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Abstract: Boiling heat transfer plays a crucial role in various engineering applications,
requiring accurate numerical modeling to capture phase-change dynamics. This study
employs the pseudopotential lattice Boltzmann method (LBM) to simulate boiling heat
transfer at different reduced temperatures, aiming to provide deeper insights into bubble
dynamics and heat transfer mechanisms. The LBM framework incorporates a multi-
relaxation-time approach and the Peng—Robinson equation of state to enhance numerical
stability and thermodynamic consistency. Simulations were performed to analyze bubble
nucleation, growth, and detachment across varying reduced temperatures, considering the
influence of surface wettability, surface tension and gravitational acceleration. The results
indicate a strong dependence of bubble behavior on the reduced temperature, affecting
both heat flux and boiling regimes. The numerical findings show reasonable agreement
with theoretical predictions and experimental trends, validating the effectiveness of the
LBM approach for phase-change simulations. Additionally, this study highlights the role of
contact angle variation in modifying boiling characteristics, emphasizing the necessity of
accurate surface interaction modeling. The outcomes of this work contribute to advancing
computational methodologies for boiling heat transfer, supporting improved thermal
management in industrial applications.

Keywords: boiling heat transfer; lattice Boltzmann method; phase-change simulation

1. Introduction

The dynamics of multiphase flow is characterized by the concurrent presence of at
least two immiscible phases with a dynamic interface connecting them. This interface is the
boundary or thin region where two or more distinct phases meet. Physical properties such
as density, viscosity, temperature, or composition typically experience a sudden change
(or a change in a very small distance) at the interface. The interface thus demarcates the
area in which each phase dominates and plays an important role in controlling interfacial
phenomena such as surface tension, heat transfer, and mass transfer between the phases.
These flow processes occur in many industries, including the extraction and processing
of petroleum, conventional and nuclear power, and refrigerator and freezer systems [1,2].
The complexity of multiphase flows stems from the strong interrelationships between
fluid dynamics, thermal interaction, mass transfer, and interfacial processes. For example,
in boiling, processes such as nucleation, growth, and detachment of bubbles depend on
complex interactions between thermal gradients, inertia of the fluid, interfacial tension,
and kinetics of transition between phases [3]. Consequently, simulations that seek to
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accurately model multiphase flows, and specifically boiling heat transfer, require much
larger computational capabilities compared to their single-phase counterparts. Therefore,
sophisticated numerical methodologies are required capable of tracking interfaces and
accurately simulating localized conduction and convection processes.

Bubble nucleation on heated surfaces forms the foundation of many engineering ap-
plications, especially in boiling processes within flooded evaporators commonly used in
vapor-compression refrigeration systems [3]. Boiling, with its high thermal conductance,
has been a well-examined phenomenon for many years. An early experimental investiga-
tion by Nukiyama [4] developed the concept of the boiling curve, a relation between heat
flux and wall superheat in pool boiling, defining operational regimes through its nonmono-
tonic behavior (e.g., Figure 1): natural convection, nucleate boiling, transition boiling, and
film boiling. Notably, Nukiyama also documented a hysteresis between nucleate and film
boiling, characterizing complex behavior in phase-change thermal conduction. Following
Nukiyama’s work, numerous experimental studies have continued to develop a deeper
understanding of the laws governing boiling thermal conduction through its constituent
processes, including bubble growth, detachment, and coalescence, over a full range of
operational scenarios and surface character [5-7].
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Figure 1. Schematic representation of the boiling curve: 1—onset of nucleate boiling, 2—fully
developed nucleate boiling, 3—critical heat flux, 4—transition, 5—film boiling.

Concerning nucleate boiling, the processes involved in heat transfer responsible for
high heat transfer coefficients include the following:

*  Microlayer evaporation underneath a bubble.

¢ Transient conduction in overheated liquid.

¢ Convective transport caused through bubble motion.
*  Surface rewetting and bubble pumping effect.

In recent years, computational approaches have increasingly been adopted as comple-
mentary approaches to experimental testing in Thermal and Fluids Engineering. Behind
this development, for the most part, have been both commercial (e.g., ANSYS Fluent,
COMSOL) and free-access simulation software (e.g., OpenFOAM), allowing for simulation
of complex flow behavior under a range of working conditions [8].
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A key challenge in Computational Fluid Dynamics (CFD) is an accurate simulation of
multi-phase flows, for which techniques such as the Volume of Fluid (VOF) and Level Set
(LS) approaches have become widespread practice. These techniques rely on continuum
hypotheses and solve Navier-Stokes equations (in conjunction with energy and species
conservation equations when applicable) over a computational region of interest. Next, an
additional transport equation is added in order to track the motion of an interface. For the
VOF method, a color function or a function of a volume fraction describes phases of a fluid,
whereas in the Level Set method, a signed distance function is utilized in determination
of an interface location [9]. Both approaches involve incorporation of surface tension
forces through specific formulations such as with the Continuum Surface Force (CSF)
model [10] and require careful processing of an interface reconstruction in an attempt to
avoid numerical diffusion.

Although continuum models can work for a variety of engineering scenarios, spe-
cific processes such as near-wall microphysical behavior, events of a phase transition, and
interfacial microstructure could use a less phenomenologic basis for a model. In princi-
ple, microscopical techniques such as Molecular Dynamics (MD) and Direct Simulation
Monte Carlo (DSMC) bypass continuum approximation through direct resolution of New-
ton’s laws of motion for discrete particles and molecules, respectively. However, these
techniques demand high computational capacities, even with ongoing improvements in
high-performance computers [11-13].

Mesoscopic methods represent an attractive intermediate between purely continuum
and purely molecular representations, and LBM is the most exemplary of them. The method
works with the Boltzmann transport equation over a discrete lattice structure, allowing for
efficient simulation of interfacial behavior and phase transformation processes at a level
of detail unnecessary for conventional continuum solvers [11]. In a modern development,
complex numerical methodologies, including LBM, have been developed for simulations
of multiphase flows with interfacial behavior [7,14]. LBM-inspired approaches allow for
in-depth analysis of bubble development, growth, and disengagement over hot walls,
supporting improvements in thermal system design and thermal performance optimization
through boiling processes [15,16].

In recent years, the LBM with a pseudopotential model has proven a viable alterna-
tive for conventional CFD approaches for the simulation of multiphase and phase-change
behavior, specifically in complex thermofluid problems in which careful tracking of inter-
faces is critical [17,18]. Rooted in the Kinetic Theory of Gases, the LBM describes fluid
dynamics at a mesoscopic level through distribution functions for particles defined in a
discrete velocity set. By utilizing density gradients in distribution functions, the LBM
naturally accommodates interfaces, circumventing explicit tracking techniques that mark
conventional CFD approaches [11].

