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On the Realization of Impulse Invariant Low-Rank
Volterra Kernels

Phillip M. S. Burt , Member, IEEE, and José Henrique de Morais Goulart

Abstract—Volterra models can accurately model numerous non-
linear systems of practical interest, but often at an unacceptable
computational cost. If the Volterra kernels of a system have low-
rank structure (like, e.g., kernels of bilinear systems), this major
drawback can in principle be mitigated. Yet, when one seeks an
exact discrete-time model of a mixed-signal chain involving that
system, the existing formula that generalizes the impulse invariance
principle to Volterra kernels yields discrete-time kernels that do
not share the same low rank. At first sight this would seem to
seriously complicate the otherwise simple discrete-time realization
of low-rank kernels. We show here that this not the case. By defining
a cascade operator, the structure of generalized impulse invariance
can be unveiled, leading to a realization without an inordinate
increase in computational complexity. Finally, we give a numerical
example involving a physical system that shows the relevance of
our proposal.

Index Terms—Nonlinear systems, bilinear systems, Volterra
model, impulse invariance.

I. INTRODUCTION

VOLTERRA models are a popular choice for the modeling
of non-linear systems of various kinds [1]–[7]. In particu-

lar, the most commonly used variant in digital signal processing
applications, known as a Volterra filter (VF), is essentially a feed-
forward polynomial model whose output is linear in the model
parameters—a desirable feature for system identification—and
whose wide applicability has been established by Boyd and
Chua in the eighties [8]. Unfortunately, though, the amount of
parameters of a VF grows quite rapidly with the system memory
length and the order (nonlinearity degree) of the model, whose
practical realization thus often becomes too costly.

Motivated by this drawback, a whole line of research has
been devoted to devising more practical alternatives which
trade some generality of the VF—and often also the linear-
ity in the parameters—by a lower parametric complexity [9]–
[18]. One of the most effective and elegant proposals is based
on the simple assumption that the pth-order Volterra kernel
hp(n1, . . . , np) (high-order analogues of the impulse response,
see Section III for a definition) approximately decomposes as
a sum of a few separable functions, that is, hp(n1, . . . , np) ≈∑Rp

r=1 h
(1)
r (n1) . . . h

(p)
r (np) with a sufficiently small Rp. This
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Fig. 1. Signal chain starting in discrete-time, passing through continuous-time
and then returning to discrete-time.

amounts to a low-rank (specifically, rank-Rp) approximation
of the kernels, viewed as tensors [13]. Besides the potential
dramatic reduction in computational complexity, one major
advantage of this approach is its straightforward realization by
a combination of linear blocks and instantaneous nonlinearities
or multipliers.

However, in applications where an exact discrete-time mod-
eling of a mixed-signal chain consisting of discrete-time and
continuous-time parts is desirable (for instance, in the cancella-
tion of signals originating from discrete-time, such as in acoustic
echo cancellation or nonlinearity mitigation [10], [19]), the
low-rank realization is not as simple anymore. The reason is that
the well-known impulse invariance [20] between discrete-time
and continuous-time linear time-invariant (LTI) systems does
not generalize “cleanly” to nonlinear systems, but has to be
somewhat modified so as to incorporate a factor which depends
on the pattern of repeated kernel arguments, as pointed out
in [21], [22]. We show that, as a consequence, the computational
cost of a naive realization of generalized impulse invariance,
while still much smaller than that of a VF realization (whose
cost is not affected by generalized invariance), would increase
by as much as 2p−1 times. We then deduce a much more efficient
realization, preserving the great attractiveness of the low-rank
approach.

To the best of our knowledge this problem has not been
previously addressed. Apart from its practical relevance, as
discussed above, the result we present is of interest in itself
as an addition to the theory of signal processing.

