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Abstract

We provide a new proof of the Arason–Pfister Hauptsatz (APH) in the setting of reduced
special groups, as developed by Dickmann and Miraglia. Our approach avoids the use of
Boolean invariants and instead relies on a construction inspired by Marshall’s quotient,
suitably adapted to the context of special groups. We establish structural properties of this
quotient and show that it generalizes the Pfister quotient by a Pfister subgroup. Using
this framework, we define iterated quadratic extensions of special groups and develop a
theory of Arason–Pfister sequences. These tools allow us to prove that any anisotropic
form φ ∈ In(G) over a reduced special group G satisfies the inequality dim(φ) ≥ 2n, where
In(G) denotes the n-th power of the fundamental ideal of the Witt ring of G. Our methods
are purely algebraic and internal to the theory of special groups, contributing with novel
tools to the categorical study of abstract theories of quadratic forms.
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MSC: 11E81; 11E70

1. Introduction
It can be said that the Algebraic Theory of Quadratic Forms was founded in 1937 by

E. Witt, with the introduction of the concept of the Witt ring of a given field, constructed
from the quadratic forms with coefficients in the field: given F, an arbitrary field of
characteristic ̸= 2, W(F), the Witt ring of F, classifies the quadratic forms over F that are
regular and anisotropic, being in one-to-one correspondence with them; thus, the focus of
the theory is the quadratic forms defined on the ground field where all their coefficients
are invertible. In this way, the set of orders in F is in one-to-one correspondence with the
set of minimal prime ideals of the Witt ring of F, and more, the set of orders in F provided
with the Harrison’s topology is a Boolean topological space that, by the bijection above, is
identified with a subspace of the Zariski spectrum of the Witt ring of F.

Questions about the structure of Witt rings W(F) could only be solved about three
decades after Witt’s original idea, through the introduction and analysis of the concept of
Pfister form. The Pfister forms of degree n ∈ N, in turn, are generators of the power In(F)
of the fundamental ideal I(F) ⊆ W(F) (the ideal determined by the anisotropic forms of
even dimension).

One of the most emblematic results in the algebraic and abstract theories of quadratic
forms is the so-called Arason–Pfister Hauptsatz (APH), whose historical context is as
given below.
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In his seminal 1970 paper [1], John Milnor posed two central problems related to fields
of characteristics different from 2—both of which were positively resolved in many cases
within the same work. One of the questions was related to the so-called Milnor conjectures
for the graded cohomology ring and the graded Witt ring, which were eventually resolved
by Voevodsky and collaborators around 2000. The other question asked whether for every
such field F, the intersection

⋂
n∈N In(F) contains only 0 ∈ W(F), where In(F) is the n-th

power of the fundamental ideal I(F) of the Witt ring of F (I(F) = {even-dimensional
anisotropic forms over the field F}).

In the subsequent year, J. Arason and A. Pfister solved this question as an immediate
Corollary of what is now known as “Arason–Pfister Hauptsatz” (APH), as stated in [2]:

Let ϕ ̸= ∅ be an anisotropic form. If ϕ ∈ In(F), then dim(ϕ) ≥ 2n.
The theory of special groups, an abstract (first-order) theory of quadratic forms de-

veloped by Dickmann and Miraglia in the mid-1990s, allows a functorial encoding of the
algebraic theory of quadratic forms of fields (with char ̸= 2). This theory has proven effec-
tive in attacking and resolving various open problems involving the theory of quadratic
forms, see, e.g., [3,4].

In [5], Dickmann–Miraglia restated the APH to the setting of special groups and,
employing Boolean-theoretic methods to define and calculate the Stiefel–Whitney and the
Horn–Tarski invariants of a special group, established a generalization of the APH to the
setting of reduced special groups, in particular providing an alternative proof of the APH
for formally real Pythagorean fields.

The difficulty in attacking APH for general special groups lies in the fact that the
methods available for reduced special groups (the invariants) and for special groups arising
from fields (quadratic and transcendental extensions, valuations and so on) do not admit a
clear generalization for the class of all special groups.

In the present work, we provide a new proof of the Arason–Pfister Hauptsatz for
reduced special groups. More specifically, we prove the content of Theorem 12:

Theorem 1 (Arason–Pfister Hauptsatz). Let G be a reduced special group, then APG(n) holds
for all n ≥ 0. In more detail: for each n ≥ 0 and each non-zero (k ≥ 1), regular and anisotropic
form φ = ⟨a1, . . . , ak⟩, if φ ∈ In(G), then dim(φ) = k ≥ 2n.

Our proof completely avoids the use of the Horn–Tarski and Stiefel–Whitney invariants
developed in [3]. Instead, we use Marshall’s quotient, inspired by the techniques developed
by Murray Marshall in [6] for multirings. We finish this short paper by pointing out the
difficulties in dealing with the general case and providing some perspectives on how to
attack the general problem.

2. Preliminaries
For the benefit of the reader, we provide some basic definitions and results concerning

the theory of special groups.

Definition 1 (Extension of a Relation). Let A be a set and ≡ a binary relation on A × A. We
extend ≡ to a binary relation ≡n on An, by induction on n ≥ 1, as follows:

(i) ≡1 is the diagonal relation ∆A ⊆ A × A
(ii) ≡2=≡.
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(iii) if n ≥ 3, ⟨a1, . . . , an⟩ ≡n ⟨b1, . . . , bn⟩ if and only there are x, y, z3, . . . , zn ∈ A such that

⟨a1, x⟩ ≡ ⟨b1, y⟩
⟨a2, . . . , an⟩ ≡n−1 ⟨x, z3, . . . , zn⟩ and

⟨b2, . . . , bn⟩ ≡n−1 ⟨y, z3, . . . , zn⟩

Whenever clear from the context, we frequently abuse notation and indicate the
aforementioned extension ≡ by the same symbol.