A significant advantage of the pseudopotential LBM for boiling heat and similar phase-
change processes stems from its ability to calculate pressure directly through an Equation
of State (EOS), first developed by Shan and Chen [17]. In so doing, a Poisson equation is
avoided, and overall computational requirements are reduced, a feature not necessarily
linked with pressure—velocity coupling in conventional CFD solvers. In addition, the LBM’s
native localized updating processes make it even more apt for parallelization, increasingly
critical with high-performance computer availability becoming widespread.

Notwithstanding these strengths, it must be acknowledged that the LBM with a
pseudopotential model is explicit in time; therefore, taking smaller time steps in an attempt
to maintain numerical accuracy and stability will drive overall computational cost higher.
In addition, in contrast to conventional CFD, requirements for resolution and grid density
can become even more extreme in an attempt to accurately represent interfacial behavior,
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yet at a cost in computational efficiency. Existing work is focused towards developing
hybrid approaches and optimized collision processes to mitigate such weaknesses, yet all
in an attempt to maintain inbuilt capabilities for representing interfaces and proving strong
performance in modern parallel computer architectures [19,20].

Among the many forms of LBM approaches, the pseudopotential model has become
increasingly popular in two-phase and multiphase flow simulations. According to [21],
such a scheme proves computationally efficient over a wide range of multiphase problems
but can face numerical instabilities when dealing with low density and high density-ratio
scenarios in its application. Consequently, several improvements have been proposed
for enhancing both its accuracy and stability. For one, the authors of [22] analyzed and
optimized the early pseudopotential model for spurious current elimination, terms for such
current appearing in terms of nonphysical velocity gradients at interfaces between phases
in contact with one another. In follow-up studies. the authors of [23] derived an extended
expression for a pressure tensor, allowing for a more sophisticated integration of inter-
molecular forces between adjacent lattice nodes. With such an optimized configuration
of a pressure tensor, one can effectively reduce spurious interfacial current, allowing for
two-phase simulations over a broader range of flow regimes compared with a traditional
Shan-Chen model.

Numerous studies have utilized the LBM for studying boiling behavior, bubble growth,
and nucleation over boiling-promoting surfaces, with many of them utilizing the pseu-
dopotential model [17,18]. Most of them, however, depend on idealized and restricted
conditions, not closely resembling simulation parameters and experimental data for spe-
cific fluids collected in actual experiments. This model enables a better simulation of
underlying processes, most notably in relation to bubble development and growth over
boiling-promoted surfaces. The LBM holds several key advantages in such a use, such
as a relatively simple development process and its intrinsic ability to simulate interfaces
between phases—advantages not easily obtainable with conventional computational fluid
dynamics simulations reliant on sophisticated interface tracking and rebuilding techniques.

The pseudopotential model, as explained by [24], is the most common multiphase
LBM used in simulations of vapor-liquid phase transitions associated with heat transfer
mechanisms. The model has been widely used to study a range of one-component liquid—
gas two-phase phenomena, which include stationary droplet evaporation, nucleate pool
boiling in cavities and channels [25-28], flow boiling [29-31], gas-liquid condensation [32],
and cavitation [33], as well as other related phenomena.

Early work by [34] demonstrated that coupling hydrodynamic and thermal fields via
an equation of state could effectively model bubble departure characteristics, matching
empirical gravity-based predictions. Later, ref. [35] incorporated the energy equation
directly into the LBM using an additional temperature distribution function, though this
approach led to some asymmetries in the flow field. Based on these studies, ref. [36]
introduced a modified pseudopotential LBM with a new source-term formulation to resolve
previous inconsistencies, which yields improved stability, accuracy, and computational
efficiency compared to traditional CFD methods. Finally, subsequent studies by [37,38]
extended the model to investigate the role of surface wettability, revealing distinct bubble
dynamics on hydrophilic versus hydrophobic surfaces and successfully capturing various
boiling regimes within a single boiling curve.

Recent advances in color-gradient multiple-relaxation-time (MRT) lattice Boltzmann
models have significantly improved the simulation of two-phase flows with high density
ratios and complex interfacial phenomena [39-41]. These studies emphasize the impor-
tance of accurately capturing surface tension and contact angle behavior, both of which
critically impact droplet formation, breakup, and coalescence. In [39], a novel MRT-based
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color-gradient framework demonstrates stronger stability and reduced spurious currents
compared to single-relaxation-time approaches, while [40] extends these ideas to more
complex Multiphysics problems by refining the collision operator and force modeling for
better interface morphology representation. Complementarily, ref. [41] highlights the capa-
bility of color-gradient models to handle boiling and phase-change processes, providing
accurate depictions of bubble nucleation and detachment in high-density-ratio scenarios
and confirming the broader applicability of MRT-based color-gradient LBM schemes in
tackling intricate two-phase flow challenges.

Realizing the importance of accurately simulating boiling heat transfer and the in-
tricacies involved with interface tracking in phase-change problems, this study aims to
expand the application of the pseudopotential lattice Boltzmann method (LBM) for the
study of boiling dynamics at different reduced temperatures. The primary objectives are
to investigate the influence of reduced temperature on bubble nucleation, growth, and
detachment to assess the impact of surface wettability on boiling regimes and to validate
the numerical model by comparison with theoretical predictions. Through the implementa-
tion of a multi-relaxation-time approach in combination with a Peng—Robinson equation
of state, this study aims to improve the stability and accuracy of the LBM in simulating
phenomena related to phase changes. The insights gained from this research contribute to
the advancement of computational methods for boiling heat transfer, hence enabling the
development of more efficient thermal management strategies in industrial applications.

2. Numerical Model

The formulations of the equations utilized in the numerical model via the MRT oper-
ator are presented herein and combined from the formulations presented in [42,43]. The
method maintains thermodynamic consistency and allows for independent variation of
the surface tension with respect to the density ratio, which forms a viable foundation for
simulating multiphase phenomena of boiling heat transfer accurately.

The energy equation is discretized in space with a Finite Difference Method (FDM)
and approximated in time with a fourth-order Runge—Kutta scheme. In this manner, a high
level of accuracy in both the space and time dimensions is attained. Appropriate boundary
and initial conditions are determined to accurately simulate real boundary and initial
conditions in boiling processes, such as wall temperatures, fluxes, and thermal property
values at interfaces in a fluid. Next, a general expression for boundary and initial conditions
is derived, together with a consideration of its stability, convergence, and its integration
with a base lattice Boltzmann solver for simulations in phase change [13].