II. IMPULSE INVARIANCE OF LTI SYSTEMS

A continuous-time LTI system bandlimited to 1/2T Hz, with
impulse response hc(t), can be implemented [20, p. 173] with
a mixed-signal chain containing the impulse invariant discrete-
time system with impulse response1

h(n) = hc(nT ). (1)

Impulse invariance also comes into question when modeling
the mixed-signal chain depicted in Fig. 1, which is of greater

1Hereafter, the subscript c is used to distinguish a continuous-time signal from
its discrete-time version. For convenience, we have dropped the factor T from
the definition h(n) = Thc(nT ) of impulse invariance of [20].
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concern here and is now described. From the input sequence
u(n), an impulsive D/A converter2 with sampling period T
provides

uc(t) =
∞∑

k=−∞
δ(t− kT )u(k). (2)

After a reconstruction filter hr(t), an application-specific
system ho(t), and an anti-aliasing filter ha(t), all LTI, it follows
from (2) that

yc(t) =
∞∑

k=−∞
hc (t− kT )u(k), (3)

where hc(t) is the overall impulse response given by the convo-
lutions hr(t) ∗ ho(t) ∗ ha(t). Finally, an A/D sampler gives the
output yc(nT ). It follows that a system with impulse response
h(n) = hc(nT ), input u(n) and output y(n) =

∑∞
k=−∞ h(n−

k)u(k) is an exact discrete-time model of the signal chain3 in
the sense that

y(n) = yc(nT ), (4)

as desired, for instance, in acoustic echo cancellation [23].
Remark The sampling of yc(t) in (4) and of hc(t) in (1) must

be consistent at discontinuities. For instance, let hc(t) = e−at

if t > 0 and hc(t) = 0 if t < 0. From (3) then, yc(t) is dis-
continuous at t = nT if u(n) �= 0. Assuming the A/D sampler
always provides the right-side limit yc(nT+) (respectively, the
left-side limit yc(nT−) or [yc(nT+) + yc(nT−)]/2), it follows
from (3) that, to achieve (4), h(0) must be given by hc(0+) = 1
(respectively, hc(0−) = 0 or [hc(0)+ + hc(0−)]/2 = 1/2).

It should be noted that when hc(t) represents an actual
physical system, the impulse response h(n) = hc(nT ) will, in
general, have infinite duration. As long, though, as the system
hc(t) is rational, the exact realization (with a finite number of
operations) of a discrete-time system with impulse response
h(n) is straightforward [24].

III. GENERALIZATION OF IMPULSE INVARIANCE TO

VOLTERRA KERNELS

Let the analog portion of the chain in Fig. 1 be now nonlinear.
(This can arise, for instance, from a nonlinear loudspeaker
in acoustic echo cancellation [19].) We assume then that its
input/output relation is given by the (causal) Volterra series
yc(t) =

∑∞
p=1 yc,p(t), with homogeneous outputs given by

yc,p(t) =

∫ ∞

0

· · ·
∫ ∞

0

hc,p(τ1, . . . , τp)

p∏
i=1

uc(t− τ̄i)dτ1 . . . dτp,

(5)
where τ̄i =

∑p
j=i τj and hc,p(τ1, . . . , τp) is a regular Volterra

kernel of order p [21, p. 15], continuous for τ1, . . . , τp > 0.
Although the existence of the realization problem addressed in
this paper is independent of employing conventional4 or regular
Volterra kernels, the latter are more convenient for the required
algebraic manipulation.

To provide a discrete-time model of the signal chain, let n̄i =∑p
j=i nj , where nj always represents discrete time, and, for

2δ(t) is the Dirac delta function. The assumption of ideal impulsive excitation
is not restrictive, since the reconstruction filter hr(t) can absorb the rectangular
impulse response of a real-world zero-order hold D/A.

3In this case, is not required that system hc(t) be bandlimited.
4With a conventional kernel h(conv)

c,p (τ1, τ2, . . . , τp) = h
(reg)
c,p (τ1 − τ2, . . . ,

τp−1 − τp, τp), (5) assumes the more familiar form with τi instead of τ̄i.

Fig. 2. Cascade realization of a separable kernel, p = 3, R3 = 1. Double
arrows denote vector-valued signals.

some causal discrete-time kernel vp : Zp → R let

yp(n) =
∞∑

np=0

. . .
∞∑

n1=0

vp(n1, . . . , np)

p∏
i=1

u(n− n̄i), (6)

withu(n) anduc(t) still being related by (2). It follows from [22]
that achieving yp(n) = yc,p(nT ), p > 1, assuming right-side
sampling at discontinuities, requires generalizing (1) as

vp(n1, . . . , np) =
hc,p(n1 T, . . . , npT )

m1! . . .mq!
, (7)

where q is the number of groups of consecutive null indices
among n1, . . . , np−1 and m1 − 1, . . . ,mq − 1 are the numbers
of indices in each group.5 For instance, if p=5, n1=n2=0 �=
n3 and n4=0, then q=2, m1=3 and m2=2.