Definition 2 (Special Group, 1.2 of [5]). A special group is a tuple (G,−1,≡), where G
is a group of exponent 2, i.e., g2 = 1 for all g ∈ G; −1 is a distinguished element of G, and
≡⊆ G × G × G × G is a relation (the special relation), satisfying the following axioms for all
a, b, c, d, x ∈ G:

SG0 ≡ is an equivalence relation on G2;

SG1 ⟨a, b⟩ ≡ ⟨b, a⟩;

SG2 ⟨a,−a⟩ ≡ ⟨1,−1⟩;

SG3 ⟨a, b⟩ ≡ ⟨c, d⟩ imply ab = cd;

SG4 ⟨a, b⟩ ≡ ⟨c, d⟩ imply ⟨a,−c⟩ ≡ ⟨−b, d⟩;

SG5 For all g ∈ G, ⟨a, b⟩ ≡ ⟨c, d⟩ imply ⟨ga, gb⟩ ≡ ⟨gc, gd⟩.

SG6 (3-transitivity) the extension of ≡ for a binary relation on G3 (as in 1) is a transitive relation.

Definition 3 (1.1 of [5]). A map (G,≡G,−1)
f // (H,≡H ,−1) between pre-special groups

is a morphism of pre-special groups or PSG-morphism if f : G → H is a homomorphism of groups,
f (−1) = −1 and for all a, b, c, d ∈ G

⟨a, b⟩ ≡G ⟨c, d⟩ ⇒ ⟨ f (a), f (b)⟩ ≡H ⟨ f (c), f (d)⟩

A morphism of special groups or SG-morphism is a PSG-morphism between the corresponding
pre- special groups. f will be an isomorphism if the function f is bijective and both f , f−1 are
PSG-morphisms.

A special group, G, is formally acknowledged if it admits some SG-morphism f :
G → 2. The category of special groups, respectively, reduced special groups, and their
morphisms will be denoted by SG and RSG, respectively.

Example 1 (The trivial special relation, 1.9 of [5]). Let G be a group of exponent 2 and take −1 as
any element of G different of 1. For a, b, c, d ∈ G, define ⟨a, b⟩ ≡t ⟨c, d⟩ if and only if ab = cd.
Then, Gt = (G,≡t,−1) is an SG [5]. In particular, 2 = {−1, 1} is a reduced special group.

Example 2 (Special group of a field, Theorem 1.32 of [5]). Let F be a field. We denote
Ḟ = F \ {0}, Ḟ2 = {x2 : x ∈ Ḟ} and ΣḞ2 = {∑i∈I x2

i : I is finite and xi ∈ Ḟ2}. Let
G(F) = Ḟ/Ḟ2. In the case of F, take ΣḞ2 as a subgroup of Ḟ, then Gred(F) = Ḟ/ΣḞ2. Note
that G(F) and Gred(F) are groups of exponent 2. In [5] they prove that G(F) and Gred(F)
are special groups with the special relation given by usual notion of isometry, and Gred(F) is
always reduced.

A group of exponent 2, with a distinguished element −1, satisfying the axioms
SG0–SG3 and SG5 is called a proto-special group; a pre-special group is a proto-special
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group that also satisfies SG4. Thus, a special group is a pre-special group that satisfies SG6
(or, equivalently, for each n ≥ 1, ≡n is an equivalent relation of Gn).

A n-form (or form of dimension n ≥ 1) is an n-tuple of elements of a pre-special G.
If φ = ⟨a1, a2, . . . , ak⟩ and ψ = ⟨b1, b2, . . . , bn⟩, then φ ⊕ ψ := ⟨a1, a2, . . . , ak, b1, b2, . . . , bn⟩
and φ ⊗ ψ := ⟨a1b1, . . . , a1bn, a2b1, . . . , a2bn, . . . , akb1, . . . , akbn⟩.

An element b ∈ G is represented on G by the form φ = ⟨a1, . . . , an⟩, in symbols
b ∈ DG(φ), if there exists b2, . . . , bn ∈ G such that ⟨b, b2, . . . , bn⟩ ≡ φ. A pre-special group
(or special group) (G,−1,≡) is:

• formally real if −1 /∈ ⋃
n∈N DG(n⟨1⟩) (Here, the notation n⟨1⟩ means the form

⟨a1, . . . , an⟩ where aj = 1 for all j = 1, . . . , n. In other words, n⟨1⟩ is the form ⟨1, . . . , 1⟩
with n entries equal to 1);

• reduced if it is formally real and, for each a ∈ G, a ∈ DG(⟨1, 1⟩) if a = 1.

Definition 4 (2.1 of [5]). Let G be a special group. A Pfister form over G is a quadratic form φ of
the type ⊗n

i=1⟨1, a⟩i = ⟨⟨a1, . . . , an⟩⟩, where n ≥ 1 and a1, . . . , an ∈ G, or the form ⟨1⟩, if n = 0.
The integer n is called the degree of φ and written deg(φ). If the coefficients of φ happen to belong
to a subgroup ∆ of G, we say that φ is Pfister over ∆.

Since the Pfister form φ contains 1 as a coefficient, we may write φ as ⟨1⟩ ⊕ φ′. The subform
φ′ is called the pure subform of φ.

Proposition 1 (Basic properties of Pfister forms (2.2 of [5])). Let G be a special group,
φ = ⟨⟨a1, . . . , an⟩⟩ a Pfister form over G of degree n ≥ 1 and b ∈ G. Then,

(i) b ∈ DG(1, a1) ⇒ ⟨⟨a1, a2⟩⟩ ≡G ⟨⟨a1, a2b⟩⟩.
(ii) b ∈ DG(a1, a2) ⇒ ⟨⟨a1, a2⟩⟩ ≡G ⟨⟨b, a1a2⟩⟩.
(iii) ⟨⟨a1b, . . . , anb⟩⟩ ≡G ⟨⟨1, a1b⟩⟩ ⊗ ⟨⟨a1a2, . . . , a1an⟩⟩.
(iv) If b ∈ DG(φ′), then φ ≡G ⟨⟨b, b2, . . . , bn⟩⟩, with b2, . . . , bn ∈ G.
(v) An isotropic Pfister form is hyperbolic.
(vi) DG(φ) = {x ∈ G : xφ ≡G φ}. Hence, DG(φ) is a subgroup of G. If ψ is a Pfister form

over G, then DG(φ)DG(ψ) ⊆ DG(φ ⊗ ψ).
(vii) If a ∈ DG(φ), then ⟨⟨a1, . . . , an, b⟩⟩ ≡G ⟨⟨a1, . . . , an, ab⟩⟩.
(viii) a ∈ DG(φ) ⇒ ⟨1, a⟩ ⊗ φ ≡G 2 ⊗ φ and ⟨1,−a⟩ ⊗ φ is hyperbolic.
(ix) a ∈ DG(φ) and b ∈ DG(1, a) ⇒ b ∈ DG(2 ⊗ φ).
(x) ⟨1, a⟩ ⊗ φ ≡G 2 ⊗ φ ⇒ a ∈ DG(φ).
(xi) ⟨1,−a⟩ ⊗ φ hyperbolic ⇒ a ∈ DG(φ).
(xii) The following are equivalent:

(a) G is a reduced special group.
(b) 1 ̸= −1 and for every Pfister form φ over G of degree ≥ 1 and a ∈ G:

a,−a ∈ DG(φ) ⇒ φ hyperbolic.