2.1. Hydrodynamic Sub-Model

The hydrodynamic sub-model applies the multi-relaxation-time (MRT) approach
within the context of the lattice Boltzmann equation, thereby handling streaming and
collisions within a moment space rather than directly in distribution-function space. The
discrete evolution of the density distribution function is represented by

fitx+ bt t+ At) = fi(x,t) + A(MTAM) (fj(x 1) — £;7) (1)

The matrix M = M;; serves as an orthogonal transformation that links distribution functions
to a desired set of moments. This mapping facilitates the independent relaxation of each
moment via a diagonal relaxation matrix, A, containing all the relaxation times. The
relaxation rates are carefully selected to enhance numerical stability and accuracy, especially
in comparison to a single-relaxation-time approach, and are particularly beneficial in
simulations with high-gradient conditions typical of boiling heat transfer.

The discretized form of the equilibrium distribution function can be expressed as
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where ¢; is a constant, namely the speed of sound, which is a function of the chosen velocity
scheme; v is the fluid macroscopic velocity; and p is the fluid density.

The two-dimensional numerical simulations utilize the D2Q9 velocity model. Figure 2
depicts a diagram of this scheme.
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Figure 2. Schematic representation of D2Q9 discrete velocity scheme (D2 indicates a two-dimensional
simulation domain and Q9 indicates that each lattice site has nine discrete velocity directions,
indicated using values 1 to 9).

For this velocity scheme, the speed of sound is cs2 = % Also, for this velocity scheme,
the weighing coefficients, w;, and the discrete velocities, c;, are given by, respectively,

%, fori=1:4
w; = %, fori=5:8 )
5, fori=9

(+1,0), (0,+1) fori=1:4
¢ =4 (£1,1) fori=5:8 4)
(0,0) fori=9

The transformation matrix M for the D2Q9 model is given by

1 1 1 1 1 1 1 1 1
-4 -1 -1 -1 -1 2 2 2 2
4 -2 -2 -2 22 2 2 2
o 1 0 -1 0 1 -1 -1 1
M=|0 -2 0 2 0 1 -1 -1 1 (5)
o 0 1 0 -11 1 -1 -1
o 0 -2 0 2 1 1 -1 -1
o 1 -1 1 -10 0 0 O
o 0 0 0 0 1 -1 1 -1
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The revised external forcing approach described in [42] is included to maintain ther-
modynamic consistency within the phase change model. To accurately depict interfacial
dynamics, surface tension follows the strategy outlined in [43]. In the context of the multi-
relaxation-time (MRT) model, collisions occur within the moment space. The moments
produced during a collision are mathematically derived from the previous moments, as
demonstrated in Equation (6):

m*—m—A(m—mEq)+(I—12\)S+AtC (6)

The streaming operation is carried out in velocity space, using Equation (7).

f(x+ciAt, t + At) = M~ 'm*(x, t) )

where m = Mf, m* = Mf*7, Iis the unitary tensor, and S is the forcing term in the moment
space with (I —0.5A)S = MF.

The diagonal matrix A is given by [44]
I e B vt O e et ®)

. -1 -1
A = diag(T, T T T T T T T,

where 7, and T; are the relaxation parameters of conserved moments and are setto 1, 7,
determines the dynamic viscosity, 7. is associated with the bulk viscosity and is set to 1.1,
3 lis related to energy square and is set to 1.1, and T 1is related to the energy flux and is
set to 1.1.

From m* = Mf*, the equilibrium momentum m® can be expressed as

mT =p(1, -2+ 3|V|2, 1-— 3\v\2, Uy, —Ux, Uy, =0y, 0326 — vﬁ, Vs, Uy)T 9)

where |v|* = 0% + 0},

To maintain thermodynamic consistency, the forcing scheme developed by [42] is used,
which involves adjusting the mechanical stability condition. In this framework, the forcing
term S is defined as follows:

0
‘T‘Fintlz
4;2(1@.70.52)
Fin
—6v P i
Fy
Ey
iFy
2(vyFy — vy Fy)
vxFy + vy Fy

6v-F+

where ¢ is a parameter used to tune the mechanical stability condition; |F;,;¢|> = Fl%lt M

FZ, y F = Fint + Fg is the total force; |[F|? = F2 + Fyz, where F; and F; are the total force
components; and vy and vy, are the fluid velocity components.

In the model proposed by [43], the additional source term C has the following form:
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[1.57, 1 (Qux + ny)_
1-5751(Qxx + ny)
0
0
C= 0 (11)
0
T, 1 (Qux — Qyy)
7 Qxy
0

where the terms Qxx , Qyy, and Qyy, are computed as described in Equation (12):

Q = 29(x) L wl(eP) [px + eiar) — p(x)Jese 1)

where « is a parameter that allows a tunable surface tension and w/, are the redefined weight
functions [15].

Based on [45], the pseudopotential function is calculated from a non-ideal equation
of state:

2(pee — pc3)
=\ = 13
y e (13)
The Peng—Robinson equation of state is used to calculate the pseudopotential, accord-
ing to Equation (13):

oRT 407 [1 + (0.37464 + 1.54226 — 0.2699?) (1 — Tl)]z

PEE=1 "bp 1+ 2bp — b2p? (14)

When the pseudopotential is calculated by Equation (13), it is found that the inter-
molecular interaction force becomes independent of the parameter G. In this case, G is
used only to ensure that the square root of is always positive.

The intermolecular interaction force is computed according to Equation (15):

Fy = —$(x)GY_wi(le;*)p(x + ciAt)eirt (15)

Apart from this intermolecular interaction force, there are other forces involved in
the bubble formation on heated surfaces problem to be incorporated in the hydrodynamic
model. The buoyancy force is introduced as in [45], using Equation (16):

Fy = g(p—p) (16)

In Equation (16), g represents the acceleration due to gravity, and p denotes the average
density computed accounting for the entire computational domain. Implementation of the
buoyancy force in this form is most commonly found in the literature since it ensures that
the acceleration of the system is zero [46].

The interaction force between the solid surface and the fluid, used to adjust the contact
angle, is introduced according to [19] by Equation (17):

x,t
Fsup = _% ZGSW;HQ‘Z)S(X—I—Cl'At)CiAt (17)
i
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In Equation (17), G is a parameter that represents the magnitude of the interaction
between the fluid and the solid in order to adjust contact angles, and s(x) is a function that
is unity if the position x corresponds to the solid and null otherwise.