This generalized impulse invariance results from the impul-
sive terms of the integrand in (5) and the possible discontinuity
of the kernel on the border of the domain τ1, . . . , τp−1 ≥ 0.
In the interior of this domain we retrieve a direct extension of
the invariance condition (1), that is, we have vp(n1, . . . , np) =
hc,p(n1 T, . . . , npT ) for n1, . . . , np−1 > 0. For more details on
the steps leading to (7), the reader is referred to [22].

Similarly to the discretized h(n) of (1), (7) gives in general
an infinite duration vp(n1, . . . , np). This raises the issue of its
realization with a finite number of operations, not addressed
in [22]. We do this now, for the class of low-rank kernels.

IV. REALIZATION OF LOW-RANK KERNELS

We consider systems with low-rank Volterra kernels

hc,p(τ1, . . . , τp) =
Rp∑
r=1

H
(p)
c,r (τp) . . .H

(1)
c,r(τ1), (8)

for any set of (vector- and) matrix-valued functions H(i)
c,r(τi) of

compatible dimensions,6 and a given Rp ∈ N
∗, termed the rank

of hc,p. Of particular practical interest are bilinear systems [21],
[25], further discussed in Section V, for which Rp = 1. We
consider Rp = 1 from here onward, and thus look into the
realization of one of the parallel branches of (8).

A. Cascade Structure and Operator

From (8) and (5) it follows directly that low-rank kernels
can be realized quite simply by a cascade of linear blocks and
multipliers. This is depicted in Fig. 2 (p = 3, R3 = 1), where

z1(t) = [
∫∞
0 H

(1)
c (τ)uc(t− τ)dτ ]uc(t)

= [H(1)
c ∗ uc(t)]uc(t) = H(1)

c ◦ uc(t),

5A related result is stated without proof in [21, p. 254]. For simplicity, the
dependence of mi on n1, . . . , np−1 is omitted. If yp(n) = yc,p(nT−) or
yp(n) = [yc,p(nT−) + yc,p(nT+)]/2 at discontinuities, the result is similar.

6For uniformity of notation,H(p)
c,r (resp.,H(1)

c,r ) is denoted as a matrix, though
being a row (resp., column) vector. If Rp = 1, we drop subscripts r.
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z2(t) = [H(2)
c ∗ z1(t)]uc(t) = H(2)

c ◦ z1(t),
yc,3(t) = H(3)

c ∗ z2(t).
Here, ∗ stands for convolution and ◦ stands for the cascade

operator defined, given uc(t), by h ◦ x(t) � [h ∗ x(t)]uc(t),
which is linear in h and in x. Also, with it we can write

yc,3(t) = H(3)
c ∗ {H(2)

c ◦ [H(1)
c ◦ uc(t)] }.

Hence, the realization can be expressed as a sequential calcu-
lation with p− 1 applications of the cascade operator, followed
by a convolution at the final stage.

B. Parallel-Cascade Realization of Impulse Invariance

Consider the sampled kernel factors H(i)(ni) = H
(i)
c (niT ).

We can readily verify that, assuming the input has the form (2),
the cascade structure has this very particular property:

Property Replacing H
(i)
c (τi) with H(i)(ni) and uc(t) with

u(n) in the cascade structure that realizes hc,p(τ1, . . . , τp) =

H
(p)
c (τp) . . .H

(1)
c (τ1), gives a realization of7

ṽp(n1, . . . , np) = H(p)(np) . . .H
(1)(n1). (9)

This discrete-time kernel, however, is not impulse invariant in
relation to hc,p(τ1, . . . , τp), since the term 1/m1! . . .mq! in (7)
is missing. To include the missing term, let us initially rewrite
the invariance condition (7), assuming Rp = 1, as

vp(n1, . . . , np) = cp(n1, . . . , np−1)H
(p)(np) . . .H

(1)(n1),
(10)

where cp(n1, . . ., np−1) � 1/m1! . . .mq!. We note then that cp
can be decomposed as

cp(n1, . . . , np−1) =
2p−1∑
r=1

arc
(1)
r (n1) . . . c

(p−1)
r (np−1), (11)

where c(i)r (ni) is either the unit impulse8 δ(n) or its complement
δ̄(n) = [1− δ(n)].