(c) 1 ̸= −1 and for every Pfister form φ over G and a ∈ G

a ∈ DG(⟨1,−a⟩ ⊗ φ) ⇒ a ∈ DG(φ).

Remark 1 (Notations and Facts). Let G be a fixed special group. Here, we summarize some
notations and results about Witt equivalence, Witt ring, and the powers of fundamental ideal of the
Witt ring. For more details, see for instance [5,7–9].

• Let φ, ψ be forms on G. We can say that φ and ψ are Witt equivalent, denoted φ ≈W,G ψ, if
there exist non negative integers k, l such that

k⟨1,−1⟩ ⊕ φ ≡G l⟨1,−1⟩ ⊕ ψ.
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By Witt’s Decomposition Theorem, if φ is a form on G, there are unique forms φan, φhip, φ0

(up to isometry) with φ ≡ φan ⊕ φhip ⊕ φ0, φan anisotropic, φhip hyperbolic and φ0 totally
isotropic. We define dimW,G(φ) := dim(φan).

• The Witt ring of G, W(G), is the set of equivalence classes of forms modulo ≈W,G, with sum
and product endowed form ⊕ and ⊗, respectively. The fundamental ideal, I(G) ⊆ W(G),
is the ideal determined by even dimensional anisotropic forms.

• For each n ∈ N consider the statement:
APG(n): For each φ = ⟨a1, · · · , ak⟩, a non-empty (k ≥ 1), regular (ai ∈ G) and anisotropic
form, if φ ∈ In(G), then dim(φ) ≥ 2n.

• Let ψ be a Pfister form. Then, ψ is hyperbolic if it is isotropic. Moreover, if G is reduced and
−1 ∈ DG(ψ), then ψ is hyperbolic.

• In(G) ⊆ W(G) is additively generated by the Pfister forms of degree n.
• If φ ∈ In(G) \ {∅}, then φ = ε1 φ1 + . . . + εr φr, where r ≥ 1 and ε j = ±1 for all

j = 1, . . . , r. Moreover, if φ is anisotropic, we will suppose without loss of generality that
ε j = 1 for all j = 1, . . . , r.

• Let φ ∈ InG with φ = φ1 + . . . + φr for suitable Pfister forms φ1, . . . , φr. If φ is anisotropic,
then for all positive integers m with 1 ≤ m ≤ r and all σ ∈ Sm the form φσ(1) + . . . + φσ(m)

is anisotropic.

3. Marshall’s Quotient of a Special Group
Here, we present the main ingredient of the paper, that are inspired by the techniques

developed by Murray Marshall in [6] in the setting of multirings.
Let G be a special group and let ∅ ̸= S ⊆ G be such that S · S ⊆ S. Denote

a ∼ b if ar = bs for some r, s ∈ S.

Note that, since every special group is an exponent 2 group, the condition S ̸= ∅ and
S · S ⊆ S implies that S is a subgroup of G.

Lemma 1. Under the above circumstances, the relation ∼ is an equivalence relation.

Proof. Let a, b, c ∈ G. Of course ∼ is reflexive and symmetric as a consequence of reflexivity
and symmetry of equality. Now, suppose a ∼ b and b ∼ c, saying ar = bs and bv = cw
with r, s, v, w ∈ S. Then, ars = b and b = cwv imply a(rs) = c(vw) with rs, vw ∈ S. Then,
∼ is transitive.

Elements in G/mS will be denoted by [a] ∈ G/mS, a ∈ S. Then, [a] = [b] means a ∼ b
and we denote

G/mS := {[a] : a ∈ G}.

We call G/mS the Marshall quotient of G by S.

Lemma 2. The set G/mS = {[a] : a ∈ G} is a group with the operation inherited from G.

Proof. Let a, a′, b, b′ ∈ S with [a] = [a′] and [b] = [b′], saying ar1 = a′s1 and
br2 = b′s2. Then

(ab)(r1r2) = (ar1)(br2) = (a′s1)(b′s2) = (a′b′)(r2s2).

Then, [ab] = [a′b′]. Moreover, we have an operation in G/mS given by the rule [a][b] := [ab].
The fact that this operation provides a group structure on G/mS is an immediate conse-
quence of the group properties holding in G.
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Our next step is to define a structure of special group over G/mS. Note that if −1 ∈ S,
then G/mS ∼= {[1]}. Thus, we may always suppose that −1 /∈ S.

We proceed by steps. First, for [a], [b] ∈ G/mS define

DG/mS([a], [b]) := {[d] : d ∈ DG(as, bt) for some s, t ∈ S}

and
⟨[a], [b]⟩ ≡G/mS ⟨[c], [d]⟩ if [ab] = [cd] and [ac] ∈ DG/mS([1], [cd]).

Theorem 2. With the above notations, (G/mS, ·,≡G/mS,−[1]) satisfies the axioms [SG1]–[SG5]
of Definition 2.

Proof. We verify axioms [SG1]–[SG5].

SG1 ⟨[a], [b]⟩ ≡G/mS ⟨[b], [a]⟩ follows directly from the definition of ≡G/mS.

SG2 Since a ∈ DG(1,−1) for all a ∈ G and 1 ∈ S, it follows that [a] ∈ DG/mS([1], [−1]),
hence ⟨[a],−[a]⟩ ≡ ⟨[1],−[1]⟩.

SG3 ⟨[a], [b]⟩ ≡ ⟨[c], [d]⟩ ⇒ [ab] = [cd] follows directly from the definition of ≡G/mS.