The density and velocity fields are obtained directly from the distribution function,
fi(x, t), through Equations (18) and (19), considering the effect of the total force F; =
Fyt + Fg + Fsyp, respectively:

o= filxt) (18)

_ Y cifi(xt) i Fipy + Fg + Foup
P 2p
For the model used, the solved hydrodynamic equations obtained through the
Chapman-Enskog Expansion are expressed by [19]:

(4

(19)

d
8—p+v-(pv) ) 20)
t
d

In Equation (21), it is noted that the effects of the buoyancy forces and the surface
interaction force appear explicitly. The intermolecular interaction force is introduced
through the pressure tensor. For the model used in this paper, the pressure tensor P
according to [42,43] is the following:

2.4 4 401 _
P = (pes+ Sovi + S 2oy )1 L=y

2.2. Thermal Sub-Model

Following the approach introduced by [19], the numerical solution of the energy
equation is based on the fourth-order Runge-Kutta method. This is justified by the fact
that when using the lattice Boltzmann method to solve this equation, the source term must
still be discretized by finite differences. Thus, through the temporal integration of the
Equation (23) by the fourth-order Runge-Kutta method, the temperature at the next instant
of time is calculated by

Tt Af) = T(x, 1) 4 (22 205+ ha)

. 23)
In Equation (23), hy, hy, h3 and hy are calculated, respectively, by
hy = —v-VT+V'(WT)—T(a’]) V.o (24)
0Cy pco \ 0T/, (D

hy = _v.VT+WVD_T<?> V.o (25)

L peo plo P IT(xp)+aty
hs = _v.VT+W{VD_T(g;7) \VAR") (26)

L peo peo P I T(x ) +at2
o= [0 vrs U T (0 o o)

L peo e p I T(x,t)+Aths
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It should be noted that the diffusive term was expanded according to V-V

Py
aV2T + L;'CYT.
The first-order and second-order derivatives are computed based on the discretization

schemes presented in [47]. These schemes are given, respectively, by Equations (28) and (29)
presented for a generic field, H(x):

algy) - clsziH (xciAt)cij 29
j S i
M) 2 5 (xeint) — H) )
j S i

2.3. Boundary Conditions

For the hydrodynamic model, the boundary conditions are given in terms of the
distribution function. In this work, the boundary conditions considered by [19] will be
used. In this case, the lower and upper surfaces will be modeled as solid walls at rest
and for the lateral surfaces, periodic boundary conditions are considered. Considering the
latter, it is assumed that the computational domain has a sufficiently large dimension in
this direction. Periodic boundary conditions are easily applied by means of an appropriate
numerical implementation of the streaming operation.

A schematic representation of the computational domain is shown in Figure 3, with
dimensions Ly and Ly, including the heating surface. Considering the velocity scheme
D2Q9, used to perform the simulations, and the domain represented by Figure 3, it follows
that, after the transmission operation (streaming), the distribution functions with directions
towards the interior of the computational domain must be determined, as shown in Figure 4.

Heated surface

Figure 3. Schematic representation of the computational domain.
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Figure 4. Schematic of the boundary conditions for the D2Q9 velocity scheme (D2 indicates a two-
dimensional simulation domain and Q9 indicates that each lattice site has nine discrete velocity
directions, indicated using values 1 to 9).

For the left lateral surface (x = 0), the periodic boundary condition is expressed by
the following relation, considering the directionsi = 1,5, 8:

fir(xt) = fi'(x + Ly, t) (30)

For the right lateral surface (x = Ly), the periodic boundary condition is expressed by
the following relation, considering the directions i = 3,6,7:

fi(x+ Ly t) = fi(x1) (31)

The condition at the fluid—solid interface applied in this paper is the no-slip condition.
In the lattice Boltzmann method, this boundary condition can be implemented by means
of the bounce-back scheme [48].

The bounce-back scheme is based on the condition that, during the transmission stage,
the populations that reach the wall are reflected in the direction of the domain. In this way,
the normal and tangential components of the velocity are reversed.

The formulation in terms of the distribution function for the bounce-back boundary
condition is based on equating the unknown distribution functions to the opposite distribu-
tion functions at the fluid-solid interface. Considering the discretization scheme in velocity
space D2Q9, the following relation should be applied [11]:

f2 (%) = fi(x,1) (32)

fs(x,t) = f7 (x,1) (33)
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fo(x,t) = f5(x, 1) (34)

Another scheme that allows the implementation of the no-slip condition was proposed
by [49]. In this work, the authors developed a general scheme for solid walls with a given
velocity, v,. This is the scheme adopted in this work. For simplicity, the distribution
function will be presented simply by f;*, omitting the argument (x, ). Assuming that the
lower solid wall has density p, (to be calculated), velocity given by v, = (vpx, vp,y) and
initially disregarding the effect of external forces, the following relations can be obtained,
considering Equations (18) and (19):

fotfstfe=pp—fo+A+f5+fi+f+f) (35)
fs = fo = ppvpx — (i — f3 — f7 + f5) (36)
fr+f5+fo =ppopy+ (fi +f7+f5) (37)

Combining Equations (35) and (37), one can calculate the density of the solid wall, p:

1
1 - Up,y

Py = o+ +f3 +2(fi + f7 + f5)] (38)

However, the components in the 2, 5, and 6 directions are unknown. The closure of
the system of equations is based on admitting that the bounce-back rule is applied to the
non-equilibrium portion (f l.neq =fi— ffq) of the function distribution in the normal, 2, and
4 directions:

f=f =1 (39)

In this way, equations for the unknown directions can be obtained:

* * 2
fr=f+ 3PPCpy (40)
fs =f7 — E(fl - f3)+ SPpOpa Tt 5Prlpy (41)
fo = fs — §(f1 —f3) - SPpOpx Tt GPrlpy (42)

An analogous procedure can be obtained for the upper boundary so that the density
at the boundary and the distribution functions of the unknown directions can be obtained:

1 * * * * * *
P = Tro (fs + i+ f3 +2(f2 +f5 + fo)] (43)
Py
* * 2
fi=1f - gppvp,y (44)
fr=/f5+ §(f1 —f3)— 2Pp0px = cPplpy (45)
fs =fe + §(f1 —f3)+ SPP0px = cPpUpy (46)

The effect of external forces on the calculation of the distribution function at the
lower and upper boundaries is now considered. According to [11], by the Chapman-
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Enskog expansion for the upper boundary under the effect of forces, Equations (44)—(46)
are modified and the equations to be applied are given by

_ 1 * + * + * 4 o(fF * * Ftotal,y 47
pp_il—i—vpy fo+fA+f+20f+f+f)+ > (47)
2 Frotal,
fi=f— gppvp,y + 06a Y (48)
1 1 1 Fiotal Fiotal,
fr=f5+ E(fl* —f3) - 5PpUpx = cPrpy + toZ =+ o6a s (49)

1 1 1 Fiotax . Ftotal,
fs=fo+ E(fl* -f3)+ 50pVpx = cPplpy — O4a =+ % (50)

Similarly, for the lower boundary, the equations that allow the calculation of the

density at the wall and the unknown distribution functions are given by

1 * * * * % % Ftotal,y
L —— fotfi+f5+2(fi+ 17+ fs) —— (51)
2 Ftotul,1
fi = fi+ 30r0py = — ¢ (52)
« 1 % 1 1 Ft tal, Ftotal,y
fs = f7 =5 = B) + 5000 + goptpy — =5 — —¢ (53)

1 1 1 Fiot 1, Ftotal,y
fo=fi— E(fl* —f3)— 5PpUpx + gvap,y+ 0411 = — 6 (54)

It is worth noting that, for the particular case of the simulations carried out in this

paper, the velocities of the solid walls are zero, so that vy, x = vy, = 0.