Example Since c3(n1, n2)=1 when n1, n2 > 0, c3(n1, n2)
= 1/2 if eithern1=0 orn2 = 0 (but not both), and c3(n1, n2) =
1/3! if n1 = n2 = 0, it decomposes as

c3(n1, n2) = δ̄(n1)δ̄(n2) +
1

2
δ(n1)δ̄(n2)

+ 1
2 δ̄(n1)δ(n2) +

1
3! δ(n1)δ(n2). (12)

Now, from (10) and (11) we get

vp(n1, . . . , np) =
2p−1∑
r=1

arG
(p)
r (np) . . .G

(1)
r (n1), (13)

where G
(i)
r (ni) is either given by δ̄(ni)H

(i)(ni) or by
δ(ni)H

(i)(ni), 1 ≤ i < p, andG(p)
r (np)= H(p)(np). It follows

that vp can be realized by summing the output of 2p−1 parallel

cascade structures. Nevertheless, because all blocks G(i)
r (ni) in

(13) come from the decomposition (δ(ni) + δ̄(ni))H
(i)(ni),

we can largely mitigate this increase in computational complex-
ity by “sharing” computations among the branches of the parallel
structure. We describe next a systematic way of implementing
this strategy.

7This is not true in general for interconnections of linear blocks. For instance,
two discrete-time linear systems f(n) = fc(nT ) and g(n) = gc(nT ) in series
have impulse response

∑
k
f(k)g(n− k) �=

∫
fc(τ)gc(nT − τ)dτ .

8δ(n) = 1 if n = 0 and δ(n) = 0 if n �= 0.

Fig. 3. Realization of impulse invariant kernel of order p = 2.

C. Efficient Realization of Impulse Invariance

For simplicity, we consider henceforth low-rank kernels
hp(τ1, . . . , τp)=h

(1)
c (τ1) . . . h

(p)
c (τp) with scalar (instead of

matrix) factors, the extension to matrices being straightforward.
With h(i)(ni) = h

(i)
c (niT ), we define:

h̄(i)(ni) � δ̄(ni)h
(i)(ni), h

(i)
0 (ni) � δ(ni)h

(i)(0). (14)

With p = 2, initially, from (10) and (14) we have c2(n1) =
δ̄(n1) + 1/2 δ(n1), and, therefore,

v2(n1, n2) =
[
δ̄(n1) +

1
2 δ(n1)

]
h(1)(n1)h

(2)(n2)

=
[
h̄(1)(n1) +

1
2 h

(1)
0 (n1)

]
h(2)(n2).

Using this in (6) and a discrete-time version of the cascade
operator h ◦ x(n) � [h ∗ x(n)]u(n), we can write the output as

y2(n) = h(2) ∗
[(

h̄(1) + 1
2h

(1)
0

)
◦ u(n)

]
. (15)

Defining now z1(n) � (h̄(1) + 1/2h
(1)
0 ) ◦ u(n), it follows

from the linearity in h of the cascade operator that

z1(n) = z1,1(n) +
1
2 z1,2(n), (16)

where

z1,1(n) = h̄(1) ◦ u(n), (17)

z1,2(n) = h
(1)
0 ◦ u(n) = h(1)(0)u2(n), (18)

and the output is y2(n) = h(2) ∗ z1(n). This realization is de-
picted in Fig. 3.

Let, now, p = 3. From (10) and (12) we can write, initially,

v3(n1, n2, n3) =
{[
δ̄(n1) +

1
2 δ(n1)

]
δ̄(n2) +

1
2 δ̄(n1)δ(n2)

+ 1
3! δ(n1)δ(n2)

}
h(1)(n1)h

(2)(n2)h
(3)(n3).

Moving h(1)(n1)h
(2)(n2) into the brackets, we get then

v3(n1, n2, n3) =
{[
h̄(1)(n1) +

1
2 h

(1)
0 (n1)

]
h̄(2)(n2)

+ 1
2 h̄(1)(n1)h

(2)
0 (n2) +

1
3! h

(1)
0 (n1)h

(2)
0 (n2)

}
h(3)(n3),

so that, using this in (6), introducing another cascade operator
for the second stage, and with (16)–(18), we can write

y3(n) = h(3) ∗
[
h̄(2) ◦ z1(n) + 1

2

(
h
(2)
0 ◦ z1,1(n)

)
+ 1

3!