SG4 Let ⟨[a], [b]⟩ ≡G/mS ⟨[c], [d]⟩. Then

ab = cdt and ac ∈ DG(r, cds) for some r, s, t ∈ S.

In particular, a(−c) = (−b)dt. Moreover, ac ∈ DG(r, cds) = DG(r, abst) imply,
by axiom SG4 for G, that −abst ∈ DG(r,−ac) = DG(r,−bst), with st, r ∈ S, which
proves that ⟨[a],−[c]⟩ ≡G/mS ⟨−[b], [d]⟩.

SG5 Since
ab = cdt and ac ∈ DG(r, cds) for some r, s, t ∈ S

provide

(ag)(bg) = (cg)(dg)t and (ag)(cg) ∈ DG(r, (cg)(dg)s) for some r, s, t ∈ S.

we obtain that ⟨[a], [b]⟩ ≡G/mS ⟨[c], [d]⟩ imply ⟨[ag], [bg]⟩ ≡G/mS ⟨[cg], [dg]⟩ for
all g ∈ G.

Of course, the relation ≡G/mS is transitive and symmetric: Let [a], [b], [c], [d], [e], [ f ] ∈
G/mS. Since 1 ∈ DG(1, ab), we have

[aa] = [1] ∈ DG/mS([1], [ab]),

which means that ⟨[a], [b]⟩ ≡G/mS ⟨[a], [b]⟩ (≡G/mS is reflexive). Now, let ⟨[a], [b]⟩ ≡G/mS

⟨[c], [d]⟩. This means that [ab] = [cd] and [ac] ∈ DG/mS([1], [cd]). Then, ab = cdt and
ac ∈ DG(r, cds) for suitable r, s, t ∈ S. Hence, we get

cd = abt and ca ∈ DG(r, abts) with r, s, ts ∈ S.

This means that ⟨[c], [d]⟩ ≡G/mS ⟨[a], [b]⟩ (≡G/mS is symmetric).
Unfortunately, axioms [SG0] (the transitive condition) and [SG6] do not hold for a

general S.
Since our main goal here is to discuss what should be a quadratic extension for

special groups (and not deal with the most general quotient available), we christen the
following Definition .
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Definition 5. Let G be a special group and S ⊆ G. We say that S is a Dickmann–Miraglia subset
of G (or DM-subset for short) if S · S ⊆ S and the above described structure on (G/mS,≡G/mS,
[−1]) provides a special group.

The terminology “Dickmann–Miraglia” subset suits two purposes: (1) it pays homage
to professors Maximo Dickmann and Francisco Miraglia, the creators of the special group
theory; (2) it makes the notation coherent with other papers in the area, for example, [10].
Moreover, the Axioms [DM 0]–[DM 3] in [10] (in the language of hyperfields) provides a
general description of DM-subsets.

The next step is to investigate the relations between the Pfister quotient defined and
developed in Chapter 2 of [5] and the Marshall’s quotient. We recover some terminology
and results from Chapter 2 of [5].

Definition 6 (2.15 of [5]). Let G be a special group. A collection S of Pfister forms is said to be
(upward) directed if for every φ, ψ ∈ S , there exists θ ∈ S such that DG(φ), DG(ψ) ⊆ DG(θ).

A subgroup ∆ of G is a Pfister subgroup if there is a directed family S of Pfister forms over G
such that ∆ =

⋃{DG(φ) : φ ∈ S}.

Note that if φ is a Pfister form, then DG(φ) is a Pfister subgroup, as S = {φ} is directed.

Proposition 2 (2.18 of [5]). Let G be a special group and ∆ a Pfister subgroup of G,
∆ =

⋃{DG(φ) : φ ∈ S}, S a directed family of Pfister forms. For a, b, c, d ∈ G, the following
are equivalent:

(a) ⟨a/∆, b/∆⟩ ≡∗
G/∆ ⟨c/∆, d/∆⟩.

(b) There is a φ ∈ S such that ⟨a, b⟩ ⊗ φ ≡G ⟨c, d⟩ ⊗ φ.

Lemma 3 (2.19 of [5]). Let G be a special group and φ a Pfister form over G.

(a) For a, b, c, d ∈ G, the following are equivalent:

(i) ⟨a, b⟩ ⊗ φ ≡G ⟨c, d⟩ ⊗ φ.
(ii) There are a′, b′, c′, d′ ∈ G such that aa′, bb′, cc′, dd′ ∈ DG(φ) and ⟨a′, b′⟩ ≡G ⟨c′, d′⟩.

(b) Conditions (i) or (ii) imply abcd ∈ DG(φ).

Lemma 4 (2.20 of [5]). Let G be a special group and let φ1, φ2 be anisotropic Pfister forms over G,
such that DG(φ1) ⊆ DG(φ2). Then, for all forms ψ, θ over G,

ψ ⊗ φ1 ≡G θ ⊗ φ1 ⇒ ψ ⊗ φ2 ≡G θ ⊗ φ2.

Proposition 2 with Lemmas 3 and 4, yield

Proposition 3 (2.21 of [5]). Let G be a special group and ∆ a Pfister subgroup of G, determined
by the directed family S of Pfister forms over G. Then, (G/∆,≡∗

G/∆,−1/∆) is a special group,
and the quotient map π : G → G/∆ is a morphism of special groups. Further, 1 ̸= −1 in G/∆ if
−1 /∈ ∆. Moreover, in this situation we have

(a) If φ, ψ are n-forms in G, then π ⋆ φ ≡∗
G/∆ π ⋆ ψ if there is a Pfister form P in S such that

φ ⊗P ≡G ψ ⊗P .
(b) If f : G → H is a morphism of special groups satisfying ∆ ⊆ Ker( f ), then there is a unique

SG-morphism f̂ : G/∆ → H such that f = f̂ ◦ π.

Concerning the Marshall’s quotient under Pfister subgroups, we have a similar result
to the Pfister quotients in [5].
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Theorem 3. Let G be a special group and ∆ ⊆ G be a Pfister subgroup.

∆ =
⋃
{DG(φ) : φ ∈ S}

where S is a directed family of Pfister forms. Then,

[φ] ≡G/mS [ψ] if there is a Pfister form θ ∈ S such that θ ⊗ φ ≡G θ ⊗ ψ. (1)

In particular (G/mS,≡G/mS,−[1]) is a special group.