Unlike the hydrodynamic model, for the thermal model the boundary conditions are
expressed directly in the temperature field, since the fourth-order Runge-Kutta method
is used.

For the temperature field, one can basically consider Dirichlet (constant temperature)
or Neumann (constant heat flux) boundary conditions. For the first case, the evolutionary
equation for temperature (Equation (23)) is solved for the nodes inside the domain and
the boundaries have a known temperature. For the second case, the temperatures at the
boundaries can be extrapolated considering the interior nodes, and the temperature at time
' = t + At is obtained by Equation (23), as indicated in [24].

For the constant temperature condition, the upper and lower boundaries are consid-
ered to have temperatures equal to the saturation temperature. For the constant heat flux
condition, the upper and lower surfaces are considered adiabatic. For both conditions, it is
assumed that the heating surface has a constant temperature, given by T = T;.

2.4. Initial Conditions

For bubble cycle simulations, the density field is imposed as a liquid—vapor mixture,
with each phase occupying 50% of the computational domain [20]. For simulations of the
boiling curve, the density field is imposed as a liquid-vapor mixture, with each vapor occu-
pying 40% of the computational domain and the liquid phase occupying the remainder [19].
For both cases, the initial velocity field is assumed to be zero [20].

As an initial condition for the hydrodynamic model, typically in the literature, the
equilibrium distribution function is used as an initial condition, as follows:
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fi(x,0) = f{(x,0) (55)

In this work, a different strategy is used, based on the work of [50,51]. In this case,
once the initial density and velocity fields are known, the equilibrium distribution function
is calculated and used in the initialization. Subsequently, only the hydrodynamic model
is solved, without the effect of gravitational acceleration, until the density and velocity
fields reach convergence, considering a relative residual of 10~%. After the fields converge,
the effect of gravitational acceleration is considered and the energy conservation equation
is solved.

For the thermal model, the initial condition is imposed assuming an uniform tempera-
ture in the computational domain and equal to the saturation temperature: T; = T, T.

3. Results and Discussion

This section presents numerical results obtained by implementing and simulating bub-
ble formation on heated surfaces using the lattice Boltzmann pseudopotential method. The
simulations are performed with parameters from the literature. Thus, the variables used are
presented in lattice units, in the same way as other works in the literature [15,19,36-38,52].

For all simulations, the relaxation frequencies were chosen according to the work
of [42]: Wy = w3 = W5 =1, W] = Wy = Wy = wg = 1.1. Relaxation frequencies w7 and wg
are calculated from kinematic viscosities.

As some of the results are presented in the dimensionless form, proper scales need to
be defined. Taking into account the work of [53], the length scales Ly, velocity ug, and time

scales t( are defined as
Y

L= O 56
* 7V glor —po) 6)
Upg = \/gLO (57)

o = f[—g (58)

All simulations were performed on a desktop computer with an Intel® Core i7-4790
CPU @ 3.60 GHz x 8, with 32 GB of RAM (Intel Corporation, Santa Clara, CA, USA). The
computational code was implemented in software MATLAB® R2022b.

3.1. Simulation of a Bubble Cycle Using Literature Data

In this section, the bubble cycle simulations use the parameters described in the study
by [20]. The simulations were conducted for a reduced temperature of T, = 0.86. For
the Peng—Robinson equation, the parameters are set as a = %, b= %, and R = 1. This
allows us to determine the critical temperature, which is T, = 0.1094. The equilibrium
density values are p; gy = 6.5 and p, 1 gm = 0.38. Thermophysical properties include
Vi, LBM = Vo,LBM = 0.1, X]IBM = Qo[ BM = 0.06, and Co,l,LBM = Co,0,LBM = 5. It is important
to note that both phases were assigned the same value for thermal diffusivity. The thermal
conductivity for each phase is determined by k = apc,, as outlined in [20]. Furthermore,
the authors assumed c, ~ c,. The acentric factor corresponds to that of water, namely
wig = 0.344. Lastly, the thermodynamic consistency adjustment parameter is set to o = 0.1.

Using the provided data, the initial step involves determining the surface tension by
simulating a hydrodynamic scenario involving a static drop surrounded by its vapor phase.
The computational grid used is 200 by 200, with periodic boundary conditions enforced in
every direction. The parameter x, used to modulate the surface tension, is initially set to
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x = 0. Under these conditions, the temperature remains constant at the saturation point.
To shape a circular liquid drop, the density distribution is defined as follows [21]:

- 2(V/(x = x0)* + (¥ — y0)* — Rini
p(w):(pz;pv)_(pzzpv)tanh[( T Wy v0 )}

(59)

With reference to the parameters of Equation (59), R;,; = 50 represents the initial
droplet radius, (xo, o) denotes the center coordinates of the computational domain, and
W = 5 indicates the thickness of the interface as per [15]. The simulation convergence
criterion is established by assessing the relative error in the density field in successive
iterations, with a residual value set to 1078, Once the density field has converged, the
surface tension is calculated using the Young-Laplace equation:

YLBM (60)

Aprem =
P Rfim,LBM

In Equation (60), Ap represents the pressure differential across the droplet, v denotes
the surface tension, and Fﬁm is the droplet’s radius. It is important to mention that the
equilibrium radius of the droplet post-simulation convergence could differ slightly from
its initial radius, Ry. Consequently, once the simulation converges, the droplet radius
is recalculated using a numerical method, with the interface defined at the point where
p = 0.5(p; + po), according to [11]. Figure 5 presents the density field achieved after the
simulation has converged.

Figure 5. Density field for x = 0 considering the input data from [20].

For the parameters of the work of [20], the surface tension calculated by simulation for
the model with the MRT operator is equal to yr gy = 0.0857, a value obtained for x = 0. For
the simulation of bubble formation, the upper and lower surfaces are modeled as adiabatic
solid walls (except for the heating surface), and periodic boundary conditions are assumed
on the side walls. The heating surface is located at the center of the lower wall and has
length L; = 3, being formed by the central node and the adjacent nodes to the left and
right. The temperature of the heating surface is constant and equal to T; = 1.25T;. The
computational mesh used for the simulations is 150 x 300, the same as adopted by [20].
The adjustment parameter for the contact angle is chosen as Gs = 0 so that the contact
angle is approximately equal to 45°.
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Figure 6 presents the results of the density field for different time intervals for the
condition in which ¢ = 2.5 x 10~°. The temperature field for the same instants is presented
in Figure 7. It is possible to observe the formation of a vapor nucleus near the heating
surface because of the higher temperature. After t = 5000, bubble detachment is noted due
to the effect of buoyancy force.

