AWGN
input u(n). For validation, the output 74 (n) of the time-truncated
kernel was directly calculated using (7) in (6) (in other words,
a VF realization) with 72; < 120, aiming at a small discrepancy
e(n) = ya(n) — ya(n). Indeed, as seen in Fig. 5, e(n) is of the
order of 10716 (mainly due to computing with 64 b precision),
validating the proposed procedure. Also displayed is the output
y4(n) of the kernel given by (9). Its large discrepancy in relation
to y4(n) shows that the invariance principle of (7) can be very
relevant in practice.

To compare computational costs now, a VF filter realiza-
tion of the truncated kernel, with n; < N in (6), requires at
least (V7~') multiplications [28, p. 36].° In the previous loud-
speaker example, even allowing for less precision such that

9Excluding the computation of Hf _ u(n — ny), for simplicity. All multipli-
cation figures refer to the computation of one output sample. In [28] a triangular
kernel equivalent to v, is considered.
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Fig. 5. Output y4(n) of the realization of an impulse invariant fourth-order
kernel and its discrepancy €(n) to a time-truncated VF realization. For com-
parison, we also depict the output g4 (n) of the non-impulse invariant kernel
of (9).

{E[e3(n)]/E[y3(n)]}'/? = 1073, still requires N = 48 and,
thus, 249900 multiplications.

Consider next the last stage in Fig. 4, now with ma-
trix factors. For a bilinear kernel, H®) (n) = c'e¥ "G, n >
0,50y,(n) =H®P %z, 1(n) =37 ,c "Gz, 1 (n — k),
which we readily see is realized by

xp(n+ 1) = Ax,(n) + Bz,_1(n) (19)

yp(n) = 'x,(n) + d'z,_1(n), (20)

where dim[x,(n)] = M £ dim[x.(t)], A = e¥T, B = FTG
andd = Gc. Assuming A, B and d are pre-calculated and have
no structure to be exploited for reducing computational cost,
(19) and (20) require 2(M? + M) multiplications. Proceeding
similarly for the outputs of the remaining linear blocks gives
then a sub-total cost of Cp = (2p — 1)M? + 3 M. Finally, the
computation of the inputs z;(n) of the linear blocks requires
[(p=3)(p/2+ 1) +1]M? + [(p — 1)(p/2 + 1) + 3|M multi-
plications [29].!1° In the loudspeaker example, p=4 requires
M =34 [22], giving a total of 13226 multiplications, much less
than the at least 249900 required by the VF (and with no loss in
precision) and the slightly over 2P~ [Co + (p — 1) M| = 66368
required by the parallel-cascade of Section IV-B.

VI. CONCLUSION

By defining a cascade operator, we have shown how to
construct a realization of discrete-time kernels obtained from
continuous-time low-rank regular kernels by the generalized im-
pulse invariance principle. This construction is required because
such discrete-time kernels are not themselves of the same low-
rank and thus cannot be realized by the same cascade structures
that realize their continuous-time counterparts. The proposed
structure requires additional multipliers, not incurring however
in an inordinate increase of computational complexity. The
low-rank property is found in kernels with practical relevance,
and holds in particular for kernels of bilinear systems.

10This results from eq. (27) in [29], with all M; = M, taking the upper bound
M; M1 forall p1;, and adding the (p — 1) M multiplications by u(n) required
forz; 1,1 <1 <p.
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