Proof. What remains is to check the Axioms [SG0] and [SG6]. Transitivity of the relation
≡G/mS follows from Lemma 4, using Proposition 2. Likewise, Axiom [SG6] is an imme-
diate consequence of Equation (1), which is proven by induction on n, using Lemma 4
and Proposition 2.

Theorem 4 (Universal Property of Marshall’s Quotient). Let G, H be special groups and S ⊆ A
a DM-subset of G. Then, for every SG-morphism f : G → H such that f [S] = {1}, there exists a
unique morphism f̃ : G/mS → H such that the following diagram commute:

G

π
��

f // H

G/mS
! f̃

<<

where π : G → G/mS is the canonical projection π(a) = [a].

Proof. Note that if [a] = [b], saying ar = bs, we have (under the hypothesis that
f [S] = {1}) that

f (a) = f (a) f (r) = f (ar) = f (bs) = f (b) f (s) = f (b).

Then we are able to define f̃ ([a]) := f (a). It is straightforward to prove that f̃ is the unique
morphism such that f = f̃ ◦ π.

Using the Universal Properties of Marshall’s Quotient (Theorem 4) and Pfister’s
Quotient (Proposition 2.21, Chapter 2 of [5]) we obtain the following.

Theorem 5. Let G be a special group and ∆ ⊆ G be a Pfister subgroup of G. Then,

G/∆ ∼= G/m∆.

We have an interesting (and non obvious) consequence of the Universal Property.

Proposition 4. Let G be a special group and S1, S2 ⊆ G be Pfister subgroups of G with
S1 ⊆ S2. Then, there exists a unique surjective morphism G/mS1 → G/mS2 in the sense of
Universal Property.

Proof. Let π1 : G → G/mS1 and π2 : G → G/mS2 be the quotient morphisms. Since

π2[S1] ⊆ π2[S2] = {[1]},

the Universal property Theorem 4 provides a unique morphism φ : G/mS1 → G/mS2 such
that π2 = φ ◦ π1. Since both π1 and π2 are surjective, it follows that φ is also surjective.
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The following was unexpected: for S1 ⊆ S2, it was desired to obtain an injective mor-
phism G/mS2 → G/mS1, but Proposition 4 provides a morphism in the reverse direction.

4. Quadratic Extensions of Special Groups
Let G be a special group and let δ ∈ G. Note that DG(1, δ) = DG(⟨⟨δ⟩⟩) is a Pfister

subgroup of G. We define
G(

√
δ) := G/mDG(1, δ).

Remark 2. By Theorem 3, we have

[φ] ≡G(
√

δ) [ψ] if ⟨1, δ⟩ ⊗ φ ≡G ⟨1, δ⟩ ⊗ ψ. (2)

Theorem 6. Let G be a special group and α, β ∈ G. Then,

[G(
√

α)](
√

β) ∼= [G(
√

β)](
√

α).

Proof. Here, we will deal with many quotients. In order to simplify the proof, let us denote
the following:

G(
√

α) := G/mDG(1, α) = {[g]α : g ∈ G} (3)

G(
√

β) := G/mDG(1, β) = {[g]β : β ∈ G}
[G(

√
α)](

√
β) = G(

√
α)/mDG(

√
α)([1]α, [β]α) = {[g]α,β : [g]α ∈ G(

√
α)}

[G(
√

β)](
√

α) = G(
√

β)/mDG(
√

β)
([1]β, [α]β) = {[g]β,α : [g]β ∈ G(

√
β)}.

In this sense, the quotient morphisms π1 : G(
√

α) → [G(
√

α)](
√

β) and π2 : G(
√

β) →
[G(

√
β)](

√
α) are given, respectively, by π1([g]α) = [g]α,β and π2([g]β) = [g]β,α.

We have morphisms q1 : G(
√

α) → [G(
√

β)](
√

α) and q2 : G(
√

β) → [G(
√

α)](
√

β)

given, respectively, by the rules q1([g]α) = [g]β,α and q2([g]β) = [g]α,β. We check for
q1; the case for q2 is analogous. Let g, h ∈ G with [g]α = [h]α. Then, gr = hs for some
r, s ∈ DG(1, α) which imply (after application of the morphism π2) that [g]β[r]β = [h]β[s]β
with [r]β, [s]β ∈ DG(

√
β)
([1]β, [α]β). In particular, [r]β,α = [s]β,α = [1]β,α. Then

[g]β,α = [g]β,α[1]β,α = [g]β,α[r]β,α = [gr]β,α

= [hs]β,α = [h]β,α[s]β,α = [h]β,α[1]β,α = [h]β,α.

Then, the rule [g]α 7→ [g]β,α in fact defines a function q1 : G(
√

α) → [G(
√

β)](
√

α). The fact
that q1 is a morphism follows directly then.

Hence, we have a morphism q1 : G(
√

α) → [G(
√

β)](
√

α) with q1[DG(
√

α)([1]α, [β]α)] =
{[1]β,α}. The Universal Property Theorem 4 provides a unique morphism qα,β :
[G(

√
α)](

√
β) → [G(

√
β)](

√
α) such that q1 = qα,β ◦ π1. Similarly, there exists a unique

morphism qβ,α : [G(
√

β)](
√

α) → [G(
√

α)](
√

β) such that q2 = qβ,α ◦ π2. The universal
property Theorem 4 forces qαβ ◦ qβα = id and qβα ◦ qαβ = id.

By Theorem 6, we may now define iterated quadratic extensions generalizing G(
√

δ).

Definition 7. For δ1, . . . , δn ∈ G, we define recursively:

G(
√

δ1,
√

δ2) := [G(
√

δ1)](
√

δ2);

G(
√

δ1, . . . ,
√

δn+1) := [G(
√

δ1, . . . ,
√

δn)](
√

δn+1).
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Later in this paper, we will show that this definition is independent (up to isomor-
phism) of the order of the “roots”

√
δ1, . . . ,

√
δn.

Theorem 7. Let G be a special group, δ1, . . . , δn ∈ G and σ ∈ Sn. Then

G(
√

δ1, . . . ,
√

δn) ∼= G(
√

δσ(1), . . . ,
√

δσ(n)).

Furthermore, we have another (and more significant) description for G(
√

δ1, . . . ,
√

δn).