6

(a) (b) (©)

Figure 6. Results of the density fields obtained with data from [20], considering ¢ = 2.5 x 10> for
different time periods of (a) t = 1000, (b) ¢ = 5000, (c) t = text10, 000.
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Figure 7. Results of the temperature fields obtained with data from [20], considering g = 2.5 x 107>
for different time periods of (a) t = 1000, (b) t = 5000, (c) ¢ = 10,000.
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From a theoretical point of view, the increase in gravitational acceleration results in
a smaller diameter and shorter detachment period. This is justified by the increase in the
buoyancy force, which favors the detachment of the bubble from the heated surface. Simu-
lations of the bubble cycle were performed for different values of gravitational acceleration,
starting from ¢ = 3.125 x 107° to ¢ = 5 x 10~°, with uniform increments. The numerical
results of the diameter and detachment period were obtained and are presented in Figure 8.
In addition, fitted curves of the relationships are considered based on the diameter and
detachment period considering the correlations of [54,55]. These correlations are given,
respectively, by Equations (61) and (62):

Dy = 0.02086 [$] - 61)
g(o1 — pv)
Dy 1801 — po)y170%
Ty = 0.59[ 02 } (62)

Taking into account these correlations, the relationships between the diameter and
the period of detachment with the gravitational acceleration are, respectively, D;, o g~0°
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and T; < ¢~07°. Tt is noted that the numerical results are in reasonable agreement with the
previous relationships.

—7,=28g""

——D, =0.195¢"*

60

40

Departure diameter
Departure period

20

0 1 2 3 4 5 6
Gravitational acceleration x10° Gravitational acceleration x10°

@ (®

Figure 8. Results of (a) diameter and (b) bubble detachment period versus gravity acceleration
obtained with data from [20].

During the bubble cycle, the dynamic behavior of the spatial-averaged heat flux allows
the definition of the bubble expansion and liquid wettability processes. For the first process,
the effect of bubble expansion results in a reduction in the spatial averaged heat flux.
For the second, the effect of liquid wettability results in an increase in the heat flux. The
spatial-averaged heat flux can be defined by the following relation:

7 1 L oT
t)=— —k— d 63
7o-1['( ay>y_0x (63)

In Equation (63), the wall temperature gradient is calculated using a second-order
finite difference approximation.

The transient average spatial heat flux, in dimensionless form, can be expressed
considering the formulation introduced by [26]:

—adim 9" (H)Lo
t) = (64)
7 ) vipihio
In Equation (64), the enthalpy of vaporization, hj,, is calculated according to the

procedure of [52] based on the definition of enthalpy given by Equation (65):

L3,

In Equation (65), p is the pressure calculated using the non-ideal equation of state.

p
dpo+ = (65)
3 P

Considering the Peng-Robinson equation of state, the resulting equation for calculat-
ing enthalpy is given by

2b%0 —2b — 2v/2b

a(T) () 1
2020 — 2b +2+/2b

— 4 aua(T n
TT, 22

In Equation (66), 77(wgg) = (0.37464 + 1.54226wgg — 0.26992w? ;). Therefore, the
enthalpy of vaporization can be calculated by hy, = hy, — hj.

h = |aTn(wge)

(66)

Figure 9 shows the diameter and the dimensionless area-averaged heat flux versus
dimensionless time (dimensionless through the time scale, ty, given by Equation (58))
during the bubble cycle. For the first cycle, which is the longest compared to the others,
there is a reduction in the heat flux to ¢ ~ 4000, which corresponds to the bubble expansion
process. From this moment on, the heat flux begins to increase, characterizing the liquid
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wettability process. The peak of the heat flux corresponds to the moment the bubble
detaches from the heated surface.

50 1.5
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40 7 1.4 =
i 0
Detachment of a bubble f)
§ 30 g
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= n
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Dimensionless time

Figure 9. Bubble diameter results and dimensionless area-averaged heat flow versus dimensionless time.

After carrying out a preliminary comparison with empirical results, more specifically
the diameter and frequency of detachment, the numerical model can be used for parametric
analyses, as well as comparison of different models.

3.2. Simulation of the Boiling Curve Using Literature Data for Different Reduced Temperatures

The pseudopotential method was applied in the literature to simulate the boiling curve.
In this case, it is considered that the heating surface corresponds to the entire lower surface,
thatis, L; = Ly according to Figure 3. In this section, different reduced temperatures were
considered and a qualitative comparison between the results was performed considering
the parameters of the works of [19,26].

In the work of [19], the different regimes of the boiling curve were simulated for
different liquid wettability conditions. The simulations were performed again for T, = 0.86,
whose equilibrium densities were used in the previous section. The following parameters

: _ _ 05 _ _ _ _ 0028
were used: v gy = 0.1, Vo, LBM = 5%, Co,LBM = Cu1,LBM = Co,LBM = 6,and ap gy =

Co,LBM
From the last relation, it is observed that the authors related the thermal diffusivity to the
specific heat at a constant volume, which differs from the definition: & = % Thus, it is

concluded that the authors considered ¢, ~ c,.

In the work of [26], the simulations of the boiling curve were performed at T, = 0.9.
The Peng—Robinson equation of state was used, considering the parameter a = %. In order
to obtain the same critical temperature for both reduced temperatures, the parameter a of
the equation of state was chosen as a = %. Considering a = 5—9, it follows that the critical
temperature is the same for both conditions. For T, = 0.9, the equilibrium densities are
prem = 9.9 and p, 1 gm = 0.58. The viscosities of the phases are v; 1 gy = Vo,1.8m = 0.06.
The thermal diffusivities are & ; gpy = 0.05 and a;, 1,3y = 0.06. Finally, the specific heats
used were ¢, 1M = Co,L8M = 4 and ¢y, 18M = Cop,LBM = 2.

For all thermophysical properties used, the same interpolation scheme given by

0 — Po por—p
_ N 67
¢ q)’(pz—pz) q)v(pz—pv) ©7)

The acentric factor is that of water: wrp = 0.344. The thermodynamic consistency

Equation (67) is applied:

adjustment parameter is the same as in the previous section: ¢ = 0.1. The gravitational
acceleration was assumed to be g = 3 x 107> for both cases, as well as the computational
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mesh: 600 x 150. The contact angle adjustment parameter was assumed to be G; = 0,
resulting in a contact angle of 6. = 45°. Solid wall boundary conditions with constant
temperature were assumed for the lower and upper surfaces, while periodic boundary
conditions were assumed for the lateral surfaces. On the lower surface, the temperature
is given by T; = T + AT, where AT is the surface superheating. The upper wall has a
constant temperature and is equal to the saturation temperature, T;. These same boundary
conditions were considered by [19].