(
h
(2)
0 ◦ z1,2(n)

)]
.

Organizing as for p = 2 then, y3(n) = h(3) ∗ z2(n), where

z2(n) = z2,1(n) +
1
2 z2,2(n) +

1
3! z2,3(n),

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on June 09,2025 at 11:39:28 UTC from IEEE Xplore.  Restrictions apply. 



BURT AND GOULART: ON THE REALIZATION OF IMPULSE INVARIANT LOW-RANK VOLTERRA KERNELS 1495

Fig. 4. Realization of impulse invariant kernel of order p = 3.

with

z2,1(n) = h̄(2) ◦ z1(n),
z2,2(n) = h

(2)
0 ◦ z1,1(n) = h(2)(0)z1,1(n)u(n)

z2,3(n) = h
(2)
0 ◦ z1,2(n) = h(2)(0)z1,2(n)u(n),

which is depicted in Fig. 4. Generalizing, we should compute:
� For i = 1, . . . , p− 1 and with z0(n) = z0,1(n) = u(n),

zi,1(n) =
[
h̄(i) ∗ zi−1(n)

]
u(n),

zi,j(n) = h(i)(0)zi−1,j−1(n)u(n), j = 2, . . . , i+ 1,

zi(n) =
i+1∑
j=1

1
j!zi,j(n).

� yp(n) = h(p) ∗ zp−1(n).

V. EXAMPLE: BILINEAR SYSTEMS

Bilinear systems have state-space equations of the form

x′
c(t) = Fxc(t) +Gxc(t)uc(t) + buc(t)

yc(t) = c�xc(t),

and can approximate, up to any kernel order p, the large class
known as linear-analytic systems [21], [26], [27]. Their kernels
read hc,p(τ1, . . . , τp) = cTeFτpGeFτp−1G . . .GeFτ1b, τi ≥ 0,
thus having the low-rank form of (8) with Rp = 1 (that is, rank

one), and H
(1)
c (τ1) = eFτ1b, H(i)

c (τi) = eFτiG, 1< i< p, and
H

(p)
c (τp) = c�eFτpG.
As an example, consider the bilinear model of a bass loud-

speaker [22], sampled at a rate of 1.5 kHz. An infinite-memory
discrete-time realization of its fourth-order impulse invariant
Volterra kernel was derived as in Section IV-C, and the cor-
responding output y4(n) obtained for an unit-power AWGN
inputu(n). For validation, the output ŷ4(n) of the time-truncated
kernel was directly calculated using (7) in (6) (in other words,
a VF realization) with n̄i ≤ 120, aiming at a small discrepancy
ε(n) = y4(n)− ŷ4(n). Indeed, as seen in Fig. 5, ε(n) is of the
order of 10−16 (mainly due to computing with 64 b precision),
validating the proposed procedure. Also displayed is the output
ỹ4(n) of the kernel given by (9). Its large discrepancy in relation
to y4(n) shows that the invariance principle of (7) can be very
relevant in practice.

To compare computational costs now, a VF filter realiza-
tion of the truncated kernel, with n̄i < N in (6), requires at
least (N+p−1

p ) multiplications [28, p. 36].9 In the previous loud-
speaker example, even allowing for less precision such that

9Excluding the computation of
∏p

i=1
u(n− n̄i), for simplicity. All multipli-

cation figures refer to the computation of one output sample. In [28] a triangular
kernel equivalent to vp is considered.

Fig. 5. Output y4(n) of the realization of an impulse invariant fourth-order
kernel and its discrepancy ε(n) to a time-truncated VF realization. For com-
parison, we also depict the output ỹ4(n) of the non-impulse invariant kernel
of (9).

{E[ε2(n)]/E[y24(n)]}1/2 = 10−3, still requires N = 48 and,
thus, 249900 multiplications.