Theorem 8. Let α, β ∈ G. Then,

G(
√

α,
√

β) ∼= G/mDG(⟨⟨α, β⟩⟩).

Proof. We import the terminology of Equation (3) of the proof of Theorem 6. Using
Equation (1) (Theorem 3) and Equation (2), we have

[φ]α ≡G(
√

α) [ψ]α if φ ⊗ ⟨1, α⟩ ≡G ψ ⊗ ⟨1, α⟩

[φ]β ≡G(
√

β)
[ψ]β if φ ⊗ ⟨1, β⟩ ≡G ψ ⊗ ⟨1, β⟩

[φ] ≡G/mDG(⟨⟨α,β⟩⟩) [ψ] if φ ⊗ ⟨⟨α, β⟩⟩ ≡G ψ ⊗ ⟨⟨α, β⟩⟩ (4)

Since ⟨1, α⟩ = ⟨⟨α⟩⟩, ⟨1, β⟩ = ⟨⟨β⟩⟩ and ⟨⟨α, β⟩⟩ are Pfister forms and both DG(⟨1, α⟩)
and DG(⟨1, β⟩) are subsets of DG(⟨⟨α, β⟩⟩), using Equation (1) (Theorem 3), Equation (2),
Lemma 4 and Equation (4) (above), we get

[φ] ≡G/mDG(⟨⟨α,β⟩⟩) [ψ] imply that [φ]α ≡G(
√

α) [ψ]α and [φ]β ≡G(
√

β)
[ψ]β. (5)

In particular, by the Universal Property Theorem 4 we have a unique morphism q1 :
G/mDG(⟨⟨α, β⟩⟩) → G(

√
α,
√

β) given by the rule q1([g]) := [g]αβ. On the other hand,
Equations (4) and (5) provide a morphism π : G(

√
α) → G/mDG(⟨⟨α, β⟩⟩) given by

π([g]α) := [g], for which π(DG(
√

α)([1]α, [β]α) = {[1]}. Then, there exists a unique
morphism q2 : G(

√
α,
√

β) → G/mDG(⟨⟨α, β⟩⟩), given by the rule q2([g]αβ) := [g]
and such that π = q2 ◦ πG(

√
α,
√

β)
(here πG(

√
α,
√

β)
: G(

√
α) → G(

√
α,
√

β) is the

quotient morphism).
The Universal Property Theorem 4 forces q1 ◦ q2 = id and q2 ◦ q1 = id.

Using Theorems 6–8 with an inductive argument we get the following description.

Theorem 9. Let δ1, . . . , δn ∈ G. Then

G(
√

δ1, . . . ,
√

δn) ∼= G/mDG(⟨⟨δ1, . . . , δn⟩⟩).

This leads to the following interesting Corollary of Theorem 9 (remember Equation (1)
in Theorem 3!):

Corollary 1. Let G be a special group and δ1, . . . , δn ∈ G. Then,

⟨[a1], . . . , [am]⟩ ≡G(
√

δ1,...,
√

δn)
⟨[b1], . . . , [bm]⟩

if
⟨a1, . . . , am⟩ ⊗ ⟨⟨δ1, . . . , δn⟩⟩ ≡G ⟨b1, . . . , bm⟩ ⊗ ⟨⟨δ1, . . . , δn⟩⟩.

Based on these results, we introduce the following.
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Definition 8. Let G be a special group and φ = ⟨⟨δ1, . . . , δn⟩⟩ be a Pfister form. We define:

G(φ) := G/mDG(⟨⟨δ1, . . . , δn⟩⟩) ∼= G(
√

δ1, . . . ,
√

δn).

5. A New Proof of Arason–Pfister Hauptsatz
In the sequel, our objective is to characterize for a special group G, whether [a] = [b]

in G(
√

a1, . . . ,
√

an) in terms of the equations in G.

Theorem 10. Let G be a special group and a, b, c ∈ G. Then, [a] = [b] in G(
√

a) if there is
s, t ∈ DG(1, a) with as = bt (or a = bst or even b = ats).

Proof. Using the Definition of G(
√

a) and the Marshall quotient we have [a] = [b] (in
G(

√
a)) if as = bt for some s, t ∈ DG(1, a) (and since DG(1, a) · DG(1, a) ⊆ DG(1, a), we

have assumed st ∈ DG(1, a) and ast = b, or a = bst).

Theorem 11. Let G be a special group and a1, . . . , an, b, c ∈ G. Then, [a] = [b] in
G(

√
a1, . . . ,

√
an) if there is s, t ∈ DG(⟨⟨a1, a2, . . . , an⟩⟩) such that as = bt (or a = bst or

even ab ∈ DG(⟨⟨a1, a2, . . . , an⟩⟩)).

Proof. We proceed by induction. The case n = 1 is just Theorem 10 (since ⟨⟨a⟩⟩ = ⟨1, a⟩).
Now, suppose the result is valid for n. Here, we denote elements in G(

√
a1, . . . ,

√
an+1)

by [[a]] ∈ G(
√

a1, . . . ,
√

an+1); and elements in G(
√

a1, . . . ,
√

an) by [a] ∈ G(
√

a1, . . . ,
√

an)

(a ∈ G).
Let [[a]] = [[b]] in G(

√
a1, . . . ,

√
an+1). Since

G(
√

a1, . . . ,
√

an+1) ∼= G(
√

a1, . . . ,
√

an)(
√

an+1),

by Theorem 10 we have [ar] = [bs] for some [r], [s] ∈ DG(
√

a1,...,
√

an)([1], [an+1]). By in-
duction hypothesis, we get art = bsw with [r], [s] ∈ DG(

√
a1,...,

√
an)([1], [

√
an+1]) and

t, w ∈ DG(⟨⟨a1, . . . , an⟩⟩).
Now, since [r] ∈ DG(a1,...,an)([1], [an+1]), we have

⟨[r], [ran+1]⟩ ≡G(
√

a1,...,
√

an) ⟨[1], [an+1]⟩.

Using Corollary 1, we have

⟨r, ran+1⟩ ⊗ ⟨⟨a1, . . . , an⟩⟩ ≡G ⟨1, an+1⟩ ⊗ ⟨⟨a1, . . . , an⟩⟩,

which implies that r ∈ DG(⟨⟨a1, . . . , an, an+1⟩⟩). Similarly, s ∈ DG(⟨⟨a1, . . . , an, an+1⟩⟩).
Since Pfister forms are multiplicative, we conclude that a(rt) = b(sw) with rt, sw ∈
DG(⟨⟨a1, . . . , an, an+1⟩⟩), completing the proof.