In the work of [19], temperature fluctuations were inserted into the equation of state
used in the calculation of the pseudopotential (Equation (13)) in order to intensify the
formation of bubbles on the surface. These fluctuations are necessary since the superheating
is applied across the entire heating surface. In this work, the temperature fluctuation
introduced into the pseudopotential is applied at the center of the computational domain
and was considered equal to half the critical temperature calculated previously.

The methodology used by [19] for numerical simulations for different values of surface
superheat is described below. The authors defined, through simulations, that the onset
of boiling (ONB, onset of nucleate Boiling) occurs for AT = 0.0137. For simulations with
higher superheats, the authors simulated 20,000 instants for AT = 0.0137 and, from that
instant on, a new value for surface superheat was used. Regarding the work of [26], it is
noted that surface superheat is used from the beginning of the simulations, that is, in a
different way to the procedure adopted by [19]. In this paper, it was decided to carry out
the simulations in the same way as [26], that is, using the desired superheating from the
beginning of the simulation.

At this point, a discussion regarding the non-dimensionalization of surface super-
heating is carried out as follows. In the work of [26], the authors non-dimensionalized
the surface superheating by means of the Jakob number. However, based on the litera-
ture review carried out in this paper, it is noted that the choice for the specific heat in
lattice units appears to be by numerical experimentation. On the other hand, in the work
of [19], the authors presented all the results of average heat flux versus surface superheat
in lattice units.

In this paper, we chose dimensionless space-averaged heat flux and surface superheat-
ing using parameters that can be obtained through the equation of state and the saturation
temperature. This is justified by the fact that the value of the specific heat used in the
mentioned works was not obtained as a function of the temperature (as performed in
the international system of units). Thus, we propose to make dimensionless the surface
superheating according to the Equation (68):

AT
Tc

After calculating the spatial-average heat flux using Equation (63), the temporal

AT = (68)

average is performed using Equation (69):

adim =T _ adi
7= / T (bar 69)

T

where T; is the total simulation time. The simulation is performed until the spatially

t=0

averaged heat flux remains constant among 1000 iterations.

The simulations were performed with surface superheating equal to AT = 0.005 for
both reduced temperatures. This value was progressively increased, considering increments
of 0.001, until the final value of AT = 0.04. The results of the average heat flux, obtained for
numerical simulation for the reduced temperatures T, = 0.90 and T, = 0.86, are presented
in Figure 10. The same figure indicates the onset of nucleate boiling (ONB—onset of nucleate
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Heat flux [Wem™]

boiling) for both reduced temperatures. For T, = 0.90, the onset of nucleate boiling occurs
at AT = 0.008 (in lattice units), and for T, = 0.86, it occurs at AT = 0.013 (in lattice units).
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Figure 10. Dimensionless heat flux, Equation (69), versus dimensionless wall superheat, Equation (68),
results for T, = 0.90 and T, = 0.86.

Still in relation to Figure 10, it is noted that the critical flux was higher for T, = 0.90
compared to T, = 0.86. Considering the work of [56] and considering water as a fluid, since
the works of [19,26] used the acentric factor of water, it follows that the critical flux obtained
for T, = 0.86 should have been higher than that obtained for T, = 0.90. However, it is
not possible to guarantee that the parameters in lattice units for the reduced temperatures
considered correspond to the simulation of the same fluid. This is justified because the
transport properties were not obtained as functions of temperature despite the use of the
acentric factor of water.

Regarding the critical heat flux, its strong dependence on the reduced temperature is
highlighted here, as reported in the literature, for example, in [5]. Regarding the cited study,
Figure 11 presents results of boiling curves for the HFE-7100 fluid at different saturation
pressures considering a polished heating surface.
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Figure 11. Boiling curves for different saturation pressures for HFE-7100 fluid considering a
polished surface.
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Figure 12 presents the density and temperature fields obtained for the initial boiling
condition for T, = 0.90. Regarding the density field, for ¢t = 10,000, the reduction in
density near the heated surface is observed due to the higher temperature. Subsequently,
for t = 20,000, the detachment of some bubbles is observed, as well as the coalescence of
nuclei in the central region. Regarding the temperature field, the effect of the increase in
temperature on the liquid near the heating surface is clearly noted.
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Figure 12. (a) Density and (b) temperature fields for pool boiling for T, = 0.90 in nucleate boiling regime.

Figure 13 presents the density and temperature fields obtained for the boiling onset
condition for T, = 0.86. It can be noted that the release of the first bubbles occurs only for
t = 30,000. Contrary to the results of the density field obtained for T, = 0.90 and shown
in Figure 12a, no bubble coalescence is observed on the heated surface. Regarding the
temperature field, the effect of increasing the temperature on the reduction in the fluid
density near the heating surface can be noted.
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Figure 13. (a) Density and (b) temperature fields for pool boiling for T, = 0.86 in nucleate boiling regime.
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Figure 14 presents the density and temperature fields for T, = 0.90 considering
AT = 0.014. This superheating was chosen because it is located in the fully developed
nucleated boiling regime. Note the presence of more vapor nuclei on the heated surface, as
well as greater coalescence between bubbles, giving rise to larger bubbles.

Figure 15 presents the fields for AT = 0.017, considering the same selection criterion
for the surface superheating. Again, note the presence of more vapor nuclei on the surface,
as well as greater coalescence of the bubbles. Because the saturation temperature is lower,
note that the bubble detachment diameter is larger than those observed for T, = 0.90.
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Figure 14. (a) Density and (b) temperature fields for pool boiling for T, = 0.90 in fully developed
nucleate boiling regime.
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Figure 15. (a) Density and (b) temperature fields for pool boiling for T, = 0.86 in fully developed
nucleate boiling regime.

Figure 16 presents the density and temperature fields obtained for T, = 0.90 consid-
ering AT = 0.019. For this superheat value, the critical flux condition exists, in which
steam is permanently generated throughout the heating surface. An increase in superheat
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beyond this condition will result in the transitional boiling regime. For T, = 0.86, the same
condition is shown in Figure 17. In this case, the superheat is AT = 0.022.
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Figure 16. (a) Density and (b) temperature fields for pool boiling for T, = 0.90 in critical flux.

Figure 17. (a) Density and (b) temperature fields for pool boiling for T, = 0.86 in critical flux.

Finally, the successive increase in surface superheating beyond the critical flux con-
dition results in the film boiling regime. For film boiling, the heat flux supplied by the
heating surface is high enough to maintain a vapor film condition below the liquid. The
density and temperature fields for T, = 0.90 are presented in Figure 18, and for T, = 0.86,
they are presented in Figure 19, both for the superheat condition of AT = 0.04. Note that
the heating surface is covered by a vapor film due to its high temperature. Subsequently,
due to instabilities at the liquid-vapor interface, vapor bubbles are formed on the surface

and detach from it.
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Figure 19. (a) Density and (b) temperature fields for film boiling for T, = 0.86.