Consider next the last stage in Fig. 4, now with ma-
trix factors. For a bilinear kernel, H(p)(n) = cTeFTnG, n ≥
0, soyp(n) = H(p) ∗ zp−1(n) =

∑∞
k=0 c

TeFTkGzp−1(n− k),
which we readily see is realized by

xp(n+ 1) = Axp(n) +Bzp−1(n) (19)

yp(n) = cTxp(n) + dTzp−1(n), (20)

where dim[xp(n)] = M � dim[xc(t)], A = eFT , B = eFTG
andd = Gc. AssumingA,B andd are pre-calculated and have
no structure to be exploited for reducing computational cost,
(19) and (20) require 2(M2 +M) multiplications. Proceeding
similarly for the outputs of the remaining linear blocks gives
then a sub-total cost of CO = (2p− 1)M2 + 3M . Finally, the
computation of the inputs zi(n) of the linear blocks requires
[(p− 3)(p/2 + 1) + 1]M2 + [(p− 1)(p/2 + 1) + 3]M multi-
plications [29].10 In the loudspeaker example, p=4 requires
M=34 [22], giving a total of 13226 multiplications, much less
than the at least 249900 required by the VF (and with no loss in
precision) and the slightly over 2p−1[CO + (p− 1)M ] = 66368
required by the parallel-cascade of Section IV-B.

VI. CONCLUSION

By defining a cascade operator, we have shown how to
construct a realization of discrete-time kernels obtained from
continuous-time low-rank regular kernels by the generalized im-
pulse invariance principle. This construction is required because
such discrete-time kernels are not themselves of the same low-
rank and thus cannot be realized by the same cascade structures
that realize their continuous-time counterparts. The proposed
structure requires additional multipliers, not incurring however
in an inordinate increase of computational complexity. The
low-rank property is found in kernels with practical relevance,
and holds in particular for kernels of bilinear systems.

10This results from eq. (27) in [29], with allMi = M , taking the upper bound
MiMi−1 for all μi, and adding the (p− 1)M multiplications by u(n) required
for zi,1, 1 ≤ i < p.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on June 09,2025 at 11:39:28 UTC from IEEE Xplore.  Restrictions apply. 



1496 IEEE SIGNAL PROCESSING LETTERS, VOL. 29, 2022

REFERENCES

[1] T. Hélie and D. Roze, “Sound synthesis of a nonlinear string using Volterra
series,” J. Sound Vib., vol. 314, no. 1–2, pp. 275–306, 2008.

[2] T. Hélie, “Volterra series and state transformation for real-time simula-
tions of audio circuits including saturations: Application to the Moog
ladder filter,” IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 4,
pp. 747–759, May 2010.

[3] G. D. Mitsis, M. G. Markakis, and V. Z. Marmarelis, “Nonlinear modeling
of the dynamic effects of infused insulin on glucose: Comparison of
compartmental with Volterra models,” IEEE Trans. Biomed. Eng., vol. 56,
no. 10, pp. 2347–2358, Oct. 2009.

[4] B. F. Beidas, “Intermodulation distortion in multicarrier satellite systems:
Analysis and turbo Volterra equalization,” IEEE Trans. Commun., vol. 59,
no. 6, pp. 1580–1590, Jun. 2011.

[5] L. A. Azpicueta-Ruiz, M. Zeller, A. R. Figueiras-Vidal, J. Arenas-García,
and W. Kellermann, “Adaptive combination of Volterra kernels and its
application to nonlinear acoustic echo cancellation,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 19, no. 1, pp. 97–110, Jan. 2011.

[6] G. Gowtham et al., “A family of adaptive Volterra filters based on maxi-
mum correntropy criterion for improved active control of impulsive noise,”
Circuits, Syst., Signal Process., vol. 41, no. 2, pp. 1019–1037, 2022.

[7] G. Stepniak, M. Marzecki, and J. Bojarczuk, “Volterra predistorter
for the dynamic nonlinearity of LED,” Opt. Lett., vol. 47, no. 5,
pp. 1161–1164, Mar. 2022. [Online]. Available: http://opg.optica.org/ol/
abstract.cfm?URI=ol- 47--5-1161

[8] S. Boyd and L. Chua, “Fading memory and the problem of approximating
nonlinear operators with Volterra series,” IEEE Trans. Circuits Syst.,
vol. CAS- 32, no. 11, pp. 1150–1161, Nov. 1985.

[9] R. D. Nowak and B. D. Van Veen, “Tensor product basis approximations
for Volterra filters,” IEEE Trans. Signal Process., vol. 44, no. 1, pp. 36–50,
Jan. 1996.