Corollary 2. Let G be a reduced special group and φ be a Pfister form, say φ = ⟨⟨a1, a2, . . . , an⟩⟩
with a1, a2, . . . , an ∈ G. If φ is anisotropic (−1 /∈ DG(φ)) then G(φ) is formally real.

Proof. Since −1 /∈ DG(φ), by Separation Theorem (Theorem 2.11, Chapter 2 of [5]), there
is a maximal saturated subgroup ∆ such that DG(φ) ⊆ ∆ and −1 /∈ ∆. Then, G/m∆ ∼= Z2

and by the Universal Property of Pfister quotient Theorem 4, there exists a morphism
σ : G(φ) → Z2. Thus, σ ∈ XG(φ) and G(φ) is formally real.

Before we proceed with the proof of the main Theorem 12, let us establish some
notation. Let G be a special group and φ ∈ In(G) be an anisotropic form. As we already
have seen in Remark 1, for an anisotropic form φ ∈ InG, we can suppose without loss of
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generality that φ = φ1 + . . . + φr with φj an anisotropic Pfister form (j = 1, . . . , r). Recall
(Definition 8): If φ1 = ⟨⟨a1, . . . , an⟩⟩, we have

G(φ1) = G/mDG(⟨⟨a1, . . . , an⟩⟩) ∼= G(
√

a1, . . . ,
√

an)

If ψ = ⟨b1, . . . , bm⟩ is a form over G, we denote [ψ] = ⟨[b1], . . . , [bm]⟩ the quotient form over
G(φ1). In this sense, for φ = φ1 + . . . + φr we have

[φ] = 2n · ⟨[1]⟩+ [φ2] + . . . + [φr].

where 2n = dim(φ1). Note that dimW,G(φ) ≥ dimW,G(φ1)
([φ]).

We can suppose without loss of generality that for some positive integer r ≥ 1, we
have φ = φ1 + . . . + φr, with φ1, . . . , φr anisotropic Pfister forms (see Remark 1).

Definition 9. Let G be a special group, φ1, . . . , φr anisotropic Pfister forms and φ = φ1 + . . .+ φr.
The Arason–Pfister sequence of φ over G, AP(G, φ) := (G0, . . . , Gr), is defined recursively by:

G0 := G,

G1 := G(φ1)

Gm+1 := Gm([φm+1]m) for m = 2, . . . , r − 1.

where [φm+1]m means the class of the form φm+1 in Gm, with [φ]m hyperbolic over Gm and
Gm+1

∼= {1}, or (reindexing if necessary) [φm+1]m anisotropic (over Gm+1) (The idea behind
Arason–Pfister sequences is making iterate quotients by all the anisotropic forms in {φ1, . . . , φr}
until we achieve r steps or are left only the isotropic ones). We also denote elements (and forms) in
Gm by [a]m ∈ Gm, a ∈ G ([ψ]m ∈ Gm, ψ form over G).

Note that for all m = 1, . . . , r we have

[φ]m = m · 2n · ⟨[1]m⟩+ [φm+1]m + . . . + [φr]m ∈ Gm.

Lemma 5. Let G be a formally real special group, φ1, . . . , φr anisotropic Pfister forms and

φ = φ1 + . . . + φr

with Arason–Pfister sequence AP(G, φ) := (G0, . . . , Gr). Then:

(i) there exists the minimum p ∈ {1, . . . , r − 1} such that 2n⟨[1]m⟩ is anisotropic for all m ≤ p
and Gm ∼= {1} for all m > p (which means [φ]p hyperbolic over Gp);

(ii) There exists a maximum p ∈ {1, . . . , r} such that [φm]m + . . . + [φr]m is anisotropic over
Gm for all m ≤ p (Observe that if condition (ii) holds, then [φm+1]m + . . . + [φ]r is also
anisotropic over Gm for all m ≤ p).

Definition. This unique p ≥ 1 is called the Arason–Pfister index of AP(G, φ).

Proof. We proceed by induction on r. If r = 1, then condition (ii) holds (just take p = 1).
Let r = 2, with φ = φ1 + φ2. We have two cases:

(I) [φ2]1 isotropic over G1. Then, condition (i) and (ii) holds with p = 1.
(II) [φ2]1 anisotropic over G1. Then, condition (ii) holds with p = 2.

Now suppose the result valid for r − 1 (r ≥ 2) and let φ1, . . . , φr and φ = φ1 + . . . + φr

be anisotropic Pfister forms over G. Note that

AP(G1, [φ]1) = (G2, . . . , Gr).
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In other words, (G2, . . . , Gr) is the Arason–Pfister sequence of [φ]1 over G1. By the
induction hypotheses, there exist an index p′ from which one condition (i) or condition
(ii) holds over G1. This implies that condition (i) or condition (ii) holds over G with
p = p′ + 1.

Theorem 12 (Arason–Pfister Hauptsatz). Let G be a reduced special group, then APG(n) holds,
for all n ≥ 0. In more detail: for each n ≥ 0 and each non-zero (k ≥ 1), regular and anisotropic
form φ = ⟨a1, . . . , ak⟩, if φ ∈ In(G), then dim(φ) = k ≥ 2n.

Proof. If 1 = −1 in G the result is trivially valid. Then, we can suppose 1 ̸= −1. Ad-
ditionally, since φ is a non-zero regular anisotropic form in φ ∈ InG we can suppose
without loss of generality that for some positive integer r ≥ 1, we have φ = φ1 + . . . + φr,
with φ1, . . . , φr anisotropic Pfister forms (see Remark 1).

We proceed by induction on r. If r = 1, then φ = φ1, with dim(φ) = dim(φ1) = 2n.
If r = 2, we have some cases to consider:

I [φ]1 is hyperbolic. Then, [φ]1 ≡G1 ·2n−1 · ⟨[1]1,−[1]1⟩, which means

2n · ⟨[1]1⟩+ [φ2]1 ≡G1 2n · ⟨[1]1,−[1]1⟩.