3.2.1. Influence of Liquid Wettability

Considering the data from the work of [26], an analysis of the influence of wettability
was performed using the parameter G, in Equation (17). The same values considered for
the simulation of the bubble cycle were considered: —0.75 and 0.75. It is worth mentioning
that the results of the boiling curve presented in Figure 10 for T, = 0.90 were obtained for
Gs = 0. Thus, numerical simulations were performed only for Gs = —0.75 and G; = 0.75.

The contact angles were also obtained for the different wettability conditions. The
same methodology used for the data in [20], presented previously, was used for the [26]
data, except for the computational mesh: 500 x 200. The justification for the greater number
of points in the X direction is due to the lower surface tension for T, = 0.90 compared to
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T, = 0.86. The results of the density fields for the different contact angles are presented in
Figure 20.
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Figure 20. Results of the density fields obtained for T, = 0.90 and for different values of the parameter
Gs: (a) Gs = —0.75; (b) Gs = 0; (c) Gs = 0.75.

For the boiling curve simulations under varying wettability presented in Figure 21,
the same fundamental methodology detailed earlier was employed. As is well established,
wettability significantly influences boiling heat transfer: hydrophobic surfaces tend to
exhibit larger contact angles, thus lowering the energy barrier for vapor nucleation [57]
and initiating boiling at lower superheat [58]. However, they also generally display lower
critical heat flux due to reduced liquid film stability near the heating surface. Conversely,
hydrophilic surfaces have smaller contact angles, which delay the onset of nucleate boiling
but yield higher critical heat flux. In our simulations, these trends are evident in Figure 21,
where the hydrophobic surface (Gs; = 0.75, 6, = 63°) initiates boiling at a lower superheat
compared to Gs = 0 (8, = 45°) and Gs = —0.75 (6. = 36°), yet shows a lower peak heat
flux. Conversely, surfaces with smaller contact angles (i.e., more hydrophilic) achieve
progressively higher critical heat flux values, highlighting the strong interplay between
contact angle, nucleation dynamics, and overall heat transfer performance.

In addition, the results presented in Figure 21 can be confirmed, qualitatively, with
numerical results from the literature. For example, the work published by [59] presented
numerical results similar to those presented in this paper.
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Figure 21. Results of dimensionless heat flux versus dimensionless surface superheating for T, = 0.90
for different values of Gs: —0.75, 0, and 0.75.

3.2.2. Influence of the Surface Tension

The influence of surface tension on the boiling curve results at T, = 0.90 was deter-
mined considering ¥ = 0.75 and x = —0.75. Thus, conditions of lower surface tension
(vLem = 0.0133) and higher surface tension (v = 0.0943), respectively, were analyzed.
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Considering the same procedure performed previously through simulations of the
static drop by varying the parameter «, the surface tension as a function of « is presented in
Figure 22.

0.09
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Figure 22. Surface tension results versus x parameter using data from [26].

The results of the boiling curves for different values of surface tension are presented
in Figure 23. It is noted that the effect of reducing the surface tension is to increase the
heat flux, for the same superheat. This effect can be explained by the activation of a greater
number of nucleation sites, similar to the effect caused by the addition of surfactants [60].
It is also noted that the critical flux occurs for a higher value of surface superheat. In terms
of the boiling curve, it is noted that the simulation for higher surface tension (x = —0.75)
presented very similar behavior to the results of x = 0 when AT*" < 0.16. Note that the
critical heat flux occurs for a lower value of superheat. The same is observed for the film

boiling regime for ¥ = 0 and ¥ = —0.75.
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Figure 23. Results of dimensionless heat flux versus dimensionless surface superheating for T, = 0.90
for different values of the parameter x: —0.75, 0 and 0.75.
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3.2.3. Influence of the Gravitational Acceleration

Finally, the influence of the gravitational acceleration on the boiling curve was assessed.
In addition to the results obtained for ¢ = 3 x 107>, other distinct values were considered:
g=15x10"and g =6 x 107°.

Figure 24 presents the results of the boiling curve for the gravitational acceleration
values mentioned above. It is noted that the onset of boiling (onset of nucleate boiling)
occurs for a lower value of surface superheating for ¢ = 1.5 x 107>, compared to the results
obtained for the other values of gravitational acceleration.

The results in Figure 24 demonstrate that the influence of gravitational acceleration
is more evident from AT > (0.1. From this value, the effect of bubble detachment is
more intense, increasing the heat flux. The critical flux is also influenced by gravitational
acceleration. As shown in the figure, the critical flux is higher for ¢ = 6 x 107> and
occurs for a higher superheat value. From a qualitative point of view, the numerical results
presented in Figure 24 are in agreement with experimental results in the literature [61,62].
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Figure 24. Results of dimensionless heat flux versus dimensionless surface superheating for T, = 0.90
for different values of gravitational acceleration: ¢ = 1.5 x 1075, ¢ = 3.0 x 1072, g = 6.0 x 107°.

4. Conclusions

This study employed the pseudopotential lattice Boltzmann method (LBM) to investi-
gate boiling heat transfer at different reduced temperatures, providing insights into bubble
nucleation, growth, and detachment dynamics. The results demonstrated that reduced
temperature significantly influences the boiling regime, affecting heat flux distribution
and critical heat flux (CHF) behavior. The numerical model, based on a multi-relaxation-
time approach and a Peng—Robinson equation of state, showed good agreement with
theoretical predictions, validating the capability of the LBM for phase-change simulations.
Additionally, this study highlighted the critical role of surface wettability in modifying
boiling characteristics, where hydrophobic surfaces exhibited earlier nucleation but lower
CHEF, whereas hydrophilic surfaces enhanced liquid rewetting and delayed film boiling
transition. Our quantitative analysis, considering contact angles spanning from approx-
imately 36° (hydrophilic) to 63° (moderately hydrophobic), highlights two key findings.
First, the onset of nucleate boiling (ONB) occurs up to 20-30% earlier for the more hy-
drophobic surfaces—requiring a lower superheat to initiate phase change—than it does
for the hydrophilic surfaces. Second, the critical heat flux (CHF) is as much as 10-15%
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References

higher for the more hydrophilic surfaces, underscoring the benefit of smaller contact angles
for sustaining robust heat transfer at higher heat fluxes. These results confirm the strong
interplay between wettability and boiling performance and demonstrate the potential for
tuning contact angles in order to optimize phase-change heat transfer applications. The
findings emphasize the importance of accurate interface modeling and numerical stability
improvements to optimize boiling heat transfer simulations. Future work could focus on
refining interface tracking techniques, extending the model to three-dimensional cases, and
exploring hybrid approaches to enhance computational efficiency and predictive accuracy
in complex thermal systems.
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