[10] C. Crespo-Cadenas, J. Reina-Tosina, M. J. Madero-Ayora, and J. Muñoz
Cruzado, “A new approach to pruning Volterra models for power am-
plifiers,” IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2113–2120,
Apr. 2010.

[11] E. L. O. Batista, O. J. Tobias, and R. Seara, “A sparse-interpolated scheme
for implementing adaptive Volterra filters,” IEEE Trans. Signal Process.,
vol. 58, no. 4, pp. 2022–2035, Apr. 2010.

[12] M. Zeller and W. Kellermann, “Fast and robust adaptation of DFT-domain
Volterra filters in diagonal coordinates using iterated coefficient updates,”
IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1589–1604, Mar. 2010.

[13] G. Favier, A. Y. Kibangou, and T. Bouilloc, “Nonlinear system modeling
and identification using Volterra-PARAFAC models,” Int. J. Adapt. Control
Signal Process., vol. 26, no. 1, pp. 30–53, Jan. 2012.

[14] E. L. O. Batista and R. Seara, “A fully LMS/NLMS adaptive scheme
applied to sparse-interpolated Volterra filters with removed boundary
effect,” Signal Process., vol. 92, no. 10, pp. 2381–2393, 2012.

[15] P. M. S. Burt and J. H. de M. Goulart, “Evaluating the potential of Volterra-
PARAFAC IIR models,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2013, pp. 5745–5749.

[16] E. L. O. Batista and R. Seara, “A reduced-rank approach for implementing
higher-order Volterra filters,” EURASIP J. Adv. Signal Process., vol. 2016,
no. 1, pp. 1–8, 2016.

[17] K. Batselier, Z. Chen, and N. Wong, “Tensor network alternating linear
scheme for MIMO Volterra system identification,” Automatica, vol. 84,
pp. 26–35, 2017.

[18] J. H. de. M. Goulart and P. M. S. Burt, “Volterra kernels of bilinear systems
have tensor train structure,” in Proc. 29th Eur. Signal Process. Conf., 2021,
pp. 1070–1074.

[19] M. I. Mossi, C. Yemdji, N. Evans, C. Beaugeant, and P. Degry,
“Robust and low-cost cascaded non-linear acoustic echo cancella-
tion,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2011,
pp. 89–92.

[20] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.
Englewood Cliffs, NJ, USA: Prentice-Hall, 2009.

[21] W. J. Rugh, Nonlinear System Theory: The Volterra/Wiener Approach. Bal-
timore, MD, USA: Johns Hopkins Univ. Press, 1981. [Online]. Available:
sites.google.com/site/wilsonjrugh/

[22] P. M. S. Burt and J. H. de M. Goulart, “Efficient computation of bilinear
approximations and Volterra models of nonlinear systems,” IEEE Trans.
Signal Process., vol. 66, no. 3, pp. 804–816, Feb. 2018.

[23] C. Breining et al., “Acoustic echo control. An application of very-
high-order adaptive filters,” IEEE Signal Process. Mag., vol. 16, no. 4,
pp. 42–69, Jul. 1999.

[24] C. Chen, Linear System Theory and Design. London, U.K.: Oxford Univ.
Press, 2013.

[25] C. Bruni, G. Dipillo, and G. Koch, “Bilinear systems: An appealing class
of “nearly linear” systems in theory and applications,” IEEE Trans. Autom.
Control, vol. AC-19, no. 4, pp. 334–348, Aug. 1974.

[26] H. Hermes and G. W. Haynes, “On the nonlinear control problem with
control appearing linearly,” J. Soc. Ind. Appl. Math., Ser. A: Control, vol. 1,
no. 2, pp. 85–108, 1963.

[27] R. W. Brockett, “Volterra series and geometric control theory,” Automatica,
vol. 12, no. 2, pp. 167–176, Mar. 1976.

[28] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing.
Hoboken, NJ, USA: Wiley, 2000.

[29] P. M. S. Burt and J. H. de M. Goulart, “On the realization of impulse
invariant bilinear Volterra kernels,” 2021, arXiv:2107.06144.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on June 09,2025 at 11:39:28 UTC from IEEE Xplore.  Restrictions apply. 