By Witt’s cancellation, we get

[φ2]1 ≡G1 2n · ⟨−[1]1⟩

Since hyperbolic forms are zero in the Witt ring, we get dimW,G(φ) ≥ dimW,G(φ2) (see
Remark 1) and dimW,G(φ2) ≥ dimW,G1([φ2]1) by the quotient morphism π : G → G1.
Putting this together, we arrive at

dimW,G(φ) ≥ dimW,G(φ2) ≥ dimW,G1([φ2]1) = dimW,G1 2n · ⟨−[1]1⟩ = 2n.

II [φ]1 is anisotropic. Then, φ2 is an anisotropic Pfister form (see Remark 1) and
dimW,G(φ2) ≥ 2n. Moreover,

dimW,G(φ) ≥ dimW,G1([φ]1) ≥ dimW,G1([φ2]1) ≥ 2n.

III [φ]1 is isotropic and not hyperbolic. Observe that this means that

[φ]1 = 2n⟨[1]1⟩+ [φ2]1

is isotropic over G1. If [φ2]1 is anisotropic over G1, then G2 = G1([φ2]1) is a formally
real reduced special group and [φ]2 = 2 · 2n⟨[1]2⟩ is isotropic, contradiction. Then,
[φ2]1 is isotropic over G1, which means

dimW,G(φ) ≥ dimW,G1([φ]1) ≥ dimW,G1 2n · ⟨[1]1⟩ ≥ 2n.

Let r ≥ 2 and suppose the result valid for r − 1. Then,

[φ]1 = [φ1 + . . . + φr]1 = [φ1]1 + . . . + [φr]1 = 2n · ⟨[1]1⟩+ [φ2]1 + . . . + [φr]1.

We already know that dimW,G(φ) ≥ dimW,G(φ2 + . . . + φr) ≥ dimW,G(φ1)
([φ2]1 + . . . + [φr]1).

Then we have three cases:

I [φ]1 is hyperbolic. Then, [φ]1 ≡G1 r · 2n · ⟨[1]1,−[1]1⟩, which means

2n · ⟨[1]1⟩+ [φ2]1 + . . . + [φr]1 ≡G1 r · 2n · ⟨[1]1,−[1]1⟩.
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By Witt’s cancellation we get

[φ2]1 + . . . + [φr]1 ≡G1 2n · ⟨−[1]1⟩+ (r − 1) · 2n · ⟨[1]1,−[1]1⟩

Since hyperbolic forms are zero in the Witt ring, we get

dimW,G(φ) ≥ dimW,G(φ2 + . . . + φr) ≥ dimW,G1([φ2]1 + . . . + [φr]1) =

dimW,G1 2n · ⟨−[1]1⟩ = 2n.

II [φ]1 is anisotropic. Since φ2 + . . . + φr is also anisotropic (see Remark 1), by induction
hypothesis we have dimW,G(φ2 + . . . + φr) ≥ 2n.

Moreover,

dimW,G(φ) ≥ dimW,G(φ2 + . . . + φr) ≥ dimW,G1([φ2]1 + . . . + [φr]1) ≥ 2n.

III [φ]1 is isotropic and not hyperbolic. Let AP(G, φ) = (G0, . . . , Gr) be the Arason–Pfister
sequence of φ over G (see Definition 5) and p its Arason–Pfister index (see Lemma 5).
We have two subcases to consider:

1. Condition (i) of Lemma 5 holds for p. Then, means that Gm is formally real for
all m ≤ p and [φ]p hyperbolic over Gp. Then,

[φ]p = p · 2n · ⟨[1]p⟩+ [φp+1]p + . . . + [φr]p

is hyperbolic, which means

p · 2n · ⟨[1]p⟩+ [φp+1]p + . . . + [φr]p ≡Gp p · 2n⟨[1]p,−[1]p⟩.

By Witt’s cancellation we get

[φp+1]p + . . . + [φr]p ≡Gp 2n · ⟨−[1]1⟩+ (r − p) · 2n · ⟨[1]1,−[1]1⟩

Since hyperbolic forms are zero in the Witt ring, we get

dimW,G(φ) ≥ dimW,G(φp+1 + . . . + φr) ≥

dimW,Gp([φp+1]p + . . . + [φr]p) = dimW,Gp 2n · ⟨−[1]1⟩ = 2n.

2. Condition (ii) of Lemma 4.6 holds for p. In particular, [φp+1]p + . . . + [φ]p is
anisotropic over Gp. By induction hypothesis dimW,Gp([φp+1]p + . . . + [φ]p) ≥
2n. Then

dimW,G(φ) ≥ dimW,G(φp + . . . + φr) ≥ dimW,Gp([φp+1]p + . . . + [φ]p) ≥ 2n.

The classical (and equivalent) way to state Theorem 12 is the following: if a form φ

belongs to InG and dim φ < 2n then φ must be a hyperbolic form (see for instance [9]).

6. Final Remarks and Further Research
We have obtained a new proof of Arason–Pfister Hauptsatz in the same abstract setting

of the proof presented in [5]—the class of reduced special groups–, but avoiding completely
the use of Horn–Tarski and Stiefel–Whitney invariants for n-ary isometry.

On the other hand, extending the Arason–Pfister Hauptsatz to arbitrary (or, at least,
formally real) special groups remains a central challenge, specially because we do not
have an analogous of Corollary 2 for general special groups. Possibly approaches require
either a generalization of the quotient techniques or the development of some notion of
“transcendental extensions” for special groups.

Since Marshall’s original notion of quotient arose in the context of real reduced hy-
perfields [6], it would be fruitful to explore whether our constructions admit natural
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reformulations in terms of hyperstructures or real spectra, possibly leading to a unified
approach to abstract quadratic form theories.

The theory of special groups, their quotients, and associated invariants might benefit
from a reinterpretation in categorical terms—e.g., through the lens of topos theory, or model
categories. These perspectives may yield further structural results and pave the way for
homotopical generalizations.

The explicit structure of Marshall’s quotient and quadratic extensions suggests algo-
rithmic possibilities for detecting isotropy and computing dimensions in abstract settings,
which could be valuable in calculations involving special groups.

The categorical tools introduced here may allow for AP-type results in settings be-
yond classical quadratic forms—for example, in hermitian or sesquilinear form theories,
especially defined over (non-commutative) hyperfields and multirings endowed with
involution [11].
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